
§1 XCCDC3 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is an experimental XCC solver, which often looks ahead considerably further
than DLX2 does. More precisely, it maintains “domain consistency”: An option O is eliminated when its use
would cause some primary item I /∈ O to have no options remaining. In a sense, I’m performing the work of
DLX-PRE repeatedly as the search proceeds. With luck, the total time will decrease, although the time per
node is potentially much larger.

Furthermore, I’m continuing to experiment with sparse-set data structures, as I did in the similar program
SSXCC, which was inspired by Christine Solnon’s XCC-WITH-DANCING-CELLS.

This program was in fact derived directly from SSXCC, by adding further data structures and algorithms.
I confess in advance that the concepts below might not be easy to grasp, because some of them are rather
subtle, and they’re just beginning to make sense to me as I put the pieces together. Hopefully all will become
clear by the time I finish! I’ve retained the documentation of SSXCC’s features, but they too are admittedly
intricate. So let’s take a deep breath together. We can handle this.

The DLX input format used in previous solvers is adopted here, without change, so that fair comparisons
can be made. (See the program DLX2 for definitions. Much of the code from that program is used to parse
the input for this one.)

https://cs.stanford.edu/~knuth/programs.html

2 INTRO XCCDC3 §2

2. After this program finds all solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” were made. The running
time in “mems” is also reported, together with the approximate number of bytes needed for data storage.
(An “update” is the removal of an option from its item list, or the removal of a satisfied color constraint
from its option. One “mem” essentially means a memory access to a 64-bit word. The reported totals don’t
include the time or space needed to parse the input or to format the output.)

Empirical tests show that this program takes more elapsed time per mem than most other programs that
I’ve written. I don’t know why. Perhaps it’s because the number of “global registers” is unusually large.

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define subroutine overhead mems += 4
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max stage 500 /∗ at most this many options in a solution ∗/
#define max level 50000 /∗ at most this many levels in the search tree ∗/
#define max cols 10000 /∗ at most this many items ∗/
#define max nodes 50000000 /∗ at most this many nonzero elements in the matrix ∗/
#define poolsize 100000000 /∗ at most this many entries in pool ∗/
#define savesize 1000000 /∗ at most this many entries on savestack ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all item names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 9 〉;
〈Global variables 4 〉;
〈Subroutines 7 〉;
int main (int argc , char ∗argv [])
{

register int c, cc , i, j, k, p, pp , q, r, s, t, cur choice , best itm ;

〈Process the command line 5 〉;
〈 Input the item names 29 〉;
〈 Input the options 31 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 38 〉;
if (vbose & show tots) 〈Report the item totals 39 〉;
imems = mems ,mems = 0;
if (baditem) 〈Report an uncoverable item 37 〉
else 〈Solve the problem 48 〉;

done : 〈Say adieu 6 〉;
}

§3 XCCDC3 INTRO 3

3. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘d〈 integer 〉’ sets delta , which causes periodic state reports on stderr after the algorithm has performed

approximately delta mems since the previous report (default 10000000000);
• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level);
• ‘S〈filename 〉’ to output a “shape file” that encodes the search tree;
• ‘x〈positive integer 〉’ causes partial solutions of this many stages to be written to files, not actually explored;
• ‘X〈filename 〉’ to input and resume a partial solution.

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for stats about choices ∗/
#define show purges 8 /∗ vbose code to show inconsistent options deleted ∗/
#define show supports 16 /∗ vbose code to show new supports ∗/
#define show option counts 32 /∗ vbose code to count active options ∗/
#define show mstats 64 /∗ vbose code to show memory usage in key arrays ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting item totals at start ∗/
#define show warnings 1024 /∗ vbose code for reporting options without primaries ∗/
#define show max deg 2048 /∗ vbose code for reporting maximum branching degree ∗/

4 INTRO XCCDC3 §4

4. 〈Global variables 4 〉 ≡
int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution k is output if k is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl ,maxs ; /∗ maximum level and stage actually reached ∗/
int xcutoff = −1, xcount ; /∗ stage when partial solutions output, and their number ∗/
int maxsaveptr ; /∗ maximum size of savestack ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng count ; /∗ solutions found so far ∗/
ullng options ; /∗ options seen so far ∗/
ullng imems ,mems , bmems ,nmems , pmems , tmems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 10000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
FILE ∗shape file ; /∗ file for optional output of search tree shape ∗/
char ∗shape name ; /∗ its name ∗/
int maxdeg ; /∗ the largest branching degree seen so far ∗/

See also sections 10, 19, 65, and 85.

This code is used in section 2.

5. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 5 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
case ’S’: shape name = argv [j] + 1, shape file = fopen (shape name , "w");

if (¬shape file)
fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", shape name);

break;
case ’x’: k |= (sscanf (argv [j] + 1, ""O"d",&xcutoff)− 1); break;
case ’X’: 〈Open xcutoff file for reading, and break 82 〉;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [m<n>] [d<n>] [c<n>] [C<n>] "

"[l<n>] [t<n>] [T<n>] [S<bar>] [x<n>] [X<bar>] < foo.dlx\n", argv [0]);
exit (−1);
}

This code is used in section 2.

§6 XCCDC3 INTRO 5

6. I don’t report the memory used for deg , stagelevel , and profile , because they are only for documentation,
not part of the search process.

〈Say adieu 6 〉 ≡
if (vbose & show profile) 〈Print the profile 79 〉;
if (vbose & show max deg) fprintf (stderr , "The maximum branching degree was "O"d.\n",maxdeg);
if (vbose & show basics) {

fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,", count ,
count ≡ 1 ? "" : "s", imems ,mems);

bytes = (itemlength + setlength) ∗ sizeof (int) + last node ∗ sizeof
(node) + (4 ∗maxs + maxl) ∗ sizeof (int) + maxsaveptr ∗ sizeof (twoints) + poolptr ∗ sizeof
(twoints);

fprintf (stderr , " "O"llu updates, "O"llu bytes, "O"llu nodes,", updates , bytes ,nodes);
fprintf (stderr , " acost "O"lld%%, bcost "O"lld%%, ccost "O"lld%%.\n",

mems ? (200 ∗ nmems + mems)/(2 ∗mems) : 0,mems ? (200 ∗ pmems + mems)/(2 ∗mems) : 0,
mems ? (200 ∗ bmems + mems)/(2 ∗mems) : 0);

}
if (vbose & show mstats) {

fprintf (stderr , " itemlength="O"d, setlength="O"d, last_node="O"d;\n", itemlength , setlength ,
last node);

fprintf (stderr , " maxsaveptr="O"d, poolptr="O"d, maxstage="O"d, maxlevel="O"d.\n",
maxsaveptr , poolptr ,maxs ,maxl);

}
if (sanity checking) fprintf (stderr , "sanity_checking was on!\n");
if (leak checking) fprintf (stderr , "leak_checking was on!\n");
if (shape file) fclose (shape file);
if (xcount) 〈Report the number of partial solutions output 84 〉;

This code is used in section 2.

7. Here’s a subroutine for use in debugging, but I hope it’s never invoked.

〈Subroutines 7 〉 ≡
void confusion (char ∗id)
{ /∗ an assertion has failed ∗/

fprintf (stderr , "trouble after "O"lld mems, "O"lld nodes: %s!\n",mems ,nodes , id);
}

See also sections 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 40, 41, 46, 47, 69, 76, 77, and 78.

This code is used in section 2.

6 DATA STRUCTURES XCCDC3 §8

8. Data structures. Sparse-set data structures were introduced by Preston Briggs and Linda Torczon
[ACM Letters on Programming Languages and Systems 2 (1993), 59–69], who realized that exercise 2.12
in Aho, Hopcroft, and Ullman’s classic text The Design and Analysis of Computer Algorithms (Addison–
Wesley, 1974) was much more than just a slick trick to avoid initializing an array. (Indeed, TAOCP exercise
2.2.6–24 calls it the “sparse array trick.”)

The basic idea is amazingly simple, when specialized to the situations that we need to deal with: We can
represent a subset S of the universe U = {x0, x1, . . . , xn−1} by maintaining two n-element arrays p and q,
each of which is a permutation of {0, 1, . . . , n − 1}, together with an integer s in the range 0 ≤ s ≤ n. In
fact, p is the inverse of q; and s is the number of elements of S. The current value of the set S is then simply
{xp0

, . . . , xps−1
}. (Notice that every s-element subset can be represented in s! (n− s)! ways.)

It’s easy to test if xk ∈ S, because that’s true if and only if qk < s. It’s easy to insert a new element xk

into S: Swap indices so that ps = k, qk = s, then increase s by 1. It’s easy to delete an element xk that
belongs to S: Decrease s by 1, then swap indices so that ps = k and qk = s. And so on.

Briggs and Torczon were interested in applications where s begins at zero and tends to remain small. In
such cases, p and q need not be permutations: The values of ps, ps+1, . . . , pn−1 can be garbage, and the
values of qk need be defined only when xk ∈ S. (Such situations correspond to Aho, Hopcroft, and Ullman,
who started with an array full of garbage and used a sparse-set structure to remember the set of nongarbage
cells.) Our applications are different: Each set begins equal to its intended universe, and gradually shrinks.
In such cases, we might as well maintain inverse permutations. The basic operations go faster when we know
in advance that we aren’t inserting an element that’s already present (nor deleting an element that isn’t).

Many variations are possible. For example, p could be a permutation of {x0, x1, . . . , xn−1} instead of a
permutation of {0, 1, . . . , n − 1}. The arrays that play the role of q in the following routines don’t have
indices that are consecutive; they live inside of other structures.

§9 XCCDC3 DATA STRUCTURES 7

9. This program has an array called item , with one entry for each item. The value of item [k] is an
index x into a much larger array called set . The set of all options that involve the kth item appears in that
array beginning at set [x]; and it continues for s consecutive entries, where s = size (x) is an abbreviation
for set [x − 1]. If item [k] = x, we maintain the relation pos (x) = k, where pos (x) is an abbreviation for
set [x − 2]. Thus item plays the role of array p, in a sparse-set data structure for the set of all currently
active items; and pos plays the role of q.

Suppose the kth item x currently appears in s options. Those options are indices into nd , which is an
array of “nodes.” Each node has four fields: itm , loc , clr , and xtra . If x ≤ q < x + s, let y = set [q]. This
is essentially a pointer to a node, and we have nd [y].itm = x, nd [y].loc = q. In other words, the sequential
list of s elements that begins at x = item [k] in the set array is the sparse-set representation of the currently
active options that contain the kth item. The clr field nd [y].clr contains x’s color for this option. The itm
and clr fields remain constant, once we’ve initialized everything, but the loc fields will change. The xtra
field has special uses as we maintain domain consistency, as explained later.

The given options are stored sequentially in the nd array, with one node per item, separated by “spacer”
nodes. If y is the spacer node following an option with t items, we have nd [y].itm = −t. If y is the spacer
node preceding an option with t items, we have nd [y].loc = t.

This probably sounds confusing, until you can see some code. Meanwhile, let’s take note of the invariant
relations that hold whenever k, q, x, and y have appropriate values:

pos (item [k]) = k; nd [set [q]].loc = q; item [pos (x)] = x; set [nd [y].loc] = y.

(These are the analogs of the invariant relations p[q[k]] = q[p[k]] = k in the simple sparse-set scheme that
we started with.)

The set array contains also the item names, as well as two fields mark (x) and match (x) that are used for
compatibility checking. (The match field is present only in secondary items.)

We count one mem for a simultaneous access to the itm and loc fields of a node, also one for simultaneous
access to clr and xtra .

#define size (x) set [(x)− 1] /∗ number of active options of the kth item, x ∗/
#define pos (x) set [(x)− 2] /∗ where that item is found in the item array ∗/
#define lname (x) set [(x)− 4] /∗ the first four bytes of x’s name ∗/
#define rname (x) set [(x)− 3] /∗ the last four bytes of x’s name ∗/
#define mark (x) set [(x)− 5] /∗ a stamp for incompatible items ∗/
#define match (x) set [(x)− 6] /∗ a required color in compatibility tests ∗/
#define primextra 5 /∗ this many extra entries of set for each primary item ∗/
#define secondextra 6 /∗ and this many for each secondary item ∗/
#define maxextra 6 /∗ maximum of primextra and secondextra ∗/
〈Type definitions 9 〉 ≡

typedef struct node struct {
int itm ; /∗ the item x corresponding to this node ∗/
int loc ; /∗ where this node resides in x’s active set ∗/
int clr ; /∗ color associated with item x in this option, if any ∗/
int xtra ; /∗ used for special purposes (see below) ∗/
} node;

See also section 11.

This code is used in section 2.

8 DATA STRUCTURES XCCDC3 §10

10. 〈Global variables 4 〉 +≡
node nd [max nodes]; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
int item [max cols]; /∗ the master list of items ∗/
int second = max cols ; /∗ boundary between primary and secondary items ∗/
int last itm ; /∗ items seen so far during input, plus 1 ∗/
int set [max nodes + 6 ∗max cols]; /∗ sets of active options for active items ∗/
int itemlength ; /∗ number of elements used in item ∗/
int setlength ; /∗ number of elements used in set ∗/
int active ; /∗ current number of active items ∗/
int oactive ; /∗ value of active before swapping out current-choice items ∗/
int totopts ; /∗ current number of active options ∗/
int baditem ; /∗ an item with no options, plus 1 ∗/
int osecond ; /∗ setting of second just after initial input ∗/

11. We’re going to store string data (an item’s name) in the midst of the integer array set . So we’ve got
to do some type coercion using low-level C-ness.

〈Type definitions 9 〉 +≡
typedef struct {

int l, r;
} twoints;
typedef union {

unsigned char str [8]; /∗ eight one-byte characters ∗/
twoints lr ; /∗ two four-byte integers ∗/
} stringbuf ;
stringbuf namebuf ;

12. 〈Subroutines 7 〉 +≡
void print item name (int k,FILE ∗stream)
{

namebuf .lr .l = lname (k),namebuf .lr .r = rname (k);
fprintf (stream , " "O".8s",namebuf .str);
}

§13 XCCDC3 DATA STRUCTURES 9

13. An option is identified not by name but by the names of the items it contains. Here is a routine that
prints an option, given a pointer to any of its nodes. If showid = 1, it also prints the value of opt − 1, which
should be the location of the spacer just preceding opt . Otherwise it optionally prints the position of the
option in its item list.

〈Subroutines 7 〉 +≡
void print option (int opt ,FILE ∗stream , int showpos , int showid)
{

register int k, q, x;

x = nd [opt].itm ;
if (opt ≥ last node ∨ x ≤ 0) {

fprintf (stderr , "Illegal option "O"d!\n", opt);
return;

}
if (showid) fprintf (stream , ""O"d ‘", opt − 1);
for (q = opt ; ;) {

print item name (x, stream);
if (nd [q].clr) fprintf (stream , ":"O"c",nd [q].clr);
q++;
x = nd [q].itm ;
if (x < 0) q += x, x = nd [q].itm ;
if (q ≡ opt) break;

}
k = nd [q].loc ;
if (showid) fprintf (stream , " ’");
if (showpos > 0) fprintf (stream , " ("O"d of "O"d)\n", k − x + 1, size (x));
else if (showpos ≡ 0) fprintf (stream , "\n");

}
void prow (int p)
{

print option (p, stderr , 1, 0);
}
void propt (int opt)
{ /∗ opt should be the spacer just before an option ∗/

if (nd [opt].itm ≥ 0) fprintf (stderr , ""O"d isn’t an option id!\n", opt);
else print option (opt + 1, stderr , 0, 1);
}

10 DATA STRUCTURES XCCDC3 §14

14. The print option routine has a sort of inverse, which reads from buf what purports to be the description
of an option and verifies it.

〈Subroutines 7 〉 +≡
int read option (void)
{

register int k, q, x, j, opt ;

for (opt = 0, k = 1; o, buf [k] ≥ ’0’ ∧ buf [k] ≤ ’9’; k++) opt = 10 ∗ opt + buf [k]− ’0’;
if ((o, buf [k] 6= ’ ’) ∨ (o, buf [k + 1] 6= ’‘’) ∨ (o, buf [k + 2] 6= ’ ’)) return −1;
for (k += 3, q = opt + 1; o, (x = nd [q].itm) > 0; q++) {

oo ,namebuf .lr .l = lname (x),namebuf .lr .r = rname (x);
for (j = 0; j < 8; j++) {

if (¬namebuf .str [j]) break;
if (o,namebuf .str [j] 6= buf [k + j]) return −1;

}
k += j; /∗ we’ve verified the item name ∗/
if (o,nd [q].clr) {

if ((o, buf [k] 6= ’:’) ∨ (o, (unsigned char) buf [k + 1] 6= nd [q].clr)) return −1;
k += 2;

}
if (o, buf [k++] 6= ’ ’) return −1;
}
if (buf [k] 6= ’\’’) return −1;
return opt + 1;

}

15. When I’m debugging, I might want to look at one of the current item lists.

〈Subroutines 7 〉 +≡
void print itm (int c)
{

register int p;

if (c < primextra ∨ c ≥ setlength ∨ pos (c) < 0 ∨ pos (c) ≥ itemlength ∨ item [pos (c)] 6= c) {
fprintf (stderr , "Illegal item "O"d!\n", c);
return;

}
fprintf (stderr , "Item");
print item name (c, stderr);
if (c < second) fprintf (stderr , " ("O"d of "O"d), length "O"d:\n", pos (c) + 1, active , size (c));
else if (pos (c) ≥ active)

fprintf (stderr , " (secondary "O"d, purified), length "O"d:\n", pos (c) + 1, size (c));
else fprintf (stderr , " (secondary "O"d), length "O"d:\n", pos (c) + 1, size (c));
for (p = c; p < c + size (c); p++) prow (set [p]);

}

§16 XCCDC3 DATA STRUCTURES 11

16. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 7 〉 +≡

void sanity (void)
{

register int k, x, i, l, r, q, qq ;

for (k = 0; k < itemlength ; k++) {
x = item [k];
if (pos (x) 6= k) {

fprintf (stderr , "Bad pos field of item");
print item name (x, stderr);
fprintf (stderr , " ("O"d,"O"d)!\n", k, x);

}
}
for (i = 0; i < last node ; i++) {

l = nd [i].itm , r = nd [i].loc ;
if (l ≤ 0) {

if (nd [i+ r+ 1].itm 6= −r) fprintf (stderr , "Bad spacer in nodes "O"d, "O"d!\n", i, i+ r+ 1);
qq = 0;

} else {
if (l > r) fprintf (stderr , "itm>loc in node "O"d!\n", i);
else {

if (set [r] 6= i) {
fprintf (stderr , "Bad loc field for option "O"d of item", r − l + 1);
print item name (l, stderr);
fprintf (stderr , " in node "O"d!\n", i);

}
if (pos (l) < active) {

if (r < l + size (l)) q = +1; else q = −1; /∗ in or out? ∗/
if (q ∗ qq < 0) {

fprintf (stderr , "Flipped status at option "O"d of item", r − l + 1);
print item name (l, stderr);
fprintf (stderr , " in node "O"d!\n", i);

}
qq = q;

}
}

}
}
}

12 DOMAIN CONSISTENCY XCCDC3 §17

17. Domain consistency. The data structures above were fine for SSXCC, but this program aims to
prune its search tree by maintaining “domain consistency.” Several more things are therefore needed.

We regard the given XCC problem as a special case of the general binary CSP, in which the variables
are the primary items. The domain of primary item p is the set of options that contain p. And there’s a
constraint between each pair of primary items p and p′: Option o for p is allowed together with option o′

for p′ if and only if o and o′ are compatible, in the sense that they’re either equal or they have no items in
common, except for secondary items with identical nonzero colors.

What does domain consistency mean in this context? “For every p 6= p′ and every o in the domain of p,
there’s a compatible option o′ in the domain of p′.” Stating this another way, suppose o is an option. Then
the action of choosing o, in order to “cover” its primary items, must not “wipe out” the domain of any
primary item that’s not in o.

When an option doesn’t meet this criterion, we remove it from consideration, thus simplifying the problem.
The removal of an option also makes other options potentially removable. Eventually we either remove the
last option from some item’s domain, in which case there’s no solution, or we reach a stable situation where
all domains are nonempty and consistent. In the latter case, we’ll choose an option, for an item that has
comparatively few of them, and we’ll recursively explore the consequences of either using that option or not.

To maintain domain consistency we shall combine the ideas of Christian Bessière’s algorithm AC-6
[Artificial Intelligence 65 (1994), 179–190] with Christophe Lecoutre and Fred Hemery’s algorithm AC3rm
[IJCAI Proceedings 20 (2007), 125–130], by maintaining a table of supports: This program will essentially
construct an array S[o, p], with an element for every option o and every primary item p, such that S[o, p]
is equal to o′ for some compatible option o′ such that p ∈ o′, whenever p /∈ o; and S[o, p] = # when p ∈ o.
This array provides witnesses to the fact that the current domains are indeed consistent.

18. We don’t, however, actually represent the support array S directly. Instead, we represent the inverse
function: For each option o′, we maintain a list of all the pairs (o, p) such that S[o, p] = o′. This list is called
the trigger list of o′, because we use it to maintain the support conditions: If option o′ is removed for any
reason, thereby leaving one or more holes in the S array, the removal will trigger a series of events that will
refill those holes, one by one.

Each option o also has a fixit list, containing all pairs (o′, p) for which the event (o, p) has been triggered
by o′ but the corresponding hole hasn’t yet been refilled.

There’s also a queue Q, containing all the options o for which at least one hole currently exists.
All of these lists — the triggers, the fixits, and the queue — are singly linked, in a array called pool , whose

elements have two fields called info and link in familiar fashion. The trigger lists and fixit lists are stacks
(last-in-first-out); the queue is first-in-first-out.

§19 XCCDC3 DOMAIN CONSISTENCY 13

19. Internally, an option o is represented by the index of the spacer just preceding that option in nd . An
item i, whether primary or secondary, is represented by the index where the main data for I appears in set .
A link is represented by its index in pool .

Variables qfront and qrear are the indices of the front and rear of Q. More precisely, qfront points to the
front element, the node that will be removed first; qrear points to a “blank” node that follows the element
that will be removed last. The queue is empty if and only if qfront = qrear . The contents of info(qrear)
and link (qrear) are both irrelevant; they will be filled in when a new element is enqueued and a new blank
element is appended.

Fortunately there’s room enough in the existing data structures of program SSXCC to store the two pointers
that we need for each option: The top of o’s trigger stack, called trigger (o), is kept in location nd [o].clr ;
and the top of o’s fixit stack, called fixit (o), is kept in nd [o].xtra . We have fixit (o) = 0 if and only if o is not
in the queue.

We’ll see later than every inactive option has an age , indicating when it was purged from the current
partial solution. This value, age (o) appears in nd [o + 1].xtra .

(Kludge note: With these conventions, all of an option’s dynamic data has been squeezed into the three
otherwise unused fields nd [o].clr , nd [o].xtra , and nd [o+ 1].xtra . If another special datum had been needed,
I could have put it into nd [o+ 1].clr , because this program ensures that every option begins with a primary
item.)

#define info(p) pool [p].l
#define link (p) pool [p].r
#define trigger (opt) nd [opt].clr /∗ beginning of the trigger stack ∗/
#define fixit (opt) nd [opt].xtra /∗ beginning of the fixit stack ∗/
#define age (opt) nd [(opt) + 1].xtra /∗ when was this option last purged? ∗/
〈Global variables 4 〉 +≡

twoints pool [poolsize]; /∗ where the linked lists live ∗/
int poolptr = 1; /∗ the first unused cell of pool ∗/
int qfront , qrear ; /∗ the front and rear of Q ∗/
unsigned int curstamp ; /∗ the current “time stamp” ∗/
unsigned int biggeststamp ; /∗ the largest time stamp used so far ∗/
unsigned int compatstamp ; /∗ another stamp, used for compatibility tests ∗/

14 DOMAIN CONSISTENCY XCCDC3 §20

20. A few basic primitive routines undergird all of our list processing.
(When counting mems here, we consider avail and poolptr to be in global registers. The compiler could

inline this code, so I don’t count any overhead for these subroutine calls.)

#define avail pool [0].r /∗ head of the stack of available cells ∗/
〈Subroutines 7 〉 +≡

int getavail (void)
{ /∗ return a pointer to an unused cell ∗/

register int p;

p = avail ;
if (p) {

o, avail = link (p);
return p; /∗ info(p) might be anything ∗/

}
if (poolptr ++ ≥ poolsize) {

fprintf (stderr , "Pool overflow (poolsize="O"d)!\n", poolsize);
exit (−7);

}
return poolptr − 1;
}
void putavail (int p)
{ /∗ free the single cell p ∗/
o, link (p) = avail ;
avail = p;
}

21. Entries of a trigger list are pairs (o, p), with the cell that mentions option o linking to the cell that
mentions primary item p.

〈Subroutines 7 〉 +≡
void print trigger (int opt)
{

register int p, q;

fprintf (stderr , "trigger stack for option ");
print option (opt + 1, stderr , 0, 1);
for (p = trigger (opt); p; p = link (q)) {
q = link (p);
fprintf (stderr , " ");
if (info(p) ≥ 0) {

print option (info(p) + 1, stderr ,−1, 1);
fprintf (stderr , ",");
p = link (p);
print item name (info(p), stderr);

} else 〈Print a trigger hint 60 〉;
fprintf (stderr , "\n");

}
}

§22 XCCDC3 DOMAIN CONSISTENCY 15

22. 〈Subroutines 7 〉 +≡
void print triggers (int all)
{

register int opt , jj , optp ;

for (opt = 0; opt < last node ; opt += nd [opt].loc + 1) {
if (¬all) {

jj = nd [opt + 1].itm ; /∗ jj is opt ’s first item ∗/
if (nd [opt + 1].loc ≥ jj + size (jj)) continue; /∗ is opt in jj ’s set? ∗/

}
print trigger (opt);

}
}

23. Entries of a fixit list are pairs (o, p), with the cell that mentions option o linking to the cell that
mentions primary item p.

〈Subroutines 7 〉 +≡
void print fixit (int opt)
{

register int p, q;

fprintf (stderr , "fixit stack for option ");
print option (opt + 1, stderr ,−1, 1);
fprintf (stderr , ":");
for (p = fixit (opt); p; p = link (q)) {

q = link (p);
fprintf (stderr , " ");
print item name (info(q), stderr);
fprintf (stderr , "["O"d]", info(p));

}
fprintf (stderr , "\n");
}

24. 〈Subroutines 7 〉 +≡
void print queue (void)
{

register int p;

for (p = qfront ; p 6= qrear ; p = link (p)) print option (info(p) + 1, stderr , 0, 1);
}

16 DOMAIN CONSISTENCY XCCDC3 §25

25. Linked lists are wonderful; but a single weak link can cause a catastrophic error. Therefore, when
debugging, I want to be extra sure that this program doesn’t make any silly errors when it uses pool
pointers.

Furthermore, since I’m doing my own garbage collection, I want to avoid any “memory leaks” that would
occur when I’ve forgotten to recycle a no-longer-used entry of the pool .

The list check routine laboriously goes through everything and makes sure that every cell less than poolptr
currently has one and only one use.

Warning: Do not call list check at a busy time during which lists are being manipulated. Wait for a quiet
time when all of the lists are supposedly stable and well-formed.

#define leak checking 0 /∗ set this nonzero if you suspect linked-list bugs ∗/
#define signbit #8000000

#define vet and set (l)
{ if ((l) ≤ 0 ∨ (l) ≥ poolptr) {

fprintf (stderr , "Bad link "O"d!\n", l);
return;

}
if (link (l) & signbit) {

fprintf (stderr , "Double link "O"d, "O"lld!\n", l,mems);
return;

}
link (l) ⊕= signbit ;
}

〈Subroutines 7 〉 +≡
void list check (int count)
{

register int p, t, opt ;

for (t = 0, p = avail ; p; t++, p = signbit ⊕ link (p)) vet and set (p);
if (count) fprintf (stderr , "avail size "O"d\n", t);
for (opt = 0; opt < last node ; opt += nd [opt].loc + 1) {

for (p = trigger (opt); p; p = signbit ⊕ link (p)) vet and set (p);
for (p = fixit (opt); p; p = signbit ⊕ link (p)) vet and set (p);

}
for (p = qfront ; ; p = signbit ⊕ link (p)) {

vet and set (p);
if (p ≡ qrear) break;

}
for (p = 1; p < poolptr ; p++) {

if (link (p) & signbit) link (p) ⊕= signbit ;
else fprintf (stderr , "Lost cell "O"d!\n", p);

}
}

§26 XCCDC3 DOMAIN CONSISTENCY 17

26. One of our main activities is to find options O′ that are compatible with a given option O. We do this
by marking each item I of O with compatstamp , and also recording I’s color if I is secondary. Then, given
a candidate O′, we can easily spot incompatibility.

That idea works when I ∈ O is equivalent to mark (I) ≡ compatstamp . So we start with all mark fields
equal to zero; and we increase compatstamp by 1 whenever starting this process with a new O.

But there’s a hitch: If this testing is done 232 times, compatstamp will “wrap around” to zero, and our
test might be invalid. In such a case we can still guarantee success if we take the trouble to zero out all the
mark fields again.

#define badstamp 0 /∗ set this to 3, say, when initially debugging ∗/
〈Bump compatstamp 26 〉 ≡

if (++compatstamp ≡ badstamp) {
for (ii = 0; ii < itemlength ; ii ++) oo ,mark (item [ii]) = 0;
compatstamp = 1;
}

This code is used in section 27.

27. 〈Prepare the mark fields for testing compatibility with opt 27 〉 ≡
〈Bump compatstamp 26 〉;
for (nn = opt + 1; o, (ii = nd [nn].itm) > 0; nn ++) {
o,mark (ii) = compatstamp ;
if (ii ≥ second) {

if (o,nd [nn].clr) o,match (ii) = nd [nn].clr ;
else o,match (ii) = −1; /∗ this won’t match any color ∗/

}
}

This code is used in sections 46 and 47.

28. At the beginning of this section, nd [optp].itm is an item ii in the middle of some option O′. If O′ is
compatible with opt , we want to reset optp so that nd [optp] is the spacer preceding O′. We use the fact
that ii isn’t present in opt .

〈 If optp is compatible with opt , break 28 〉 ≡
for (qq = optp ,nn = qq + 1; nn 6= qq ; nn ++) {

if (o, (jj = nd [nn].itm) ≤ 0) optp = nn + jj − 1,nn = optp ; /∗ nn is a spacer ∗/
else if (o,mark (jj) ≡ compatstamp) { /∗ watch out, jj is in opt ∗/

if (jj < second ∨ (o,nd [nn].clr ≡ 0) ∨ (o,nd [nn].clr 6= match (jj))) break; /∗ incompatible ∗/
}
}
if (nn ≡ qq) break; /∗ not incompatible ∗/

This code is used in sections 46 and 47.

18 INPUTTING THE MATRIX XCCDC3 §29

29. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

We use only four entries of set per item while reading the item-name line.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the item names 29 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last itm = 1;
break;
}
if (¬last itm) panic("No items");
for (; o, buf [p];) {
o,namebuf .lr .l = namebuf .lr .r = 0;
for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {

if (buf [p + j] ≡ ’:’ ∨ buf [p + j] ≡ ’|’) panic("Illegal character in item name");
o,namebuf .str [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
oo , lname (last itm � 2) = namebuf .lr .l, rname (last itm � 2) = namebuf .lr .r;
〈Check for duplicate item name 30 〉;
last itm ++;
if (last itm > max cols) panic("Too many items");
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Item name line contains | twice");
second = last itm ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ last itm) second = max cols ; /∗ no secondaries actually named ∗/

This code is used in section 2.

30. 〈Check for duplicate item name 30 〉 ≡
for (k = last itm − 1; k; k−−) {

if (o, lname (k � 2) 6= namebuf .lr .l) continue;
if (rname (k � 2) ≡ namebuf .lr .r) break;
}
if (k) panic("Duplicate item name");

This code is used in section 29.

§31 XCCDC3 INPUTTING THE MATRIX 19

31. 〈 Input the options 31 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Option line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this option ∗/
for (pp = 0; buf [p];) {
o,namebuf .lr .l = namebuf .lr .r = 0;
for (j = 0; j < 8∧ (o,¬isspace (buf [p+ j]))∧ buf [p+ j] 6= ’:’; j++) o,namebuf .str [j] = buf [p+ j];
if (¬j) panic("Empty item name");
if (j ≡ 8 ∧ ¬isspace (buf [p + j]) ∧ buf [p + j] 6= ’:’) panic("Item name too long");
〈Create a node for the item named in buf [p] 32 〉;
if (buf [p + j] ≡ ’:’) {

if (k ≥ second) {
if ((o, isspace (buf [p + j + 1])) ∨ (o,¬isspace (buf [p + j + 2])))

panic("Color must be a single character");
o,nd [last node + (pp ? 0 : 1)].clr = (unsigned char) buf [p + j + 1];
p += 2;
} else panic("Primary item must be uncolored");

}
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Option ignored (no primary items): "O"s", buf);
while (last node > i) {
〈Remove last node from its item list 33 〉;
last node−−;

}
} else {
o,nd [i].loc = last node − i; /∗ complete the previous spacer ∗/
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
options ++;
o,nd [last node].itm = i + 1− last node ;

}
}
〈 Initialize item 34 〉;
〈Expand set 35 〉;
〈Adjust nd 36 〉;

This code is used in section 2.

20 INPUTTING THE MATRIX XCCDC3 §32

32. We temporarily use pos to recognize duplicate items in an option.
This program shifts the items of an option, if necessary, so that the very first item is always primary. In

other words, secondary items that precede the first primary item are actually stored in nd [last node + 1].

〈Create a node for the item named in buf [p] 32 〉 ≡
for (k = (last itm − 1)� 2; k; k −= 4) {

if (o, lname (k) 6= namebuf .lr .l) continue;
if (rname (k) ≡ namebuf .lr .r) break;
}
if (¬k) panic("Unknown item name");
if (o, pos (k) > i) panic("Duplicate item name in this option");
last node ++;
if (last node + 1 ≥ max nodes) panic("Too many nodes");
o, t = size (k); /∗ how many previous options have used this item? ∗/
if (¬pp) { /∗ no primary items seen yet ∗/

if ((k � 2) < second) oo , pp = 1,nd [i + 1].itm = k � 2,nd [i + 1].loc = t,nd [i + 1].clr = 0;
else oo ,nd [last node + 1].itm = k � 2,nd [last node + 1].loc = t,nd [last node + 1].clr = 0;

} else oo ,nd [last node].itm = k � 2,nd [last node].loc = t,nd [last node].clr = 0;
o, size (k) = t + 1, pos (k) = last node ;

This code is used in section 31.

33. 〈Remove last node from its item list 33 〉 ≡
o, k = nd [last node + 1].itm � 2;
oo , size (k)−−, pos (k) = i− 1;

This code is used in section 31.

34. 〈 Initialize item 34 〉 ≡
active = itemlength = last itm − 1;
for (k = 0, j = primextra ; k < itemlength ; k++)

oo , item [k] = j, j += (k + 2 < second ? primextra : secondextra) + size ((k + 1)� 2);
setlength = j − 4; /∗ a decent upper bound ∗/
if (second ≡ max cols) osecond = active , second = j; /∗ no secondary items ∗/
else osecond = second − 1;

This code is used in section 31.

35. Going from high to low, we now move the item names and sizes to their final positions (leaving room
for the pointers into nb).

〈Expand set 35 〉 ≡
for (; k; k−−) {
o, j = item [k − 1];
if (k ≡ second) second = j; /∗ second is now an index into set ∗/
oo , size (j) = size (k � 2);
if (size (j) ≡ 0 ∧ k ≤ osecond) baditem = k;
o, pos (j) = k − 1;
oo , rname (j) = rname (k � 2), lname (j) = lname (k � 2);
o,mark (j) = 0;
}

This code is used in section 31.

§36 XCCDC3 INPUTTING THE MATRIX 21

36. 〈Adjust nd 36 〉 ≡
for (k = 1; k < last node ; k++) {

if (o,nd [k].itm < 0) continue; /∗ skip over a spacer ∗/
o, j = item [nd [k].itm − 1];
i = j + nd [k].loc ; /∗ no mem charged because we just read nd [k].itm ∗/
o,nd [k].itm = j,nd [k].loc = i;
o, set [i] = k;
}

This code is used in section 31.

37. 〈Report an uncoverable item 37 〉 ≡
{

if (vbose & show choices) {
fprintf (stderr , "Item");
print item name (item [baditem − 1], stderr);
fprintf (stderr , " has no options!\n");

}
}

This code is used in section 2.

38. The “number of entries” includes spacers (because DLX2 includes spacers in its reports). If you want
to know the sum of the option lengths, just subtract the number of options.

〈Report the successful completion of the input phase 38 〉 ≡
fprintf (stderr , "("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",

options , osecond , itemlength − osecond , last node);

This code is used in section 2.

39. The item lengths after input are shown (on request). But there’s little use trying to show them after
the process is done, since they are restored somewhat blindly. (Failures of the linked-list implementation in
DLX2 could sometimes be detected by showing the final lengths; but that reasoning no longer applies.)

〈Report the item totals 39 〉 ≡
{

fprintf (stderr , "Item totals:");
for (k = 0; k < itemlength ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d", size (item [k]));

}
fprintf (stderr , "\n");
}

This code is used in section 2.

22 MAINTAINING SUPPORTS XCCDC3 §40

40. Maintaining supports. It’s time now to implement some of the mechanisms used for the “virtual
support array S” described earlier.

First, let’s see what happens when an option goes away. The value returned is 0 if this was the final option
for some primary item. Otherwise the option’s trigger list will enqueue fixits, to provide replacements for
any supports that are no longer valid.

When opt out deactivates an option, it sets that option’s “age” to cur age , which measures our progress
to a complete solution. Options that are purged early, on the basis of fewer assumptions, are “younger” than
options that are purged later.

We’ll see later that a trigger list may contain hints about the ages of its entries. Such hints are signalled
by negative entries.

The opt out procedure rearranges the entries of a long trigger list by carrying out a “bucket sort,” which
puts the youngest remaining entries last. This sorting process uses auxiliary arrays trig head and trig tail ;
trig head is assumed to be zero upon entry and exit.

#define infinite age (2 ∗max stage + 2)

〈Subroutines 7 〉 +≡
int opt out (int opt , int act , char ∗typ)
{

register int ii , jj ,nn ,nnp , p, q, qq , pp , ss , t, optp , cutoff , tmin = infinite age ;

subroutine overhead ;
if (vbose & show purges) {

fprintf (stderr , " "O"d "O"s option ", cur age , typ);
print option (opt + 1, stderr , 0, 1);

}
〈Delete opt from the sets of all its unpurified items, possibly returning 0 42 〉;
o, age (opt) = cur age ;
for (o, p = trigger (opt), pp = 0; p; p = pp) {
o, optp = info(p), q = link (p);
o, ii = info(q), pp = link (q);
if (optp < 0) 〈 If all remaining triggers are known to be inactive, set pp = p and break; otherwise

discard this hint and continue 56 〉;
〈 If optp has been deactivated, set t to its age and goto inactive 57 〉;
〈 If ii isn’t active, set t = cur age and goto inactive 58 〉;
ooo , info(p) = opt , link (q) = fixit (optp); /∗ change trigger to fixit ∗/
if (¬fixit (optp)) { /∗ we should enqueue optp ∗/
o, link (qrear) = getavail (), info(qrear) = optp , qrear = link (qrear);
o, age (optp) = infinite age ;

}
o,fixit (optp) = p;
continue;

inactive : if (t < 0) 〈Discard this entry and continue 45 〉;
if (o, trig head [t] ≡ 0) o, trig tail [t] = q;
oo , link (q) = trig head [t], trig head [t] = p; /∗ move trigger to temp list t ∗/
if (t < tmin) tmin = t;

}
〈Replace trigger (opt) by its unused entries, reordered and hinted 59 〉;
totopts−−;
return 1;
}

§41 XCCDC3 MAINTAINING SUPPORTS 23

41. 〈Subroutines 7 〉 +≡
int purge the option (register int opt , int act , char ∗typ)
{ /∗ opt isn’t at the left spacer ∗/

for (opt −−; o,nd [opt].itm > 0; opt −−) ;
return opt out (opt , act , typ);
}

42. After a secondary item has been purified, we mustn’t mess with its set. Secondary items that lie
between active and the parameter act are in the process of being purified.

〈Delete opt from the sets of all its unpurified items, possibly returning 0 42 〉 ≡
for (nn = opt + 1; o, (ii = nd [nn].itm) > 0; nn ++) {
p = nd [nn].loc ;
if (p ≥ second ∧ (o, pos (ii) ≥ act)) continue; /∗ ii already purified ∗/
o, ss = size (ii)− 1;
if (ss ≡ 0 ∧ p < second) { /∗ oops: opt was item ii ’s only surviving option ∗/

if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {
fprintf (stderr , " can’t cover");
print item name (ii , stderr);
fprintf (stderr , "\n");

}
〈Clear the queue and return 0 43 〉;

}
o,nnp = set [ii + ss];
o, size (ii) = ss ;
oo , set [ii + ss] = nn , set [p] = nnp ;
oo ,nd [nn].loc = ii + ss ,nd [nnp].loc = p;
updates ++;
}

This code is used in section 40.

43. We can’t complete the current options to a viable set that’s domain consistent. So all of the fixit lists
remaining in the queue must go back into the trigger lists that triggered them.

〈Clear the queue and return 0 43 〉 ≡
while (qfront 6= qrear) {
o, p = qfront , opt = info(p), qfront = link (p), putavail (p);
〈Change the entries of fixit (opt) back to triggers 44 〉;
}
return 0;

This code is used in section 42.

44. 〈Change the entries of fixit (opt) back to triggers 44 〉 ≡
{

for (o, p = fixit (opt); p; p = pp) {
oo , optp = info(p), q = link (p), info(p) = opt ;
o, pp = link (q); /∗ info(q) is the same for triggers and fixits ∗/
oo , link (q) = trigger (optp), trigger (optp) = p;

}
o,fixit (opt) = 0;
}

This code is used in sections 43, 46, and 63.

24 MAINTAINING SUPPORTS XCCDC3 §45

45. An option with negative age will never be used, so we needn’t trigger it.
(I realized later that, in fact, an inactive option with age 0 will also remain inactive. So I could also

have discarded a few more entries, and used −c instead of −c − 1 in hints. I’ve decided not to make this
optimization, for fear of breaking something.)

〈Discard this entry and continue 45 〉 ≡
{

putavail (p), putavail (q);
continue;
}

This code is used in section 40.

46. The queue contains options where we’ve left holes in the support matrix. The fixit lists of those options
tell us where those holes are.

〈Subroutines 7 〉 +≡
int empty the queue (void)
{

register int p, q, pp , qq , s, ss , ii , jj ,nn , opt , optp ;

subroutine overhead ;
while (qfront 6= qrear) {

o, p = qfront , opt = info(p), qfront = link (p), putavail (p);
if (fixit (opt) ≡ 0) confusion ("queue");
if (leak checking) list check (0);
〈 If opt is no longer active, revert its fixit list and continue 63 〉;
〈Prepare the mark fields for testing compatibility with opt 27 〉;
for (o, p = fixit (opt); p; p = pp) {
o, q = link (p); /∗ ignore info(p), which is irrelevant for now ∗/
o, ii = info(q), pp = link (q); /∗ ii is a primary item, not in opt ∗/
for (o, s = ii , ss = s + size (ii); s < ss ; s++) {
o, optp = set [s];
〈 If optp is compatible with opt , break 28 〉;
}
if (s ≡ ss) { /∗ opt is inconsistent ∗/

if (vbose & show supports) {
print option (opt + 1, stderr ,−1, 1);
fprintf (stderr , ",");
print item name (ii , stderr);
fprintf (stderr , " not supported\n");

}
fixit (opt) = p;
〈Change the entries of fixit (opt) back to triggers 44 〉;
if (¬opt out (opt , active , "purging")) return 0;
break; /∗ move to another opt ∗/
} else 〈Record optp as the support for opt and ii 50 〉;

}
o,fixit (opt) = 0;

}
return 1;
}

§47 XCCDC3 MAINTAINING SUPPORTS 25

47. Here’s how we get the ball rolling by making every domain consistent in the first place.
At the beginning, all mark fields are zero.

〈Subroutines 7 〉 +≡
int establish dc(void)
{

register int k, ii , jj ,nn , opt , optp , p, q, qq , s, ss ;

cur age = −1;
qfront = qrear = getavail ();
for (opt = 0; opt < last node ; o, opt += nd [opt].loc + 1) {

if (leak checking) list check (0);
〈Prepare the mark fields for testing compatibility with opt 27 〉;
for (k = 0; k < osecond ; k++) {
o, ii = item [k];
if (o,mark (ii) 6= compatstamp) { /∗ ii not in opt ∗/

for (o, s = ii , ss = s + size (ii); s < ss ; s++) {
o, optp = set [s];
〈 If optp is compatible with opt , break 28 〉;

}
if (s ≡ ss) { /∗ opt is inconsistent ∗/

if (vbose & show supports) {
print option (opt + 1, stderr ,−1, 1);
fprintf (stderr , ",");
print item name (ii , stderr);
fprintf (stderr , " not supported\n");

}
if (¬opt out (opt , active , "purging")) return 0;
break; /∗ move to the next opt ∗/

} else {
p = getavail (), q = getavail ();
o, link (p) = q;
o, info(q) = ii ;
〈Record optp as the support for opt and ii 50 〉;

}
}

}
}
return empty the queue ();
}

48. 〈Solve the problem 48 〉 ≡
{

totopts = options ;
if (¬establish dc()) {

if (vbose & show choices) fprintf (stderr , "Inconsistent options!\n");
goto done ;

}
〈Tidy up the initial trigger lists 49 〉;
if (vbose & show choices) fprintf (stderr , "Initial consistency after "O"lld mems.\n",mems);
〈Do a backtrack search, maintaining domain consistency 64 〉;
}

This code is used in section 2.

26 MAINTAINING SUPPORTS XCCDC3 §49

49. The purged options that appear in trigger lists are useless baggage.

〈Tidy up the initial trigger lists 49 〉 ≡
{

register int opt , optp , p, q, pp , qq ;

for (opt = 0; opt < last node ; o, opt += nd [opt].loc + 1)
if (o, age (opt) ≥ 0) {

for (o, p = trigger (opt), qq = −1; p; p = pp) {
oo , optp = info(p), q = link (p), pp = link (q);
if (o, age (optp) < 0) {

putavail (p), putavail (q);
if (qq < 0) o, trigger (opt) = pp ;
else o, link (qq) = pp ;

} else qq = q;
}

}
}

This code is used in section 48.

50. 〈Record optp as the support for opt and ii 50 〉 ≡
{

if (vbose & show supports) {
print option (opt + 1, stderr ,−1, 1);
fprintf (stderr , ",");
print item name (ii , stderr);
fprintf (stderr , " supported by ");
print option (optp + 1, stderr , 0, 1);

}
o, info(p) = opt ;
oo , link (q) = trigger (optp);
o, trigger (optp) = p;
}

This code is used in sections 46 and 47.

§51 XCCDC3 A VIEW FROM THE TOP 27

51. A view from the top. Our strategy for generating all exact covers will be to repeatedly choose an
item that appears to be hardest to cover, namely an item whose set is currently smallest, among all items
that still need to be covered. And we explore all possibilities via depth-first search, in the following way:
First we try using the first option in that item’s set; then we explore the consequences of forbidding that
item.

The neat part of this algorithm is the way the sets are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and the sparse-set representations make it particularly easy to undo
what we’ve done at less-deep levels.

The basic operation is “covering” each item of a chosen option. Covering means to make an item inactive.
If it is primary, we remove it from the set of items needing to be covered, and we block all other options
that contain it. If the item is secondary and still active (not yet purified), we block all options in which it
has the wrong color.

The branching discipline that we follow is quite different from what we did in DLX2 or SSXCC, however,
because we’re now maintaining domain consistency throughout the search. The old way was to choose a
“best item” p, having say d options, and then to try option 1 of the d possibilities for p, then option 2 of
those d, . . . , option d of those d, before backtracking to the previous level.

The new way, given consistent domains, starts out the same as before. We choose a best item p1, having
d1 options, and we try its first option. But after returning from that branch, we remove that option and
restore domain consistency; then we choose a new best item p2, having d2 options, and try the first of those.
Eventually, after trying and removing the first remaining options of p1 through pk, we’ll reach a point where
we can’t make the remaining domains both consistent and nonempty. That’s when we back up.

In this scenario, all of the subproblems for p1, . . . , pk are trying to extend the same partial solution with
s choices to a partial solution that has s + 1 choices. We call this “stage s” of the search. Stage s actually
involves k different nodes of the (binary) search tree, each of which is on its own “level.” (The level is
the distance from the root; the stage is the number of options that have been chosen in the current partial
solution.)

We might think of the search as a tree that makes a k-way branch at stage s, instead of as a tree that
makes binary branches at each level. Such an interpretation is equivalent to the “natural correspondence”
between ordinary trees and binary trees, discussed in TAOCP Section 2.3.2.

28 A VIEW FROM THE TOP XCCDC3 §52

52. As search proceeds, the current subproblem gets easier and easier as the number of active items and
options gets smaller and smaller. Let Is be the set of all items that are active when s options c1, . . . , cs
have been chosen to be in the partial solution-so-far. Thus I0 is the set of all items initially given; and Is for
s > 0 is obtained from Is−1 by removing the primary items and the previously unpurified secondary items
of cs. We denote the primary items of Is by Ps; these are the primary items not in c1, . . . , cs.

Let O−1 be the set of all options actually given. Just before entering stage 0, we reduce O−1 to Oinit
0 ,

the largest subset of O−1 that is domain consistent, by purging options that have no support. In general,
stage s begins with a domain-consistent set of options Oinit

s , which is the largest such set that’s compatible
with c1, . . . , cs. Later on in stage s we usually work with a smaller set of active options Os, which is the
largest domain-consistent set that’s contained in Oinit

s after we’ve removed the options whose consequences
as potential choices were previously examined in this stage.

If every item in Ps still belongs to at least one option of Os, we’re ready to make a new cs+1 from among
those remaining options. We get Oinit

s+1 from Os by choosing cs+1 and blocking every option incompatible
with it, and then by purging options that aren’t domain-consistent.

Thus when we’re in stage s, there’s a sequence of sets of options

O−1 ⊇ Oinit
0 ⊇ O0 ⊃ Oinit

1 ⊇ O1 ⊃ · · · ⊃ Oinit
s ⊇ Os,

all of which are domain consistent except possibly O−1. Notice that

if o ∈ Oinit
s and p ∈ o then p ∈ Ps.

And there’s good news: The support array S[o, p] follows the nested structure of our search in a useful
way. Recall that S[o, p] = # if p ∈ o; otherwise S[o, p] = o′, where p ∈ o′ and o′ is compatible with o.

This array is defined for all options o ∈ Oinit
0 , and for all primary items p ∈ P0. However, when we enter

stage s, we’re interested only in the much smaller subarray that contains supports when o ∈ Oinit
s and p ∈ Ps.

And when we’re transitioning from stage s to stage s + 1, we care only about a still-smaller subarray, for
o ∈ Os and p ∈ Ps. In particular, domain consistency implies that we have

if o ∈ Oinit
s and p /∈ o and p ∈ Ps then S[o, p] ∈ Oinit

s ;

if o ∈ Os and p /∈ o and p ∈ Ps then S[o, p] ∈ Os.

53. Eventually a choice will fail, of course. Backtracking becomes necessary in two distinct ways: (1) If
we’ve settled on a new cs among the options of Os, but we’re unable to reduce the remaining compatible
options to a domain-consistent Oinit

s+1 without emptying some domain, we “backtrack in stage s” and reject
that choice. (Thus, we stay in stage s but move to a new level; the active items remain the same.) (2) If
we’ve finished exploring a choice from Os and are unable to reduce the other options to a smaller domain-
consistent Os, we “backtrack to stage s − 1” and reject cs−1. (Thus, we resume where we left off at the
previous stage’s deepest level; the active items revert back from Ps to the larger set Ps−1.)

I wish I could say that it was easy for me to discover the programming logic just described. I guess it was
my baptism into what researchers have called “fine-grained” versus “coarse-grained” algorithms.

Notice that when we backtrack, we need not change the S array in any way. A support is always a support.
Thus there’s no point in trying to undo any of the changes we’ve made to the current support structure.

§54 XCCDC3 THE TRIGGERING 29

54. The triggering. Suppose there are 1000 options and 100 items. Then the S array has 100,000
entries, most of which are supports (that is, not #). Every support is an entry in a trigger list; hence the
trigger lists are necessarily long. The task of maintaining domain consistency might therefore seem hopelessly
inefficient.

On the other hand, after we’ve made some choices, there may be only 100 options left, and perhaps 30
items not yet covered. Then at most 3000 supports are relevant, and most of the information in trigger lists
is of no interest to us. An efficient scheme might therefore still be possible, if we can figure out a way to
avoid looking at useless triggers.

Ideally we’d like options from Os to appear at the top of each trigger stack, with options from Oinit
s just

below them, and with Os−1, Oinit
s−1, . . . , O0, Oinit

0 furthest down. The pairs (o, p) of interest would then
appear only near the top.

Unfortunately such an arrangement cannot be guaranteed. Indeed, that’s obvious: The trigger-list entries
occur in essentially arbitrary order when we first form Oinit

0 . If they happen to be supports that work for
every subsequent stage, no changes to the trigger lists will be needed, and we won’t even want to look at
those lists.

We can, however, come sort of close to an ideal arrangement, by exploiting the fact that every option not
in the current Os has been deactivated at least once. We look at trigger (o) only after o has become inactive;
and at that time we can reorder its entries.

Therefore this program inserts markers into the trigger lists, saying that “all further entries of this list are
young” (meaning deactivated early, hence uninteresting until we’ve backtracked to an early stage). Every
such marker is accompanied by a time stamp, so that we can recognize later when its message is no longer true.

55. When deactivating an option from Oinit
s that won’t be in Os, the “current age” cur age is 2s. And

when deactivating an option from Os that won’t be in Oinit
s+1 it is 2s + 1.

Thus an inactive option is in Oinit
s if and only if its age is ≥ 2s; and it’s in Os if and only if its age is

≥ 2s + 1.
Incidentally, I’ve tried to avoid making bad puns based on cur age versus courage, or age versus stage .

56. A negative entry optp = −c in a trigger list is a hint that all future entries will have age less than c.
The search tree may have changed since this hint was put into the list; so we must look at the relevant stage
stamp, to ensure that the hint is still valid.

Suppose o has age 2s. Then o is in Oinit
s but not in Os. As computation proceeds, without backtracking

to stage s − 1, the set Os might get smaller and smaller, but o will still not be in Os. Therefore a trigger
hint saying that o is inactive will be valid until stagestamp [s] changes. (More precisely: If we backtrack to
stage s − 1, stagestamp [s] won’t change until we progress again to stage s; before that time, we won’t be
looking at the hint.)

Suppose o has age 2s+1. Then o is in Os but not in Oinit
s+1. As computation proceeds, without backtracking

in or to stage s, the set Oinit
s+1 won’t change. Therefore a trigger hint saying that o is inactive will be valid

until stagestamp [s + 1] changes.
That’s why the following code says ‘(cutoff + 1)� 1’ when selecting the relevant stage stamp.

〈 If all remaining triggers are known to be inactive, set pp = p and break; otherwise discard this hint and
continue 56 〉 ≡

{
cutoff = −optp − 1;
if (cutoff < cur age ∧ (o, ii ≡ stagestamp [(cutoff + 1)� 1])) {

pp = p;
break;

}
putavail (p), putavail (q); /∗ discard an obsolete hint ∗/
continue; /∗ and ignore it ∗/
}

This code is used in section 40.

30 THE TRIGGERING XCCDC3 §57

57. If optp is inactive, it has been purged and its recorded age is cur age or less. Thus we can conclude
that optp is active whenever age (optp) > cur age .

In general, of course, that age test won’t be conclusive and a slightly more expensive test needs to be made
by looking further into the data structures. Option optp is active if and only if it appears in the current set
of its first item. (This is where we use the fact that the first item of optp is primary.)

〈 If optp has been deactivated, set t to its age and goto inactive 57 〉 ≡
o, t = age (optp);
if (t ≤ cur age) {
o, jj = nd [optp + 1].itm ; /∗ jj is optp ’s first item ∗/
if (o,nd [optp + 1].loc ≥ jj + size (jj)) goto inactive ;
} /∗ branch if optp was removed from jj ’s set ∗/

This code is used in section 40.

58. When the trigger list for opt refers to an item ii , that item is in opt . Suppose ii is currently inactive;
then we wouldn’t be purging opt unless ii has just become inactive (and we’re calling opt out from within
include option).

〈 If ii isn’t active, set t = cur age and goto inactive 58 〉 ≡
if (o, pos (ii) ≥ active) {

if (pos (ii) ≥ act) confusion ("active");
t = cur age ;
goto inactive ;
}

This code is used in section 40.

59. When we get here, pp is either zero or the cell where we found cutoff . In the latter case, pp = p and
link (p) = q; thus the cutoff hint is in p and q.

All of the unused trigger entries have been redirected to the trig head lists, sorted by their age.

〈Replace trigger (opt) by its unused entries, reordered and hinted 59 〉 ≡
if (pp ≡ 0) cutoff = −1;
if (tmin ≤ cutoff) {

if (tmin < cutoff) confusion ("trig");
o, pp = link (q), putavail (p), putavail (q); /∗ avoid double hint ∗/
}
for (t = tmin ; t < cur age ; t++)

if (o, trig head [t]) {
oo , link (trig tail [t]) = pp ;
o, p = getavail (), q = getavail (), link (p) = q; /∗ make new hint ∗/
o, info(p) = −t− 1;
oo , info(q) = stagestamp [(t + 1)� 1], link (q) = trig head [t];
o, trig head [t] = 0;
pp = p;

}
if (trig head [cur age]) {

oo , link (trig tail [cur age]) = pp ; /∗ give no hint for inactive options of the current age ∗/
o, pp = trig head [cur age], trig head [cur age] = 0;
}
o, trigger (opt) = pp ;

This code is used in section 40.

§60 XCCDC3 THE TRIGGERING 31

60. 〈Print a trigger hint 60 〉 ≡
{

fprintf (stderr , "cutoff for age "O"d",−info(p)− 1);
if (info(q) 6= stagestamp [(−info(p))� 1]) fprintf (stderr , " (obsolete)");
}

This code is used in section 21.

61. At this point we want curstamp to have a value that’s larger than anything found in a trigger list hint.
Moreover, the values of stagestamp [0], . . . , stagestamp [stage−1] should all be distinct and less than curstamp ,
because they might be used in future hints.

We may not be able to satisfy those conditions when badstamp is a small positive constant! But we will
have checked out the following code at least once before failing.

〈Bump curstamp 61 〉 ≡
if (++biggeststamp ≡ badstamp) {

if (badstamp > 0 ∧ stage ≥ badstamp) {
fprintf (stderr , "Timestamp overflow (badstamp="O"d)!\n", badstamp);
exit (−11);

}
〈Remove all hints from all trigger lists 62 〉;
for (k = 0; k < stage ; k++) o, stagestamp [k] = k;
biggeststamp = k;
}
curstamp = biggeststamp ;

This code is used in section 66.

62. Therefore, when curstamp “wraps around,” we must abandon all of the hints that were to be validated
by obsolete timestamps.

〈Remove all hints from all trigger lists 62 〉 ≡
for (k = 0; k < last node ; k += nd [k].loc + 1) {

for (p = trigger (k); p; o, p = link (p))
if (o, info(p) < 0) {
o, q = link (p), r = link (q); /∗ we know that link (q) 6= 0 ∗/
oo , info(p) = info(r), link (p) = link (r);
putavail (q), putavail (r);

}
}

This code is used in section 61.

63. When opt was put into the queue, we made its age infinite. So it will have been purged in the meantime
if and only if its age is now cur age .

〈 If opt is no longer active, revert its fixit list and continue 63 〉 ≡
if (o, age (opt) 6= infinite age) {
〈Change the entries of fixit (opt) back to triggers 44 〉;
continue;
}

This code is used in section 46.

32 THE DANCING XCCDC3 §64

64. The dancing.

〈Do a backtrack search, maintaining domain consistency 64 〉 ≡
level = stage = −1;

newstage : 〈 Increase stage 66 〉;
newlevel : nodes ++;
〈 Increase level 67 〉;
if (vbose & show profile) profile [stage]++;
if (sanity checking) sanity ();
if (leak checking) list check (0);
〈Do special things if enough mems have accumulated 68 〉;
if (stage < groundstage) 〈Read and act on an option from xcutoff file 83 〉;
tmems = mems ;
if (vbose & show option counts) fprintf (stderr ,

"Level "O"d, stage "O"d, "O"d options, "O"d items\n", level , stage , totopts , active);
〈Set best itm to the best item for branching and t to its size 72 〉;
bmems += mems − tmems ;
if (stage ≡ xcutoff) 〈Output a partial solution and goto backup 80 〉;
if (t ≡ infty) 〈Visit a solution and goto backup 73 〉;
oo , choice [level] = cur choice = set [best itm];

got choice : o, deg [level] = t;
if (t ≡ 1) o, saved [stage] = saveptr ;
else 〈Save the currently active sizes 74 〉;
cur age = stage + stage + 1;
tmems = mems ;
if (¬include option (cur choice)) {

nmems += mems − tmems ;
goto tryagain ;
}
if (¬empty the queue ()) {

nmems += mems − tmems ;
goto tryagain ;
}
goto newstage ;

tryagain : if (t ≡ 1) goto backup ;
if (vbose & show choices) fprintf (stderr , "Backtracking in stage "O"d\n", stage);
goto purgeit ;

backup : if (−−stage < groundstage) goto done ;
if (vbose & show choices) fprintf (stderr , "Backtracking to stage "O"d\n", stage);
o, level = levelstage [stage];
if (o, deg [level] ≡ 1) goto backup ;

purgeit : if (vbose & show option counts) totopts = levelopts [level];
〈Restore the currently active sizes 75 〉;

new age : cur age = stage + stage ;
tmems = mems ;
if (¬(o, purge the option (choice [level], active , "removing"))) {

pmems += mems − tmems ;
goto backup ;
}
if (¬empty the queue ()) {

pmems += mems − tmems ;
goto backup ;
}

§64 XCCDC3 THE DANCING 33

goto newlevel ;

This code is used in section 48.

65. We save the sizes of active items on savestack , whose entries have two fields l and r, for an item and
its size. This stack makes it easy to undo all deletions, by simply restoring the former sizes.

〈Global variables 4 〉 +≡
int stage ; /∗ number of choices in current partial solution ∗/
int level ; /∗ current depth in the search tree (which is binary) ∗/
int cur age ; /∗ current stage or stage + 1/2 (times 2) ∗/
int choice [max level]; /∗ the option and item chosen on each level ∗/
int deg [max level]; /∗ the number of options that item had at the time ∗/
int saved [max stage]; /∗ size of savestack at each stage ∗/
int levelstage [max stage]; /∗ the most recent level at each stage ∗/
int stagelevel [max level]; /∗ the stage that corresponds to each level ∗/
int levelopts [max level]; /∗ options remaining at each level ∗/
int stagestamp [max stage]; /∗ timestamp that’s current at each stage ∗/
ullng profile [max stage] = {1}; /∗ number of search tree nodes on each stage ∗/
twoints savestack [savesize];
int saveptr ; /∗ current size of savestack ∗/
int trig head [infinite age], trig tail [infinite age]; /∗ in opt out ∗/

66. 〈 Increase stage 66 〉 ≡
if (++stage > maxs) {

if (stage ≥ max stage) {
fprintf (stderr , "Too many stages!\n");
exit (−40);

}
maxs = stage ;
}
〈Bump curstamp 61 〉;
o, stagestamp [stage] = curstamp ;

This code is used in section 64.

67. 〈 Increase level 67 〉 ≡
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;
}
oo , stagelevel [level] = stage , levelstage [stage] = level ;
if (vbose & show option counts) levelopts [level] = totopts ;

This code is used in section 64.

34 THE DANCING XCCDC3 §68

68. 〈Do special things if enough mems have accumulated 68 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 64.

69. This is where we extend the partial solution.
Notice a tricky point: We must go through the sets from right to left, because the options we block move

right as they leave the set.

〈Subroutines 7 〉 +≡
int include option (int opt)
{

register int c, cc , k, p, q, pp , s, ss , optp ;

subroutine overhead ;
if (vbose & show choices) {

fprintf (stderr , "S"O"d:", stage);
print option (opt , stderr , 1, 0);

}
for (opt −−; o,nd [opt].itm > 0; opt −−) ; /∗ move back to the spacer ∗/
〈 Inactivate all items of opt , and record their colors 70 〉;
for (k = active ; k < oactive ; k++) {

oo , s = item [k], ss = s + size (s)− 1;
if (s ≥ second ∧ (o, c = match (s))) { /∗ we must purify s ∗/

for (; ss ≥ s; ss−−) {
o, optp = set [ss];
if ((o,nd [optp].clr 6= c) ∧ ¬purge the option (optp , oactive , "blocking")) return 0;
}

} else
for (; ss ≥ s; ss−−) {
o, optp = set [ss]− 1;
while (o,nd [optp].itm > 0) optp−−; /∗ move to the spacer ∗/
if (optp 6= opt ∧ ¬opt out (optp , oactive , "blocking")) return 0;
}

}
〈Make opt itself inactive 71 〉;
return 1;
}

§70 XCCDC3 THE DANCING 35

70. An item becomes inactive when it becomes part of the solution-so-far (hence it leaves the problem-
that-remains). Active primary items are those that haven’t yet been covered. Active secondary items are
those that haven’t yet been purified.

The active items are the first active entries of the item list. At one time I thought it would be wise to
keep primary and secondary items separate, using a sparse-set discipline independently on each sector. But
I found that the time spent in maintaining and searching the active list was negligible in comparison with
the overall running time; so I’ve kept the implementation simple.

At this point in the computation, an item of opt will be inactive if and only if it is secondary and purified,
because we are including opt in the partial solution.

〈 Inactivate all items of opt , and record their colors 70 〉 ≡
p = oactive = active ;
for (q = opt + 1; o, (c = nd [q].itm) > 0; q++) {
o, pp = pos (c);
if (pp < p) { /∗ c is active ∗/

o, cc = item [−−p];
oo , item [p] = c, item [pp] = cc ;
if (c ≥ second) oo ,match (c) = nd [q].clr ;
oo , pos (cc) = pp , pos (c) = p;
updates ++;

}
}
active = p;

This code is used in section 69.

71. This program differs from SSXCC in one significant way: It makes option opt inactive. In particular, it
makes all of opt ’s items have size 0, except for unpurified secondaries. (Thus, we essentially say that newly
assigned variables—the inactivated primary items—should have empty domains when they leave the current
subproblem, while SSXCC left them with domains of size 1.)

It would be a mistake to call opt out (opt , oactive), of course, because that procedure doesn’t want any
primary items to become optionless. On the contrary, we have precisely the opposite goal: We celebrate the
fact that all of the primaries in opt have become covered.

We don’t have to change trigger (opt), because no active options involve inactive primary items.

〈Make opt itself inactive 71 〉 ≡
for (k = active ; k < oactive ; k++) {
o, s = item [k];
if (s ≥ second) continue;
if (size (s) 6= 1) confusion ("include");
o, size (s) = 0;
}
if (vbose & show purges) {

fprintf (stderr , " "O"d choosing option ", cur age);
print option (opt + 1, stderr , 0, 1);
}
o, age (opt) = cur age ;
totopts−−;

This code is used in section 69.

36 THE DANCING XCCDC3 §72

72. The “best item” is considered to be an item that minimizes the number of remaining choices. If there
are several candidates, we choose the first one that we encounter.

Each primary item should have at least one valid choice, because of domain consistency.

#define infty #7fffffff

〈Set best itm to the best item for branching and t to its size 72 〉 ≡
t = infty ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , "Stage "O"d,", stage);
for (k = 0; t > 1 ∧ k < active ; k++)

if (o, item [k] < second) {
o, s = size (item [k]);
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {

print item name (item [k], stderr);
fprintf (stderr , "("O"d)", s);

}
if (s ≤ t) {

if (s ≡ 0) fprintf (stderr , "I’m confused.\n"); /∗ hide missed this ∗/
if (s < t) best itm = item [k], t = s;
else if (item [k] < best itm) best itm = item [k];

}
}

if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {
if (t ≡ infty) fprintf (stderr , " solution\n");
else {

fprintf (stderr , " branching on");
print item name (best itm , stderr);
fprintf (stderr , "("O"d)\n", t);

}
}
if (t > maxdeg ∧ t < infty) maxdeg = t;
if (shape file) {

if (t ≡ infty) fprintf (shape file , "sol\n");
else {

fprintf (shape file , ""O"d", t);
print item name (best itm , shape file);
fprintf (shape file , "\n");

}
fflush (shape file);
}

This code is used in section 64.

§73 XCCDC3 THE DANCING 37

73. 〈Visit a solution and goto backup 73 〉 ≡
{

count ++;
if (spacing ∧ (count mod spacing ≡ 0)) {

printf (""O"lld:\n", count);
for (k = 0; k < stage ; k++) print option (choice [levelstage [k]], stdout , 0, 0);
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto backup ;
}

This code is used in section 64.

74. 〈Save the currently active sizes 74 〉 ≡
{
o, saved [stage] = saveptr ;
if (saveptr + active > maxsaveptr) {

if (saveptr + active ≥ savesize) {
fprintf (stderr , "Stack overflow (savesize="O"d)!\n", savesize);
exit (−5);

}
maxsaveptr = saveptr + active ;

}
for (p = 0; p < active ; p++)

ooo , savestack [saveptr + p].l = item [p], savestack [saveptr + p].r = size (item [p]);
saveptr += active ;
}

This code is used in section 64.

75. 〈Restore the currently active sizes 75 〉 ≡
o, active = saveptr − saved [stage];
saveptr = saved [stage];
for (p = 0; p < active ; p++) oo , size (savestack [saveptr + p].l) = savestack [saveptr + p].r;

This code is used in section 64.

76. 〈Subroutines 7 〉 +≡
void print savestack (int start , int stop)
{

register int k;

for (k = start ; k < stop ; k++) {
print item name (savestack [k].l, stderr);
fprintf (stderr , "("O"d), "O"d\n", savestack [k].l, savestack [k].r);

}
}

38 THE DANCING XCCDC3 §77

77. 〈Subroutines 7 〉 +≡
void print state (void)
{

register int l, s;

fprintf (stderr , "Current state (level "O"d, stage "O"d):\n", level , stage);
for (l = 0; l < level ; l++) {

if (levelstage [stagelevel [l]] 6= l) fprintf (stderr , "~");
print option (choice [l], stderr ,−1, 1);
fprintf (stderr , " (of "O"d)", deg [l]);
if (vbose & show option counts) fprintf (stderr , ", "O"d opts\n", levelopts [l]);
else fprintf (stderr , "\n");
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
fprintf (stderr , " "O"lld solutions, "O"lld mems, and max level "O"d so far.\n", count ,

mems ,maxl);
}

§78 XCCDC3 THE DANCING 39

78. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of node degrees, preceded
by ‘~’ if the node wasn’t the current node in its stage (that is, if the node represents an option that has
already been fully explored — “we’ve been there done that”).

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate is .5.
Otherwise, if the first choice is the kth choice in stage 0 and has degree d, the estimate is (k− 1)/(d+ k− 1)
plus 1/(d+k−1) times the recursively evaluated estimate for the kth subtree. (This estimate might obviously
be very misleading, in some cases, but at least it tends to grow monotonically.)

Fine point: If we’ve just backtracked within stage stage , the string of node degrees with end with a ‘~’
entry, and we haven’t yet made any choice in the current stage. The test ‘l ≡ level − 1’ below uses the fact
that levelstage [stage] = level to adjust the fractional estimate appropriately for the partial progress in the
current stage.

〈Subroutines 7 〉 +≡
void print progress (void)
{

register int l, ll , k, d, c, p, ds = 0;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
if (stage < groundstage)

fprintf (stderr , " initializing at stage "O"d, level "O"d\n", stage , level);
else {

for (f = 0.0, fd = 1.0, l = (groundstage ? levelstage [groundstage − 1] + 1 : 0); l < level ; l++) {
if (l < show levels max + levelstage [groundstage])

fprintf (stderr , " "O"s"O"d", levelstage [stagelevel [l]] ≡ l ? "" : "~", deg [l]);
if (levelstage [stagelevel [l]] ≡ l ∨ l ≡ level − 1) { /∗ see remark above ∗/

for (k = 1, d = deg [l], ll = l − 1; ll ≥ 0 ∧ stagelevel [ll] ≡ stagelevel [l]; k++, d++, ll −−) ;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is treated like k of d ∗/
}
if (l ≥ show levels max + levelstage [groundstage] ∧ ¬ds) ds = 1, fprintf (stderr , "...");

}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);

}
}

79. 〈Print the profile 79 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (k = 0; k ≤ maxs ; k++) fprintf (stderr , ""O"3d: "O"lld\n", k, profile [k]);
}

This code is used in section 6.

40 THE DANCING XCCDC3 §80

80. I’m experimenting with a mechanism by which partial solutions of a large problem can be saved to
temporary files and computed separately — for example, by a cluster of computers working in parallel. Each
partial solution can be completed to full solutions when this program is run with one of the files output here,
using X〈filename 〉 on the command line.

〈Output a partial solution and goto backup 80 〉 ≡
{
〈Open a new xcutoff file 81 〉;
fprintf (xcutoff file , "Resume at stage "O"d\n", stage);
for (k = 0; k < level ; k++) {

for (o, j = choice [k]; o,nd [j − 1].itm > 0; j−−) ;
putc(levelstage [stagelevel [k]] 6= k ? ’−’ : ’+’, xcutoff file);
print option (j, xcutoff file , 0, 1);

}
fclose (xcutoff file);
xcount ++;
goto backup ;
}

This code is used in section 64.

81. #define part file prefix "/tmp/part" /∗ should be at most 10 or so characters ∗/
#define part file name size 20

〈Open a new xcutoff file 81 〉 ≡
k = sprintf (xcutoff name , part file prefixO"d", xcount);
xcutoff file = fopen (xcutoff name , "w");
if (¬xcutoff file) {

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", xcutoff name);
exit (−1);
}

This code is used in section 80.

82. 〈Open xcutoff file for reading, and break 82 〉 ≡
strncpy (xcutoff name , argv [j] + 1, part file name size − 1);
xcutoff file = fopen (xcutoff name , "r");
if (¬xcutoff file)

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for reading!\n", xcutoff name);
if (fgets (buf , bufsize , xcutoff file)) {

if (strncmp(buf , "Resume at stage ", 16) ≡ 0) {
for (groundstage = 0, i = 16; o, buf [i] ≥ ’0’ ∧ buf [i] ≤ ’9’; i++)

groundstage = 10 ∗ groundstage + buf [i]− ’0’;
if (vbose & show basics) fprintf (stderr , "Resuming at stage "O"d\n", groundstage);

}
}
break;

This code is used in section 5.

§83 XCCDC3 THE DANCING 41

83. 〈Read and act on an option from xcutoff file 83 〉 ≡
{

if (¬fgets (buf , bufsize , xcutoff file)) confusion ("resuming");
o, choice [level] = cur choice = read option ();
if (cur choice < 0) {

fprintf (stderr , "Misformatted option in file ‘"O"s’:\n", xcutoff name);
fprintf (stderr , ""O"s", buf);
exit (−1);

}
t = 1;
if (o, buf [0] ≡ ’+’) goto got choice ;
goto new age ;
}

This code is used in section 64.

84. 〈Report the number of partial solutions output 84 〉 ≡
fprintf (stderr , "Partial solutions saved on "part file prefix "0.."O"s.\n", xcutoff name);

This code is used in section 6.

85. 〈Global variables 4 〉 +≡
char xcutoff name [part file name size];
FILE ∗xcutoff file ;
int groundstage ; /∗ the stage where calculation begins or resumes ∗/

42 INDEX XCCDC3 §86

86. Index.

act : 40, 41, 42, 58.
active : 10, 15, 16, 34, 42, 46, 47, 58, 64, 69,

70, 71, 72, 74, 75.
age : 19, 40, 49, 57, 63, 71.
all : 22.
argc : 2, 5.
argv : 2, 5, 82.
avail : 20, 25.
backup : 64, 73, 80.
baditem : 2, 10, 35, 37.
badstamp : 26, 61.
best itm : 2, 64, 72.
biggeststamp : 19, 61.
bmems : 4, 6, 64.
buf : 4, 14, 29, 31, 82, 83.
bufsize : 2, 4, 29, 31, 82, 83.
bytes : 4, 6.
c: 2, 15, 69, 78.
cc : 2, 69, 70.
choice : 64, 65, 73, 77, 80, 83.
clr : 9, 13, 14, 19, 27, 28, 31, 32, 69, 70.
compatstamp : 19, 26, 27, 28, 47.
confusion : 7, 46, 58, 59, 71, 83.
count : 4, 6, 25, 73, 77, 78.
cur age : 40, 47, 55, 56, 57, 58, 59, 63, 64, 65, 71.
cur choice : 2, 64, 83.
curstamp : 19, 61, 62, 66.
cutoff : 40, 56, 59.
d: 78.
deg : 6, 64, 65, 77, 78.
delta : 3, 4, 5, 68.
done : 2, 48, 64, 68, 73.
ds : 78.
empty the queue : 46, 47, 64.
establish dc : 47, 48.
exit : 5, 20, 29, 61, 66, 67, 74, 81, 83.
f : 78.
fclose : 6, 80.
fd : 78.
fflush : 72, 73.
fgets : 29, 31, 82, 83.
fixit : 19, 23, 25, 40, 44, 46.
fopen : 5, 81, 82.
fprintf : 5, 6, 7, 12, 13, 15, 16, 20, 21, 23, 25,

29, 31, 37, 38, 39, 40, 42, 46, 47, 48, 50, 60,
61, 64, 66, 67, 68, 69, 71, 72, 74, 76, 77, 78,
79, 80, 81, 82, 83, 84.

getavail : 20, 40, 47, 59.
got choice : 64, 83.
groundstage : 64, 78, 82, 85.
hide : 72.

i: 2, 16.
id : 7.
ii : 26, 27, 28, 40, 42, 46, 47, 50, 56, 58.
imems : 2, 4, 6.
inactive : 40, 57, 58.
include option : 58, 64, 69.
infinite age : 40, 63, 65.
info : 18, 19, 20, 21, 23, 24, 40, 43, 44, 46, 47,

49, 50, 59, 60, 62.
infty : 64, 72.
isspace : 29, 31.
item : 9, 10, 15, 16, 26, 34, 35, 36, 37, 39, 47,

69, 70, 71, 72, 74.
itemlength : 6, 10, 15, 16, 26, 34, 38, 39.
itm : 9, 13, 14, 16, 22, 27, 28, 31, 32, 33, 36,

41, 42, 57, 69, 70, 80.
j: 2, 14.
jj : 22, 28, 40, 46, 47, 57.
k: 2, 12, 13, 14, 16, 47, 69, 76, 78.
l: 11, 16, 77, 78.
last itm : 10, 29, 30, 32, 34.
last node : 6, 10, 13, 16, 22, 25, 31, 32, 33, 36,

38, 47, 49, 62.
leak checking : 6, 25, 46, 47, 64.
level : 42, 64, 65, 67, 72, 77, 78, 80, 83.
levelopts : 64, 65, 67, 77.
levelstage : 64, 65, 67, 73, 77, 78, 80.
link : 18, 19, 20, 21, 23, 24, 25, 40, 43, 44, 46,

47, 49, 50, 59, 62.
list check : 25, 46, 47, 64.
ll : 78.
lname : 9, 12, 14, 29, 30, 32, 35.
loc : 9, 13, 16, 22, 25, 31, 32, 36, 42, 47, 49, 57, 62.
lr : 11, 12, 14, 29, 30, 31, 32.
main : 2.
mark : 9, 26, 27, 28, 35, 47.
match : 9, 27, 28, 69, 70.
max cols : 2, 10, 29, 34.
max level : 2, 65, 67.
max nodes : 2, 10, 31, 32.
max stage : 2, 40, 65, 66.
maxcount : 4, 5, 73.
maxdeg : 4, 6, 72.
maxextra : 9.
maxl : 4, 6, 42, 67, 72, 77.
maxs : 4, 6, 66, 79.
maxsaveptr : 4, 6, 74.
mems : 2, 3, 4, 6, 7, 25, 48, 64, 68, 77, 78.
mod: 2, 73.
namebuf : 11, 12, 14, 29, 30, 31, 32.
nb : 35.

§86 XCCDC3 INDEX 43

nd : 9, 10, 13, 14, 16, 19, 22, 25, 27, 28, 31, 32, 33,
36, 41, 42, 47, 49, 57, 62, 69, 70, 80.

new age : 64, 83.
newlevel : 64.
newstage : 64.
nmems : 4, 6, 64.
nn : 27, 28, 40, 42, 46, 47.
nnp : 40, 42.
node: 6, 9, 10.
node struct: 9.
nodes : 4, 6, 7, 64.
O: 2.
o: 2.
oactive : 10, 69, 70, 71.
oo : 2, 14, 26, 29, 32, 33, 34, 35, 40, 42, 44, 49,

50, 59, 62, 64, 67, 69, 70, 75.
ooo : 2, 40, 74.
opt : 13, 14, 19, 21, 22, 23, 25, 27, 28, 40, 41, 42,

43, 44, 46, 47, 49, 50, 58, 59, 63, 69, 70, 71.
opt out : 40, 41, 46, 47, 58, 65, 69, 71.
options : 4, 31, 38, 48.
optp : 22, 28, 40, 44, 46, 47, 49, 50, 56, 57, 69.
osecond : 10, 34, 35, 38, 47.
p: 2, 13, 15, 20, 21, 23, 24, 25, 40, 46, 47, 49, 69, 78.
panic : 29, 30, 31, 32.
part file name size : 81, 82, 85.
part file prefix : 81, 84.
pmems : 4, 6, 64.
pool : 2, 18, 19, 20, 25.
poolptr : 6, 19, 20, 25.
poolsize : 2, 19, 20.
pos : 9, 15, 16, 32, 33, 35, 42, 58, 70.
pp : 2, 31, 32, 40, 44, 46, 49, 56, 59, 69, 70.
primextra : 9, 15, 34.
print fixit : 23.
print item name : 12, 13, 15, 16, 21, 23, 37, 42,

46, 47, 50, 72, 76.
print itm : 15.
print option : 13, 14, 21, 23, 24, 40, 46, 47, 50,

69, 71, 73, 77, 80.
print progress : 68, 78.
print queue : 24.
print savestack : 76.
print state : 68, 77.
print trigger : 21, 22.
print triggers : 22.
printf : 73.
profile : 6, 64, 65, 79.
propt : 13.
prow : 13, 15.
purge the option : 41, 64, 69.
purgeit : 64.

putavail : 20, 43, 45, 46, 49, 56, 59, 62.
putc : 80.
q: 2, 13, 14, 16, 21, 23, 40, 46, 47, 49, 69.
qfront : 19, 24, 25, 43, 46, 47.
qq : 16, 28, 40, 46, 47, 49.
qrear : 19, 24, 25, 40, 43, 46, 47.
r: 2, 11, 16.
read option : 14, 83.
rname : 9, 12, 14, 29, 30, 32, 35.
s: 2, 46, 47, 69, 77.
sanity : 16, 64.
sanity checking : 6, 16, 64.
saved : 64, 65, 74, 75.
saveptr : 64, 65, 74, 75.
savesize : 2, 65, 74.
savestack : 2, 4, 65, 74, 75, 76.
second : 10, 15, 27, 28, 29, 31, 32, 34, 35, 39,

42, 69, 70, 71, 72.
secondextra : 9, 34.
set : 9, 10, 11, 15, 16, 19, 29, 35, 36, 42, 46,

47, 64, 69.
setlength : 6, 10, 15, 34.
shape file : 4, 5, 6, 72.
shape name : 4, 5.
show basics : 2, 3, 4, 6, 82.
show choices : 3, 4, 37, 48, 64, 69.
show choices gap : 4, 5, 42, 72.
show choices max : 4, 5, 42, 72.
show details : 3, 4, 42, 72.
show full state : 3, 68.
show levels max : 4, 5, 77, 78.
show max deg : 3, 6.
show mstats : 3, 6.
show option counts : 3, 64, 67, 77.
show profile : 3, 6, 64.
show purges : 3, 40, 71.
show supports : 3, 46, 47, 50.
show tots : 2, 3.
show warnings : 3, 4, 31.
showid : 13.
showpos : 13.
signbit : 25.
size : 9, 13, 15, 16, 22, 32, 33, 34, 35, 39, 42, 46,

47, 57, 69, 71, 72, 74, 75.
spacing : 4, 5, 73.
sprintf : 81.
ss : 40, 42, 46, 47, 69.
sscanf : 5.
stage : 61, 64, 65, 66, 67, 69, 72, 73, 74, 75,

77, 78, 80.
stagelevel : 6, 65, 67, 77, 78, 80.
stagestamp : 56, 59, 60, 61, 65, 66.

44 INDEX XCCDC3 §86

start : 76.
stderr : 2, 3, 5, 6, 7, 13, 15, 16, 20, 21, 23, 24,

25, 29, 31, 37, 38, 39, 40, 42, 46, 47, 48, 50,
60, 61, 64, 66, 67, 68, 69, 71, 72, 74, 76, 77,
78, 79, 81, 82, 83, 84.

stdin : 29, 31.
stdout : 73.
stop : 76.
str : 11, 12, 14, 29, 31.
stream : 12, 13.
stringbuf : 11.
strlen : 29, 31.
strncmp : 82.
strncpy : 82.
subroutine overhead : 2, 40, 46, 69.
t: 2, 25, 40.
thresh : 4, 5, 68.
timeout : 3, 4, 5, 68.
tmems : 4, 64.
tmin : 40, 59.
totopts : 10, 40, 48, 64, 67, 71.
trig head : 40, 59, 65.
trig tail : 40, 59, 65.
trigger : 19, 21, 25, 40, 44, 49, 50, 59, 62, 71.
tryagain : 64.
twoints: 6, 11, 19, 65.
typ : 40, 41.
uint: 2.
ullng: 2, 4, 65.
updates : 4, 6, 42, 70.
vbose : 2, 3, 4, 5, 6, 31, 37, 40, 42, 46, 47, 48, 50,

64, 67, 68, 69, 71, 72, 77, 82.
vet and set : 25.
x: 13, 14, 16.
xcount : 4, 6, 80, 81.
xcutoff : 4, 5, 64.
xcutoff file : 80, 81, 82, 83, 85.
xcutoff name : 81, 82, 83, 84, 85.
xtra : 9, 19.

XCCDC3 NAMES OF THE SECTIONS 45

〈Adjust nd 36 〉 Used in section 31.

〈Bump compatstamp 26 〉 Used in section 27.

〈Bump curstamp 61 〉 Used in section 66.

〈Change the entries of fixit (opt) back to triggers 44 〉 Used in sections 43, 46, and 63.

〈Check for duplicate item name 30 〉 Used in section 29.

〈Clear the queue and return 0 43 〉 Used in section 42.

〈Create a node for the item named in buf [p] 32 〉 Used in section 31.

〈Delete opt from the sets of all its unpurified items, possibly returning 0 42 〉 Used in section 40.

〈Discard this entry and continue 45 〉 Used in section 40.

〈Do a backtrack search, maintaining domain consistency 64 〉 Used in section 48.

〈Do special things if enough mems have accumulated 68 〉 Used in section 64.

〈Expand set 35 〉 Used in section 31.

〈Global variables 4, 10, 19, 65, 85 〉 Used in section 2.

〈 If all remaining triggers are known to be inactive, set pp = p and break; otherwise discard this hint and
continue 56 〉 Used in section 40.

〈 If ii isn’t active, set t = cur age and goto inactive 58 〉 Used in section 40.

〈 If optp has been deactivated, set t to its age and goto inactive 57 〉 Used in section 40.

〈 If optp is compatible with opt , break 28 〉 Used in sections 46 and 47.

〈 If opt is no longer active, revert its fixit list and continue 63 〉 Used in section 46.

〈 Inactivate all items of opt , and record their colors 70 〉 Used in section 69.

〈 Increase level 67 〉 Used in section 64.

〈 Increase stage 66 〉 Used in section 64.

〈 Initialize item 34 〉 Used in section 31.

〈 Input the item names 29 〉 Used in section 2.

〈 Input the options 31 〉 Used in section 2.

〈Make opt itself inactive 71 〉 Used in section 69.

〈Open a new xcutoff file 81 〉 Used in section 80.

〈Open xcutoff file for reading, and break 82 〉 Used in section 5.

〈Output a partial solution and goto backup 80 〉 Used in section 64.

〈Prepare the mark fields for testing compatibility with opt 27 〉 Used in sections 46 and 47.

〈Print a trigger hint 60 〉 Used in section 21.

〈Print the profile 79 〉 Used in section 6.

〈Process the command line 5 〉 Used in section 2.

〈Read and act on an option from xcutoff file 83 〉 Used in section 64.

〈Record optp as the support for opt and ii 50 〉 Used in sections 46 and 47.

〈Remove all hints from all trigger lists 62 〉 Used in section 61.

〈Remove last node from its item list 33 〉 Used in section 31.

〈Replace trigger (opt) by its unused entries, reordered and hinted 59 〉 Used in section 40.

〈Report an uncoverable item 37 〉 Used in section 2.

〈Report the item totals 39 〉 Used in section 2.

〈Report the number of partial solutions output 84 〉 Used in section 6.

〈Report the successful completion of the input phase 38 〉 Used in section 2.

〈Restore the currently active sizes 75 〉 Used in section 64.

〈Save the currently active sizes 74 〉 Used in section 64.

〈Say adieu 6 〉 Used in section 2.

〈Set best itm to the best item for branching and t to its size 72 〉 Used in section 64.

〈Solve the problem 48 〉 Used in section 2.

〈Subroutines 7, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 40, 41, 46, 47, 69, 76, 77, 78 〉 Used in section 2.

〈Tidy up the initial trigger lists 49 〉 Used in section 48.

〈Type definitions 9, 11 〉 Used in section 2.

〈Visit a solution and goto backup 73 〉 Used in section 64.

XCCDC3

Section Page
Intro . 1 1
Data structures . 8 6
Domain consistency . 17 12
Inputting the matrix . 29 18
Maintaining supports . 40 22
A view from the top . 51 27
The triggering . 54 29
The dancing . 64 32
Index . 86 42

	Intro
	Data structures
	Domain consistency
	Inputting the matrix
	Maintaining supports
	A view from the top
	The triggering
	The dancing
	Index
	Names of the sections
	Adjust nd
	Bump compatstamp
	Bump curstamp
	Change the entries of fixit(opt) back to triggers
	Check for duplicate item name
	Clear the queue and return 0
	Create a node for the item named in buf[p]
	Delete opt from the sets of all its unpurified items, possibly returning 0
	Discard this entry and continue
	Do a backtrack search, maintaining domain consistency
	Do special things if enough mems have accumulated
	Expand set
	Global variables
	If all remaining triggers are known to be inactive, set pp=p and break; otherwise discard this hint and continue
	If ii isn't active, set t=cur_age and goto inactive
	If optp has been deactivated, set t to its age and goto inactive
	If optp is compatible with opt, break
	If opt is no longer active, revert its fixit list and continue
	Inactivate all items of opt, and record their colors
	Increase level
	Increase stage
	Initialize item
	Input the item names
	Input the options
	Make opt itself inactive
	Open a new xcutoff_file
	Open xcutoff_file for reading, and break
	Output a partial solution and goto backup
	Prepare the mark fields for testing compatibility with opt
	Print a trigger hint
	Print the profile
	Process the command line
	Read and act on an option from xcutoff_file
	Record optp as the support for opt and ii
	Remove all hints from all trigger lists
	Remove last_node from its item list
	Replace trigger(opt) by its unused entries, reordered and hinted
	Report an uncoverable item
	Report the item totals
	Report the number of partial solutions output
	Report the successful completion of the input phase
	Restore the currently active sizes
	Save the currently active sizes
	Say adieu
	Set best_itm to the best item for branching and t to its size
	Solve the problem
	Subroutines
	Tidy up the initial trigger lists
	Type definitions
	Visit a solution and goto backup

