
§1 ZEILBERGER INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This little program implements Zeilberger’s bijection between n-node forests with
pruning order s and n-node binary trees with Strahler number s. [Doron Zeilberger, “A bijection from
ordered trees to binary trees that sends the pruning order to the Strahler number,” Discrete Mathematics
82 (1990), 89–92.]

As Zeilberger says in his paper, “First, definitions!” I won’t define forests (by which I always mean ordered
forests, as in The Art of Computer Programming), nor need I define binary trees. But I should explain the
concepts of pruning order and Strahler number, since they are less familiar.

A filament of a forest is a sequence of one or more nodes x1, . . . , xk, where xj+1 is the only child of xj

for 1 ≤ j < k, and where xk is a leaf. Given a forest, we can prune it by removing all of its filaments. The
number of times we must do this before reaching the empty forest is called the pruning order of the original
forest.

The Strahler number of a binary tree is 0 if the binary tree is empty; otherwise it is max(sl, sr) + [sl = sr],
when sl and sr are the Strahler numbers of the left and right binary subtrees of the root.

Zeilberger’s bijection proves constructively the remarkable fact, discovered by Mireille Vauchaussade de
Chaumont in her thesis (Bordeaux, 1985), that the pruning order and Strahler number have precisely the
same distribution, when forests and binary trees are chosen uniformly at random.

Furthermore, as we shall see, his bijection has another significant property: When forests are represented
in the natural way within a computer, as binary trees with left links to the leftmost child of a node and
with right links to a node’s right sibling, Zeilberger’s transformation preserves all of the left links: Node x
is the leftmost child of y in the original forest if and only if x is the left child of y in the binary tree that is
produced by Zeilberger’s procedure. In particular, the number of leaves in the forest equals the number of
“left leaves” in the corresponding binary tree.

This programs runs through all forests with a given number of nodes, and computes the corresponding
binary tree. It checks that the pruning order of the former equals the Strahler number of the latter; and then
it applies the inverse bijection, thus verifying that the original forest can indeed be uniquely reconstructed.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION ZEILBERGER §1

2. Skarbek’s algorithm (Algorithm 7.2.1.6B in The Art of Computer Programming, Volume 4) is used to
run through all linked binary trees, thereby running through all forests in their natural representation.

#define n 17 /∗ nodes in the forest ∗/
#include <stdio.h>

int l[n + 2], r[n + 1]; /∗ leftmost child and right sibling ∗/
int ll [n + 1], rr [n + 1]; /∗ links of the binary tree ∗/
int lll [n + 1], rrr [n + 1]; /∗ links of the inverse forest ∗/
int q[n + 1], s[n + 1]; /∗ data needed by Zeilberger’s algorithm ∗/
int serial ; /∗ total number of cases checked ∗/
int count [10]; /∗ individual counts by pruning order ∗/
〈Subroutines 5 〉
main ()
{

register int j, k, y, p;

printf ("Checking all forests with %d nodes...\n", n);
q[0] = 0, s[0] = 1000000; /∗ see below ∗/
for (k = 1; k < n; k++) l[k] = k + 1, r[k] = 0;
l[n] = r[n] = 0; /∗ we start with the 1-filament forest ∗/
l[n + 1] = 1; /∗ now Skarbek’s algorithm is ready to go ∗/
while (1) {
〈Find the binary tree (ll , rr) corresponding to the forest (l, r) 6 〉;
〈Check the pruning order and Strahler number 13 〉;
〈Check the inverse bijection 14 〉;
〈Move to the next forest (l, r), or break 3 〉

}
for (p = 1; count [p]; p++) printf ("Altogether %d cases with pruning order %d.\n", count [p], p);
}

3. 〈Move to the next forest (l, r), or break 3 〉 ≡
for (j = 1; ¬l[j]; j++) r[j] = 0, l[j] = j + 1;
if (j > n) break;
for (k = 0, y = l[j]; r[y]; k = y, y = r[y]) ;
if (k > 0) r[k] = 0; else l[j] = 0;
r[y] = r[j], r[j] = y;

This code is used in section 2.

§4 ZEILBERGER THE MAIN ALGORITHM 3

4. The main algorithm. The nodes in the forest are represented by positive integers, according to their
rank in preorder. For each node x > 0, we let l[x] be its leftmost child (namely x + 1), if it has one, but
l[x] = 0 when x is childless. Similarly, r[x] is x’s right sibling, or r[x] = 0 when x is rightmost in its family.

Zeilberger’s method implicitly begins by determining the pruning order of the given forest and its principal
subforests. We can carry this out by defining three numbers p[x], q[x], and s[x] for each node x; here p[x]
is the pruning order of the subtree rooted at x, q[x] is the maximum pruning order of x and all of its right
siblings, and s[x] is the number of nodes in which that maximum occurs. (Zeilberger called s[l[x]] the number
of “skewers” of x.)

Formally, we can compute p[x], q[x], and s[x] via the following recursive definitions, if we set q[0] = 0 and
s[0] =∞:

p[x] = q[l[x]] + [s[l[x]] > 1];

q[x] = max(p[x], q[r[x]]);

s[x] =

 1, if p[x] > q[r[x]];
s[r[x]] + 1, if p[x] = q[r[x]];
s[r[x]], if p[x] < q[r[x]].

5. The following recursive procedure computes (p[x], q[x], s[x]) at each node x of the forest. It turns out
that p[x] need not be stored in memory.

〈Subroutines 5 〉 ≡
void label (register int x)
{

register int p, qr ;

if (l[x]) label (l[x]);
if (r[x]) label (r[x]);
p = q[l[x]] + (s[l[x]] > 1);
qr = q[r[x]];
if (p > qr) q[x] = p, s[x] = 1;
else q[x] = qr , s[x] = s[r[x]] + (p ≡ qr);
}

See also sections 8, 12, and 15.

This code is used in section 2.

6. Zeilberger’s bijection is recursively defined too, and we will implement it by writing another recursive
procedure. But before we do so, let’s examine how that procedure will be invoked in the program.

〈Find the binary tree (ll , rr) corresponding to the forest (l, r) 6 〉 ≡
for (k = 1; k ≤ n; k++) ll [k] = l[k], rr [k] = r[k]; /∗ clone the forest ∗/
label (1); /∗ compute all the q’s and s’s ∗/
zeil (1); /∗ transform the binary tree ∗/

This code is used in section 2.

7. When subroutine zeil (x) is called, x is a node of a forest, represented via left-child and right-sibling
links ll and rr . The mission of zeil (x) is to transform that forest in such a way that x will be a node of the
final binary tree, while ll [x] and rr [x] will be the binary subtrees that are obtained by applying zeil to two
subforests.

Zeilberger’s paper considered three cases, depending on the relative sizes of q[x], q[ll [x]], and q[rr [x]]. In
Case 1, no change is needed; in Case 2, some of x’s children are promoted to be siblings of x; in Case 3,
some of x’s children swap places with all of the right siblings.

4 THE MAIN ALGORITHM ZEILBERGER §8

8. 〈Subroutines 5 〉 +≡
void zeil (register int x)
{

register int k, ql , qr , p, y, yy , z, zz , ss ;

k = q[x], ql = q[ll [x]], qr = q[rr [x]];
if (ql ≡ k) 〈Do Zeilberger’s Case 3 10 〉
else if (qr < k − 1) 〈Do Zeilberger’s Case 2 9 〉;

/∗ otherwise we do Zeilberger’s Case 1, which involves no action ∗/
if (ll [x]) zeil (ll [x]);
if (rr [x]) zeil (rr [x]);
}

9. Case 2, the tricky case, detaches all but the first of x’s “skewers.”
When right links change, we must update the q and s numbers in each subnode of x before applying zeil to

the new subforests. In particular, we must recompute all the q’s and s’s for the children of x that lie between
the first and second skewer, because those nodes will no longer lie in the shadow of the second skewer.

This recomputation is a bit tricky because it must be done bottom-up, while our links go downward. An
auxiliary recursive procedure could be introduced at this point, in order to achieve bottom-up behavior. But
there’s a more efficient (and more fun) way to do the job, namely to reverse the links temporarily as we
descend the chain, and to reverse them again as we go back up.

〈Do Zeilberger’s Case 2 9 〉 ≡
{

for (y = ll [x], ss = s[y]; s[y] ≡ ss ; yy = y, y = rr [yy]) s[y] = 1;
/∗ at this point node yy is the first skewer of x ∗/

for (z = yy , ss −−; s[rr [y]] ≡ ss ∧ q[rr [y]] ≡ ql ;
yy = z, z = y, y = rr [z], rr [z] = yy) ; /∗ reverse links ∗/

/∗ now node y is the second skewer of x ∗/
/∗ its left sibling, z, will become the last child of x ∗/

if (z ≡ yy) rr [z] = 0; /∗ easy case: the skewers were adjacent ∗/
else for (zz = 0; rr [z] 6= zz ; yy = zz , zz = z, z = rr [zz], rr [zz] = yy) {

p = q[ll [z]] + (s[ll [z]] > 1); /∗ we will recompute q[z] and s[z] ∗/
if (p > q[zz]) q[z] = p, s[z] = 1;
else q[z] = q[zz], s[z] = s[zz] + (p ≡ q[zz]);

}
for (zz = x, z = rr [zz]; z; zz = z, z = rr [zz]) q[z] = ql , s[z] = ss ;
rr [zz] = y; /∗ y and its right siblings become x’s final siblings ∗/
}

This code is used in section 8.

10. In Case 3, x has only one skewer. But the transformation in this case demotes siblings to children,
where they might become additional skewers. It also might promote some children to siblings.

〈Do Zeilberger’s Case 3 10 〉 ≡
{

if (qr ≡ k) ss = s[rr [x]] + 1; else ss = 1;
for (y = ll [x]; q[y] ≡ k; yy = y, y = rr [yy]) s[y] = ss ;
rr [yy] = rr [x], rr [x] = y;
}

This code is used in section 8.

§11 ZEILBERGER CHECKING THE STRAHLER NUMBER 5

11. Checking the Strahler number. If our implementation of Zeilberger’s transformation is correct,
it will have set q[x] to the Strahler number of the binary subtree rooted at x with respect to the ll and rr
links, for every node x.

Therefore we want to check this condition. And we might as well do the checking by brute force, so that
the evidence is convincing.

12. 〈Subroutines 5 〉 +≡
int strahler (register int x)
{

register int sl , sr , s;

if (ll [x]) sl = strahler (ll [x]);
else sl = 0;
if (rr [x]) sr = strahler (rr [x]);
else sr = 0;
s = (sl > sr ? sl : sl < sr ? sr : sl + 1);
if (q[x] 6= s) fprintf (stderr , "I goofed at binary tree node %d, case %d.\n", x, serial);
return s;

}

13. 〈Check the pruning order and Strahler number 13 〉 ≡
count [strahler (1)]++;
serial ++;

This code is used in section 2.

6 THE INVERSE ALGORITHM ZEILBERGER §14

14. The inverse algorithm. The evidence of correctness is mounting. But our argument in favor of
Zeilberger’s algorithm is still not compelling, because there are lots of ways to convert a forest with pruning
order s into a binary tree with Strahler number s. For example, we need only compute the pruning order,
then choose our favorite binary tree that has the desired Strahler number.

A bijection must do more than this: It must not destroy information. We must be able to go back from
each binary tree to the original forest that produced it. Thus, our implementation of Zeilberger’s procedure
is incomplete until we have also implemented its inverse, unzeil .

Our unzeil algorithm will recreate the forest in new arrays lll and rrr , just to emphasize that no cheating
is going on.

〈Check the inverse bijection 14 〉 ≡
for (k = 1; k ≤ n; k++) lll [k] = ll [k], rrr [k] = rr [k], q[k] = s[k] = 0; /∗ clone the binary tree ∗/
unzeil (1); /∗ attempt to recreate the original forest ∗/
for (k = 1; k ≤ n; k++)

if (lll [k] 6= l[k] ∨ rrr [k] 6= r[k]) fprintf (stderr , "Rejection at node %d of case %d!\n", k, serial);

This code is used in section 2.

15. The unzeil procedure also computes the q and s values at each node of the reconstructed forest.

〈Subroutines 5 〉 +≡
void unzeil (register int x)
{

register int ql , qr , p, y, yy , z, zz , ss ;

if (rrr [x]) unzeil (rrr [x]);
if (lll [x]) unzeil (lll [x]);
ql = q[lll [x]], qr = q[rrr [x]];
if (ql > qr) 〈Undo Zeilberger’s Case 3 16 〉
else if (ql ≡ qr ∧ s[lll [x]] ≡ 1) 〈Undo Zeilberger’s Case 2 17 〉;

/∗ otherwise we undo Zeilberger’s Case 1, which involves no action ∗/
p = ql + (s[lll [x]] > 1);
if (p > qr) q[x] = p, s[x] = 1;
else q[x] = qr , s[x] = s[rrr [x]] + (p ≡ qr);
}

16. 〈Undo Zeilberger’s Case 3 16 〉 ≡
{

if (s[lll [x]] > 1) {
for (y = lll [x]; s[rrr [y]] ≡ s[y]; y = rrr [y]) s[y] = 1;
s[y] = 1;

} else for (y = lll [x]; q[rrr [y]] ≡ q[y]; y = rrr [y]) ;
yy = rrr [y], rrr [y] = rrr [x], rrr [x] = yy ; /∗ swap siblings with children ∗/
qr = q[yy]; /∗ the subsequent program assumes that qr = q[rrr [x]] ∗/
}

This code is used in section 15.

§17 ZEILBERGER THE INVERSE ALGORITHM 7

17. We have saved the other tricky case for last: Again we do a double-reversal in order to recompute any
q’s and s’s that have been obliterated. In this case the recomputation affects the near siblings of x.

〈Undo Zeilberger’s Case 2 17 〉 ≡
{

for (z = rrr [x], zz = x; s[rrr [z]] ≡ s[z] ∧ q[rrr [z]] ≡ q[z];
yy = zz , zz = z, z = rrr [zz], rrr [zz] = yy) ;

if (zz ≡ x) yy = rrr [x] = 0;
else for (yy = 0; zz 6= x; y = zz , zz = rrr [y], rrr [y] = yy , yy = y) {

p = q[lll [zz]] + (s[lll [zz]] > 1); /∗ we will recompute q[zz] and s[zz] ∗/
if (p > q[yy]) q[zz] = p, s[zz] = 1;
else q[zz] = q[yy], s[zz] = s[yy] = (p ≡ q[yy]);

} /∗ x’s former siblings are now undone ∗/
qr = q[yy], ss = s[z] + 1; /∗ at this point yy = rrr [x] ∗/
for (yy = lll [x], y = rrr [yy]; y; yy = y, y = rrr [yy]) {

s[yy] = ss ;
if (q[yy] ≡ ql) ss −−;

}
s[yy] = ss , rrr [yy] = z; /∗ unpromote x’s former children ∗/
}

This code is used in section 15.

8 INDEX ZEILBERGER §18

18. Index.

count : 2, 13.
fprintf : 12, 14.
j: 2.
k: 2, 8.
l: 2.
label : 5, 6.
ll : 2, 6, 7, 8, 9, 10, 11, 12, 14.
lll : 2, 14, 15, 16, 17.
main : 2.
n: 2.
p: 2, 5, 8, 15.
printf : 2.
q: 2.
ql : 8, 9, 15, 17.
qr : 5, 8, 10, 15, 16, 17.
r: 2.
rr : 2, 6, 7, 8, 9, 10, 11, 12, 14.
rrr : 2, 14, 15, 16, 17.
s: 2, 12.
serial : 2, 12, 13, 14.
sl : 12.
sr : 12.
ss : 8, 9, 10, 15, 17.
stderr : 12, 14.
strahler : 12, 13.
unzeil : 14, 15.
x: 5, 8, 12, 15.
y: 2, 8, 15.
yy : 8, 9, 10, 15, 16, 17.
z: 8, 15.
zeil : 6, 7, 8, 9.
zz : 8, 9, 15, 17.

ZEILBERGER NAMES OF THE SECTIONS 9

〈Check the inverse bijection 14 〉 Used in section 2.

〈Check the pruning order and Strahler number 13 〉 Used in section 2.

〈Do Zeilberger’s Case 2 9 〉 Used in section 8.

〈Do Zeilberger’s Case 3 10 〉 Used in section 8.

〈Find the binary tree (ll , rr) corresponding to the forest (l, r) 6 〉 Used in section 2.

〈Move to the next forest (l, r), or break 3 〉 Used in section 2.

〈Subroutines 5, 8, 12, 15 〉 Used in section 2.

〈Undo Zeilberger’s Case 2 17 〉 Used in section 15.

〈Undo Zeilberger’s Case 3 16 〉 Used in section 15.

ZEILBERGER

Section Page
Introduction . 1 1
The main algorithm . 4 3
Checking the Strahler number . 11 5
The inverse algorithm . 14 6
Index . 18 8

	Introduction
	The main algorithm
	Checking the Strahler number
	The inverse algorithm
	Index
	Names of the sections
	Check the inverse bijection
	Check the pruning order and Strahler number
	Do Zeilberger's Case 2
	Do Zeilberger's Case 3
	Find the binary tree (ll,rr) corresponding to the forest (l,r)
	Move to the next forest (l,r), or break
	Subroutines
	Undo Zeilberger's Case 2
	Undo Zeilberger's Case 3

