§1 WHIRLPOOL-COUNT

(See https://cs.stanford.edu/~knuth/programs.html for date.)

1. Intro. This program, inspired by HISTOSCAPE-COUNT, calculates the number of $m \times n$ "whirlpool permutations," given m and n.

What's a whirlpool permutation, you ask? Good question. An $m \times n$ matrix has (m-1)(n-1) submatrices of size 2×2 . An $m \times n$ whirlpool permutation is a permutation of (mn)! elements for which the relative order of the elements in each of those submatrices is a "vortex"—that is, it travels a cyclic path from smallest to largest, either clockwise or counterclockwise.

Thus there are exactly eight 2×2 whirlpool permutations. If the entries of the matrix are denoted *abcd* from top to bottom and left to right, they are 1243, 1423, 2134, 2314, 3241, 3421, 4132, 4312. One simple test is to compare a : b, b : d, d : c, c : a; the number of '<' must be odd. (Hence the number of '>' must also be odd.)

The enumeration is by a somewhat mind-boggling variant of dynamic programming that I've not seen before. It needs to represent n + 1 elements of a permutation of t elements, where t is at most mn, and there are up to $(mn)^{n+1}$ such partial permutations; so I can't expect to solve the problem unless m and n are fairly small. Even so, when I can solve the problem it's kind of thrilling, because this program makes use of a really interesting way to represent t^{n+1} counts in computer memory.

The same method could actually be used to enumerate matrices of permutations whose 2×2 submatrices satisfy any arbitrary relations, when those relations depend only the relative order of the four elements. (Thus any of 2^{24} constraints might be prescribed for each of the (m-1)(n-1) submatrices. The whirlpool case, which accepts only the eight relative orderings listed above, is just one of zillions of possibilities.)

It's better to have $m \ge n$. But I'll try some cases with m < n too, for purposes of testing.

```
#define maxn = 8
#define maxmn 36
#define o mems++
#define oo mems += 2
#define ooo mems +=3
#include <stdio.h>
#include <stdlib.h>
  int m, n:
                /* command-line parameters */
  unsigned long long *count;
                                     /* the big array of counts */
  unsigned long long newcount[maxmn];
                                                 /* counts that will replace old ones */
  unsigned long long mems;
                                    /* memory references to octabytes */
  int x[maxn + 1];
                        /* indices being looped over */
  int ay[maxn + 1];
  int l[maxmn], u[maxmn];
                             /* factorial powers t^{n+1} */
  int tpow[maxmn + 1];
  \langle \text{Subroutines 4} \rangle;
  main(int argc, char * argv[])
  {
    register int a, b, c, d, i, j, k, p, q, r, mn, t, tt, kk, bb, cc, pdel;
    \langle \text{Process the command line } 2 \rangle;
    for (i = 1; i < m; i + +)
       for (j = 0; j < n; j + ) (Handle constraint (i, j) 8);
     \langle Print the grand total 9\rangle;
  }
```

2 INTRO

```
2.
    \langle \text{Process the command line } 2 \rangle \equiv
  if (argc \neq 3 \lor sscanf(argv[1], "%d", \&m) \neq 1 \lor sscanf(argv[2], "%d", \&n) \neq 1) {
     fprintf(stderr, "Usage:__%s_{|}m_{|}n n', argv[0]);
     exit(-1);
  }
  mn = m * n;
  if (m < 2 \lor m > maxn \lor n < 2 \lor n > maxn \lor mn > maxmn) {
     fprintf(stderr, "Sorry, _m_and_n_should_be_between_2_and_%d, _with_m<=%d!\n", maxn, maxmn);
     exit(-2);
  for (k = n + 1; k \le mn; k++) {
     register unsigned long long acc = 1;
     for (j = 0; j \le n; j++) acc *= k - j;
     if (acc \ge #8000000) {
       fprintf(stderr, "Sorry, | mn\\falling(n+1) | must | be | less | than | 2^31! \n");
       exit(-666):
     }
     tpow[k] = acc;
  }
  count = (unsigned long long *) malloc(tpow[mn] * sizeof(unsigned long long));
  if (\neg count) {
     fprintf(stderr, "I<sub>L</sub>couldn't<sub>L</sub>allocate<sub>L</sub>%d<sub>L</sub>entries<sub>L</sub>for<sub>L</sub>the<sub>L</sub>counts!\n", tpow[mn]);
     exit(-4);
  }
```

This code is used in section 1.

3. Suppose I want to represent n+1 specified elements of a permutation of t+1 elements. For example, we might have n = 3 and t = 8, and the final four elements of a permutation $y_0 \dots y_8$ might be $y_5y_6y_7y_8 = 3142$. There are $(t+1)^{\underline{n+1}}$ such partial permutations, and I can represent them compactly with n+1 integer variables $x_{t-n}, \dots, x_{t-1}, x_t$, where $0 \le x_j \le j$. The rule is that x_j is $y_j - w_j$, where w_j is the number of elements "inverted" by y_j (the number of elements to the right of y_j that are less than y_j). In the example, $w_0w_1w_2w_3 = 2010$, so $x_5x_6x_7x_8 = 1132$. (Or going backward, if $x_5x_6x_7x_8 = 3141$ then $y_5y_6y_7y_8 = 6251$.)

This representation has a beautiful property that we shall exploit. Every permutation $y_0 \ldots y_t$ of $\{0, \ldots, t\}$ yields t + 2 permutations $y'_0 \ldots y'_{t+1}$ of $\{0, \ldots, t+1\}$ if we choose y'_{t+1} arbitrarily, and then set $y'_j = y_j + [y_j \ge y'_{t+1}]$. For example, if t = 8 and $y_5y_6y_7y_8 = 3142$, the ten permutations obtained from $y_0 \ldots y_8$ will have $y'_5y'_6y'_7y'_8y'_9 = 42530$, 42531, 41532, 41523, 31524, 31425, 31426, 31427, 31428, or 31429. And the representations $x'_5x'_6x'_7x'_8x'_9$ of those last five elements will simply be respectively 31420, 31421, ..., 31429! In general, we'll have $x'_j = x_j$ for $0 \le j \le t$, and $x'_{t+1} = y'_{t+1}$ will be arbitrary.

<u>§</u>4 WHIRLPOOL-COUNT

4. Now comes the mind-boggling part. I want to maintain a count $c(x_{t-n},\ldots,x_t)$ for each setting of the indices (x_{t-n},\ldots,x_t) , but I want to put those counts into memory in such a way that I won't clobber any of the existing counts when I'm updating t to t+1. In particular, if $x'_{t+1} \leq t-n$, I'll want $c(x'_{t+1-n}, \ldots, x'_t, x'_{t+1})$ to be stored in exactly the same place as $c(x'_{t+1}, x_{t+1-n}, \ldots, x_t)$ was stored in the previous round. But if $x'_{t+1} > t - n$, I'll store $c(x'_{t+1-n}, \ldots, x'_t, x'_{t+1})$ in a brand-new, previously unused location of memory.

Thus we shall use a memory mapping function μ_t , different for each t, such that $c(x_{t-n}, x_{t-n+1}, \ldots, x_t)$ is stored in location $\mu_t(x_{t-n}, x_{t-n+1}, \dots, x_t)$ during round t of the computation.

Let's go back to the example in the previous section and apply it to whirlpool permutations for n = 3. Denote the permutation in the first three rows by $y_0 \dots y_8$, where $y_6 y_7 y_8$ is the third row and y_5 is the last element of the second row. (It's a permutation of $\{0, \ldots, 8\}$, representing the relative order of a final permutation of $\{0, \ldots, 3m-1\}$ that will fill the entire matrix.) At this point we've calculated counts $c(x_5, x_6, x_7, x_8)$ that tell us how many such partial whirlpool permutations have any given setting of $y_5y_6y_7y_8$. In particular, c(1, 1, 3, 2) counts those for which $y_5y_6y_7y_8 = 3142$.

To get to the next round, we essentially want to know how many partial permutations $y'_0 \dots y'_9$ of $\{0, \dots, 9\}$ will have a given setting of $y'_{6}y'_{7}y'_{8}y'_{9}$; the second row is now irrelevant to future computations. It's the same as asking how many permutations have $y_6y_7y_8 = 142$. Answer: c(0,1,3,2) + c(1,1,3,2) + c(2,1,3,2) + c(2,c(3,1,3,2) + c(4,1,3,2) + c(5,1,3,2), because these count the permutations with $y_5y_6y_7y_8 = 0142, 3142,$ 5142, 6142, 7142, 8142.

Those six counts c(k, 1, 3, 2) appear in memory locations $\mu_8(k, 1, 3, 2)$, for $0 \le k \le 5$. On the next round we'll want $c'(x'_6, x'_7, x'_8, x'_9) = c'(1, 3, 2, x'_9)$ to be set to their sum. These new counts will appear in memory locations $\mu_9(1,3,2,x'_9)$. So we'd like $\mu_9(1,3,2,k) = \mu_8(k,1,3,2)$ when $0 \le k \le 5$.

Let $\lambda_t(x_{t-n},\ldots,x_t) = (\cdots((x_tt+x_{t-1})(t-1)+x_{t-2})\cdots)(t-n+1) + x_{t-n} = x_tt^n + x_{t-1}(t-1)^{n-1} + x_{t$ $\cdots x_{t-n}(t-n)^0$ be the standard mixed-radix representation of $(x_t \dots x_{t-n})$ with radices $(t+1, t, \dots, t-n+1)$. When each x_j ranges from 0 to j, $\lambda_t(x_{t-n},\ldots,x_t)$ ranges from $\lambda_t(0,\ldots,0) = 0$ to $\lambda_t(t-n,\ldots,t) = 0$ $(t+1)^{n+1} - 1$. Therefore λ_t would be the natural choice for μ_t , if we didn't want to avoid clobbering.

Instead, we use λ_t only when x_t is sufficiently large: We define

$$\mu_t(x_{t-n},\dots,x_t) = \begin{cases} \lambda_t(x_{t-n},\dots,x_t), & \text{if } x_t \ge t-n; \\ \mu_{t-1}(x_t,x_{t-n},\dots,x_{t-1}), & \text{if } x_t \le t-n-1. \end{cases}$$

This recursion terminates with $\mu_n = \lambda_n$, because x_n is always ≥ 0 . One can also show that $\mu_{n+1} = \lambda_{n+1}$.

Back to our earlier example, what is $\mu_8(k, 1, 3, 2)$? Since $2 \le 4$, it's $\mu_7(2, k, 1, 3)$. And since $3 \le 3$, it's $\mu_6(3,2,k,1)$. Which is $\mu_5(1,3,2,k)$. Finally, therefore, if $k \leq 1$, the value is $\lambda_4(k,1,3,2) = 68 + k$; but if $2 \le k \le 5$ it's $\lambda_5(1,3,2,k) = 60k + 34$.

In this program we will keep x_j in location $x_{j \mod (n+1)}$. Consequently the arguments to μ_t and λ_t will always be in locations $(x_{(t+1) \mod (n+1)}, x_{(t+2) \mod (n+1)}, \dots, x_{t \mod (n+1)})$.

 $\langle \text{Subroutines 4} \rangle \equiv$ int mu(int t){ **register int** r, a, p, tt; for (r = t % (n + 1), tt = t; o, x[r] < tt - n; tt - , r = (r ? r - 1 : n));for (o, p = x[r], r = (r?r-1:n), a = 0; a < n; a++, r = (r?r-1:n)) o, p = p * (tt - a) + x[r];return p; }

This code is used in section 1.

4 INTRO

5. A backtrack essentially like Algorithm 7.2.1.2X nicely runs through all combinations of $x_{t-n+1} \dots x_t$ and $y_{t-n+1} \dots y_t$ simultaneously, while also providing a linked list that shows the possibilities for y_{t-n} as x_{t-n} varies from 0 to t-n.

The algorithm generates all of the "*n*-variations" of $\{0, \ldots, t\}$, namely all *n*-tuples $a_0 \ldots a_{n-1}$ of distinct integers in that set, where a_j corresponds to y_{t-j} in the discussion above.

 \langle Generate the x's and y's 5 $\rangle \equiv$ x1: for $(k = 0; k \le t; k++)$ o, l[k] = k + 1;o, l[t+1] = 0;/* circularly linked list */ k = 0, kk = t % (n+1);x2: if $(k \equiv n)$ (Visit $a_0 \dots a_{n-1}$ and goto $x6 \in$); oo, p = t + 1, q = l[p], x[kk] = 0;x3: o, ay[k] = q; $x_4: ooo, u[k] = p, l[p] = l[q], k++, kk = (kk ? kk - 1 : n);$ goto x2; $x5\colon \, o,p=q,q=l[p];$ if $(q \leq t)$ { oo, x[kk] ++;**goto** *x*3; } $x \theta$: if $(-k \ge 0)$ { $kk = (kk \equiv n ? 0 : kk + 1);$ ooo, p = u[k], q = ay[k], l[p] = q;**goto** *x*5; } This code is used in section 8.

6. At this point we're ready to do the "inner loop" calculation, by using all counts $c(x_{t-n}, \ldots, x_t)$ for $0 \le x_{t-n} \le t-n$ to obtain updated counts that will allow us to increase t. The array $a_{n-1} \ldots a_0$ corresponds to $y_{t-n+1} \ldots y_t$ in the discussion above; we want to loop over all choices for y_{t-n} , namely all choices for a_n . Fortunately there's a linked list containing precisely those choices, beginning at l[t+1].

(Visit $a_0 \ldots a_{n-1}$ and goto $x \delta \langle 6 \rangle \equiv$ { (If possible, find p and pdel so that $c(x_{t-n}, \ldots, x_t)$ is count[p + pdel * x[kk]] 7); for $(d = 0; d \le t + 1; d +)$ o, newcount[d] = 0;oo, b = ay[n-1], c = ay[0];if (b < c) bb = b, cc = c;else bb = c, cc = b; /* min and max */ { register unsigned long long *tmp*; for $(oo, a = l[t+1], x[kk] = 0; a \le t; oo, a = l[a], x[kk] ++)$ { if (pdel) tmp = count[p + x[kk] * pdel];else tmp = count[mu(t-n)];/* if pdel = 0 then mu(t) = mu(t-n) */if $(j \equiv 0)$ newcount [0] += tmp; /* no constraint, beginning a new row *//* whirlpool constraint when a not middle */ else if $(a < bb \lor a > cc)$ { for $(d = bb + 1; d \le cc; d++)$ oo, newcount [d] += tmp;/* whirlpool constraint when d not middle */elsefor $(d = 0; d \le bb; d++)$ oo, newcount [d] += tmp;for $(d = cc + 1; d \le t + 1; d++)$ oo, newcount[d] += tmp;} } **if** (*pdel*) { for $(d = 0; d \le t - n; d++)$ oo, count[p + d * pdel] = newcount[j?d:0];for $(; d \le t+1; d++)$ ooo, x[kk] = d, count[mu(t+1)] = newcount[j?d:0];} else { for $(d = 0; d \le t + 1; d++)$ ooo, x[kk] = d, count[mu(t+1)] = newcount[j?d:0];} } goto x6; }

This code is used in section 5.

7. Our example of $\mu_8(k, 1, 3, 2)$ shows that the mission of this step is sometimes impossible. But the addressing scheme is usually simple, so I decided to exploit that fact. (Being aware, of course, that premature optimization is the root of all evil in programming.)

This code is used in section 6.

```
6 INTRO
```

```
8. 〈Handle constraint (i, j) 8 〉 ≡
{
    t = n * i + j - 1;
    if (t < n) {
        for (p = 0; p < tpow[n + 1]; p++) o, count[p] = 1;
        continue;
    }
    {
        Generate the x's and y's 5 〉;
        fprintf (stderr, "udoneuwithu%d,%du..%lld,u%lldumems\n", i, j, count[0], mems);
    }
This code is used in section 1.</pre>
```



```
\langle \text{Print the grand total } 9 \rangle \equiv
  for (newcount[0] = newcount[1] = newcount[2] = 0, p = tpow[mn] - 1; p \ge 0; p--) {
    if (count[p] > newcount[2]) newcount[2] = count[p], pdel = p;
    o, newcount[0] += count[p];
    if (newcount[0] \ge thresh) ooo, newcount[0] = thresh, newcount[1] + ;
  }
  fprintf(stderr, "(Maximum_count_%lld_is_obtained_for_params", newcount[2]));
  for (q = mn - n - 1; q < mn; q++) {
    fprintf(stderr), "_{\sqcup}d", pdel \% (q+1));
    pdel \ /= q + 1;
  }
  fprintf(stderr, ")\n"();
  if (newcount[1] \equiv 0)
    printf ("Altogether_\%lld_\%dx%d_whirlpool_perms_(%lld_mems).\n", newcount[0], m, n, mems);
  else printf("Altogether_%11d%01811d_%dx%d_whirlpool_perms_(%11d_mems).\n", newcount[1],
         newcount[0], m, n, mems);
```

This code is used in section 1.

10. Index. $a: \underline{1}, \underline{4}.$ acc: $\underline{2}$. argc: $\underline{1}$, $\underline{2}$. argv: $\underline{\underline{1}}$, 2. *ay*: 1, 5, 6. b: $\underline{1}$. $bb: \underline{1}, \underline{6}.$ $c: \underline{1}.$ $cc: \underline{1}, \underline{6}.$ *count*: 1, 2, 6, 8, 9. $d: \underline{1}.$ exit: 2. fprintf: 2, 8, 9. $i: \underline{1}.$ $j: \underline{1}.$ $k: \underline{1}.$ kk: 1, 5, 6, 7. $l: \underline{1}.$ $m: \underline{1}.$ main: $\underline{1}$. malloc: 2. maxmn: $\underline{1}$, $\underline{2}$. maxn: $\underline{1}$, $\underline{2}$. mems: $\underline{1}$, 8, 9. *mn*: 1, 2, 9. $mu: \underline{4}, \underline{6}.$ $n: \underline{1}.$ newcount: $\underline{1}$, $\underline{6}$, $\underline{9}$. $o: \underline{1}.$ *oo*: 1, 5, 6. *ooo*: 1, 5, 6, 9. $p: \underline{1}, \underline{4}.$ *pdel*: 1, 6, 7, 9. printf: 9. $q: \underline{1}.$ $r: \underline{1}, \underline{4}.$ sscanf: 2.stderr: 2, 8, 9. t: $\underline{1}$, $\underline{4}$. thresh: $\underline{9}$. $tmp: \underline{6}.$ *tpow*: 1, 2, 8, 9. $tt: \underline{1}, \underline{4}, \overline{7}.$ $u: \underline{1}.$ $x: \underline{1}.$ $x1: \underline{5}.$ *x2*: <u>5</u>. $x3: \underline{5}.$ $x4: \underline{5}.$ $x5: \underline{5}.$ x6: 5, 6.

8 NAMES OF THE SECTIONS

 \langle Generate the x's and y's 5 \rangle Used in section 8.

(Handle constraint (i, j) 8) Used in section 1. (If possible, find p and pdel so that $c(x_{t-n}, \ldots, x_t)$ is count[p + pdel * x[kk]] 7) Used in section 6.

 \langle Print the grand total 9 \rangle Used in section 1.

 \langle Process the command line $2\rangle$ Used in section 1.

 \langle Subroutines 4 \rangle Used in section 1.

 $\langle \text{Visit } a_0 \dots a_{n-1} \text{ and } \textbf{goto } x 6 \ 6 \rangle$ Used in section 5.

WHIRLPOOL-COUNT

 Section
 Page

 Intro
 1
 1

 Index
 10
 7