
An Algorithm for Computing Highly Composite Numbers

Kiran S. Kedlaya

May 30, 2018

1 Introduction

A highly composite number is a positive integer with more divisors than any smaller positive
integer. In other words, if τ(n) denotes the number of divisors of n, then n is highly composite
if τ(m) < τ(n) for all m < n. The highly composite numbers (HCNs) were introduced by
Ramanujan [3], who used them to study the asymptotic growth of the τ -function. Subsequent
investigators of these numbers include Erdős [1] and Nicolas [2].

In order to guess asymptotic properties of the highly composite numbers, it helps to be able to
compute them efficiently. Robin [4] gave an algorithm for computing HCNs based on the notion
of “bénéfice” (benefit). The purpose of this note is to describe another such algorithm, which
has the advantages of being fairly simple as well as reasonably efficient.

2 The Algorithm

The key to the method is the notion of a highly composite k-product (abbreviated HCPk), defined
to be a number with k distinct prime factors having more divisors than any smaller number with
k distinct prime factors. The following observations are immediate consequences of the definition:

• Every HCPk is of the form pa11 . . . pakk , where pi is the i-th prime and a1 ≥ a2 ≥ . . . ≥ ak > 0.

• If pa11 . . . pakk is an HCPk, then pa11 . . . p
ak−1

k−1 is an HCPk−1.

• Every HCN with exactly k prime factors is an HCPk.

Thus given a sufficiently long list of HCPk−1’s, one can construct a list of HCPk’s as follows.
Given an HCPk n, for successive values of j, find the smallest HCPk−1 m such that (j+1)τ(m) >
τ(n). The next HCPk is then the minimum of mpjk over all j. (Clearly once we encounter a value
of j for which m = f(k − 1, 1), we need not consider larger j.)

This translates into a simple algorithm as follows. Let f(k, n) denote the n-th HCPk and
d(k, n) = τ(f(k, n)). The above discussion reduces the computation of f to the computation of
functions g(k, n) and h(k, n) for n ≥ 1 and k ≥ 2 such that

f(k, n) = p
g(k,n)
k f(k − 1, h(k, n)), d(k, n) = (g(k, n) + 1)d(k − 1, h(k, n)).

1



We can ignore k = 1 since clearly f(1, n) = 2n.

Algorithm 1: Computing HCPk’s
Step 1: If n = 1, let g(k, n) = h(k, n) = 1 and STOP. Otherwise, let r = 2f(k, n−1) and j = 1.
Step 2: Find the smallest integer s for which either (j + 1)d(k − 1, s) > d(k, n− 1) or pjkf(k −

1, s) > r. If the latter fails to hold, let r = pjkf(k − 1, s), ek = j, and m = s.
Step 3: If s > 1, add 1 to j and return to Step 2. Otherwise, let g(k, n) = ek, h(k, n) = m and

STOP.

The HCNs can be found in a table of HCPs by a process parallel to Algorithm 1. Namely,
let H(n) denote the n-th HCN. To find H(n), for each k, find the smallest HCPk m with more
divisors than H(n − 1); the smallest of these is H(n). (As in Algorithm 1, once a value of k is
found such that m = f(k, 1), we need not consider larger k.)

Algorithm 2: Computing HCN’s
Step 1: If n = 1, let H(n) = 1 and STOP. Otherwise, let r = 2H(n− 1) and k = 1.
Step 2: Find the smallest integer s for which either d(k, s) > τ(H(n− 1)) or f(k, s) ≥ r. If the

latter fails to hold, let r = f(k, s).
Step 3: If s > 1, add 1 to k and return to Step 2. Otherwise, let H(n) = r and STOP.

3 Implementation

While the algorithms are simple enough to describe, making them run efficiently is a bit trickier.
In this section, we describe some modifications we have made to improve performance.

For successive values of k, we use Algorithm 1 to generate a list of the values of d(k, n), f(k, n),
g(k, n), h(k, n); we then use Algorithm 2 to locate HCNs in these lists. The maximum length
of a list, the number of lists, and the number of HCNs are specified at runtime, though a list is
truncated before the maximum length if an uncomputed value from a previous list is needed.

In Step 2 of either algorithm, we are asked to find the smallest s with a given property; we can
profit from the fact that with each pass through the algorithm, this s is getting larger. To be
precise, in Algorithm 1, for fixed k and j, the value of s is never decreasing, while in Algorithm 2,
for fixed k the value of s is never decreasing. Hence by keeping track of the last values used and
searching from that point instead of from 1, we save a great deal of time.

A second modification, which is easy to implement but slightly complicated conceptually,
involves decreasing the search space at Step 1. We describe this first for Algorithm 2, where the
necessary modification is fairly simple.

Proposition 1 If n is an HCN with k distinct prime factors, then n ≤ p2kk+1.

Proof: Factor n as pe1i . . . pekk and suppose n > p2kk+1. Then for some i, peii > p2k+1. Let
m = dlog pk+1/ log pie; then ei > 2 logpi

pk+1 ≥ 2m − 1. But this means that npk+1/p
m
i is an

integer less than n with τ(n)2(ei −m+ 1)/(ei + 1) ≥ τ(n) divisors, so n is not an HCN. 2

Therefore in Step 1, we may set k to be the smallest integer such that n ≤ p2kk+1 rather than
1, eliminating deep searches in lists that will not yield any more HCNs.

2



The corresponding modification to Algorithm 1 requires a lower bound on the exponent of pk
for a large HCPk. Such a bound can be derived by modifying the above argument, but we get a
much better estimate by a different approach.

Proposition 2 For any n, k ∈ N, there exists t ≤ n with at most k prime factors such that

τ(t) ≥
(

log n

k

)k k∏
i=1

1

log pk
.

Proof: Let λi = log n/(k log pi) and put ei = bλic and t =
∏
peii . Then

τ(t) =
∏

(ei + 1) ≥
∏

λi =

(
log n

k

)k k∏
i=1

1

log pk
.

2

Proposition 3 Suppose

(log n)k

(log n+ log p1 + . . .+ log pk−1)k−1
> ke(`+ 1) log pk.

If m = pe11 . . . pekk is an HCPk greater than n, then ek ≥ `.

Proof: As the right side is increasing in `, it suffices by induction to prove that ek 6= `. The left
side is increasing in log n (factor off log n and the rest is obviously increasing), so the assumed
inequality still holds with m in place of n. If ek = `, we have by the AM-GM inequality,(

logm− ` log pk + log p1 + . . .+ log pk−1

k − 1

)k−1

≥
k−1∏
i=1

[ei + 1] log pi =
τ(m)

`+ 1

k−1∏
i=1

log pi.

On the other hand, by the previous lemma, there exists t ≤ m such that

τ(t) ≥
(

logm

k

)k k∏
i=1

1

log pk

>
(logm+ log p1 + . . .+ log pk−1)

k−1

kk
ke(`+ 1) log pk

k∏
i=1

1

log pk

≥
(

logm− ` log pk + log p1 + . . .+ log pk−1

k − 1

)k−1

e(`+ 1)

(
k − 1

k

)k−1 k−1∏
i=1

1

log pk

≥ τ(m),

using the fact that e > [k/(k − 1)]k−1 for all k. Hence m cannot be an HCPk. 2

With these modifications, we have recreated Robin’s table of 5000 highly composite numbers in
several minutes on a Sun workstation. Ramanujan’s table of 102 HCNs appears almost instantly
(note that his table is missing the HCN 293318625600 between the 85th and 86th terms). These
tables and the C code of the implementation described above can be obtained from the author’s
WWW site INSERT-URL.

3



References

[1] P. Erdős, On highly composite numbers, J. London Math. Soc. 19 (1944) 130-133.

[2] J.-L. Nicolas, Nombres hautement composés, Acta Arith. 49 (1988) 395-412.

[3] S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. (2) 14 (1915) 347-409.

[4] G. Robin, Méthods d’optimisation pour un problème de théorie des nombres, R.A.I.R.O.
Informatique théoretique 17 (1983) 239-247.

4


