
§1 WHIRLPOOL-COUNT INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program, inspired by HISTOSCAPE-COUNT, calculates the number of m× n “whirlpool
permutations,” given m and n.

What’s a whirlpool permutation, you ask? Good question. An m×n matrix has (m−1)(n−1) submatrices
of size 2×2. An m×n whirlpool permutation is a permutation of (mn)! elements for which the relative order
of the elements in each of those submatrices is a “vortex”—that is, it travels a cyclic path from smallest to
largest, either clockwise or counterclockwise.

Thus there are exactly eight 2 × 2 whirlpool permutations. If the entries of the matrix are denoted abcd
from top to bottom and left to right, they are 1243, 1423, 2134, 2314, 3241, 3421, 4132, 4312. One simple
test is to compare a : b, b : d, d : c, c : a; the number of ‘<’ must be odd. (Hence the number of ‘>’ must
also be odd.)

The enumeration is by a somewhat mind-boggling variant of dynamic programming that I’ve not seen
before. It needs to represent n + 1 elements of a permutation of t elements, where t is at most mn, and
there are up to (mn)n+1 such partial permutations; so I can’t expect to solve the problem unless m and n
are fairly small. Even so, when I can solve the problem it’s kind of thrilling, because this program makes
use of a really interesting way to represent tn+1 counts in computer memory.

The same method could actually be used to enumerate matrices of permutations whose 2× 2 submatrices
satisfy any arbitrary relations, when those relations depend only the relative order of the four elements.
(Thus any of 224 constraints might be prescribed for each of the (m− 1)(n− 1) submatrices. The whirlpool
case, which accepts only the eight relative orderings listed above, is just one of zillions of possibilities.)

It’s better to have m ≥ n. But I’ll try some cases with m < n too, for purposes of testing.

#define maxn 8
#define maxmn 36
#define o mems++

#define oo mems += 2
#define ooo mems += 3

#include <stdio.h>

#include <stdlib.h>

int m,n; /∗ command-line parameters ∗/
unsigned long long ∗count ; /∗ the big array of counts ∗/
unsigned long long newcount [maxmn]; /∗ counts that will replace old ones ∗/
unsigned long long mems ; /∗ memory references to octabytes ∗/
int x[maxn + 1]; /∗ indices being looped over ∗/
int ay [maxn + 1];
int l[maxmn], u[maxmn];
int tpow [maxmn + 1]; /∗ factorial powers tn+1 ∗/
〈Subroutines 4 〉;
main (int argc , char ∗argv [])
{

register int a, b, c, d, i, j, k, p, q, r,mn , t, tt , kk , bb , cc , pdel ;

〈Process the command line 2 〉;
for (i = 1; i < m; i++)

for (j = 0; j < n; j++) 〈Handle constraint (i, j) 8 〉;
〈Print the grand total 9 〉;
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO WHIRLPOOL-COUNT §2

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3 ∨ sscanf (argv [1], "%d",&m) 6= 1 ∨ sscanf (argv [2], "%d",&n) 6= 1) {
fprintf (stderr , "Usage: %s m n\n", argv [0]);
exit (−1);
}
mn = m ∗ n;
if (m < 2 ∨m > maxn ∨ n < 2 ∨ n > maxn ∨mn > maxmn) {
fprintf (stderr , "Sorry, m and n should be between 2 and %d, with mn<=%d!\n",maxn ,maxmn);
exit (−2);
}
for (k = n+ 1; k ≤ mn ; k++) {

register unsigned long long acc = 1;

for (j = 0; j ≤ n; j++) acc ∗= k − j;
if (acc ≥ #80000000) {
fprintf (stderr , "Sorry, mn\\falling(n+1) must be less than 2^31!\n");
exit (−666);

}
tpow [k] = acc ;
}
count = (unsigned long long ∗)malloc(tpow [mn] ∗ sizeof (unsigned long long));
if (¬count) {
fprintf (stderr , "I couldn’t allocate %d entries for the counts!\n", tpow [mn]);
exit (−4);
}

This code is used in section 1.

3. Suppose I want to represent n+1 specified elements of a permutation of t+1 elements. For example, we
might have n = 3 and t = 8, and the final four elements of a permutation y0 . . . y8 might be y5y6y7y8 = 3142.
There are (t + 1)n+1 such partial permutations, and I can represent them compactly with n + 1 integer
variables xt−n, . . . , xt−1, xt, where 0 ≤ xj ≤ j. The rule is that xj is yj − wj , where wj is the number of
elements “inverted” by yj (the number of elements to the right of yj that are less than yj). In the example,
w0w1w2w3 = 2010, so x5x6x7x8 = 1132. (Or going backward, if x5x6x7x8 = 3141 then y5y6y7y8 = 6251.)

This representation has a beautiful property that we shall exploit. Every permutation y0 . . . yt of {0, . . . , t}
yields t + 2 permutations y′0 . . . y

′
t+1 of {0, . . . , t + 1} if we choose y′t+1 arbitrarily, and then set y′j =

yj + [yj≥y′t+1]. For example, if t = 8 and y5y6y7y8 = 3142, the ten permutations obtained from y0 . . . y8
will have y′5y

′
6y
′
7y
′
8y
′
9 = 42530, 42531, 41532, 41523, 31524, 31425, 31426, 31427, 31428, or 31429. And the

representations x′5x
′
6x
′
7x
′
8x
′
9 of those last five elements will simply be respectively 31420, 31421, . . . , 31429!

In general, we’ll have x′j = xj for 0 ≤ j ≤ t, and x′t+1 = y′t+1 will be arbitrary.

§4 WHIRLPOOL-COUNT INTRO 3

4. Now comes the mind-boggling part. I want to maintain a count c(xt−n, . . . , xt) for each setting of the
indices (xt−n, . . . , xt), but I want to put those counts into memory in such a way that I won’t clobber any of
the existing counts when I’m updating t to t+1. In particular, if x′t+1 ≤ t−n, I’ll want c(x′t+1−n, . . . , x

′
t, x
′
t+1)

to be stored in exactly the same place as c(x′t+1, xt+1−n, . . . , xt) was stored in the previous round. But if
x′t+1 > t− n, I’ll store c(x′t+1−n, . . . , x

′
t, x
′
t+1) in a brand-new, previously unused location of memory.

Thus we shall use a memory mapping function µt, different for each t, such that c(xt−n, xt−n+1, . . . , xt) is
stored in location µt(xt−n, xt−n+1, . . . , xt) during round t of the computation.

Let’s go back to the example in the previous section and apply it to whirlpool permutations for n = 3.
Denote the permutation in the first three rows by y0 . . . y8, where y6y7y8 is the third row and y5 is the
last element of the second row. (It’s a permutation of {0, . . . , 8}, representing the relative order of a final
permutation of {0, . . . , 3m − 1} that will fill the entire matrix.) At this point we’ve calculated counts
c(x5, x6, x7, x8) that tell us how many such partial whirlpool permutations have any given setting of y5y6y7y8.
In particular, c(1, 1, 3, 2) counts those for which y5y6y7y8 = 3142.

To get to the next round, we essentially want to know how many partial permutations y′0 . . . y
′
9 of {0, . . . , 9}

will have a given setting of y′6y
′
7y
′
8y
′
9; the second row is now irrelevant to future computations. It’s the same

as asking how many permutations have y6y7y8 = 142. Answer: c(0, 1, 3, 2) + c(1, 1, 3, 2) + c(2, 1, 3, 2) +
c(3, 1, 3, 2) + c(4, 1, 3, 2) + c(5, 1, 3, 2), because these count the permutations with y5y6y7y8 = 0142, 3142,
5142, 6142, 7142, 8142.

Those six counts c(k, 1, 3, 2) appear in memory locations µ8(k, 1, 3, 2), for 0 ≤ k ≤ 5. On the next round
we’ll want c′(x′6, x

′
7, x
′
8, x
′
9) = c′(1, 3, 2, x′9) to be set to their sum. These new counts will appear in memory

locations µ9(1, 3, 2, x′9). So we’d like µ9(1, 3, 2, k) = µ8(k, 1, 3, 2) when 0 ≤ k ≤ 5.
Let λt(xt−n, . . . , xt) =

(
· · · ((xtt + xt−1)(t − 1) + xt−2) · · ·

)
(t − n + 1) + xt−n = xtt

n + xt−1(t − 1)n−1 +
· · ·xt−n(t−n)0 be the standard mixed-radix representation of (xt . . . xt−n) with radices (t+1, t, . . . , t−n+1).
When each xj ranges from 0 to j, λt(xt−n, . . . , xt) ranges from λt(0, . . . , 0) = 0 to λt(t − n, . . . , t) =
(t+ 1)n+1 − 1. Therefore λt would be the natural choice for µt, if we didn’t want to avoid clobbering.

Instead, we use λt only when xt is sufficiently large: We define

µt(xt−n, . . . , xt) =

{
λt(xt−n, . . . , xt), if xt ≥ t− n;
µt−1(xt, xt−n, . . . , xt−1), if xt ≤ t− n− 1.

This recursion terminates with µn = λn, because xn is always ≥ 0. One can also show that µn+1 = λn+1.
Back to our earlier example, what is µ8(k, 1, 3, 2)? Since 2 ≤ 4, it’s µ7(2, k, 1, 3). And since 3 ≤ 3, it’s

µ6(3, 2, k, 1). Which is µ5(1, 3, 2, k). Finally, therefore, if k ≤ 1, the value is λ4(k, 1, 3, 2) = 68 + k; but if
2 ≤ k ≤ 5 it’s λ5(1, 3, 2, k) = 60k + 34.

In this program we will keep xj in location xj mod (n+1). Consequently the arguments to µt and λt will
always be in locations (x(t+1) mod (n+1), x(t+2) mod (n+1), . . . , xt mod (n+1)).

〈Subroutines 4 〉 ≡
int mu (int t)
{

register int r, a, p, tt ;

for (r = t % (n+ 1), tt = t; o, x[r] < tt − n; tt −−, r = (r ? r − 1 : n)) ;
for (o, p = x[r], r = (r ? r − 1 : n), a = 0; a < n; a++, r = (r ? r − 1 : n)) o, p = p ∗ (tt − a) + x[r];
return p;
}

This code is used in section 1.

4 INTRO WHIRLPOOL-COUNT §5

5. A backtrack essentially like Algorithm 7.2.1.2X nicely runs through all combinations of xt−n+1 . . . xt
and yt−n+1 . . . yt simultaneously, while also providing a linked list that shows the possibilities for yt−n as
xt−n varies from 0 to t− n.

The algorithm generates all of the “n-variations” of {0, . . . , t}, namely all n-tuples a0 . . . an−1 of distinct
integers in that set, where aj corresponds to yt−j in the discussion above.

〈Generate the x’s and y’s 5 〉 ≡
x1 : for (k = 0; k ≤ t; k++) o, l[k] = k + 1;
o, l[t+ 1] = 0; /∗ circularly linked list ∗/
k = 0, kk = t % (n+ 1);

x2 : if (k ≡ n) 〈Visit a0 . . . an−1 and goto x6 6 〉;
oo , p = t+ 1, q = l[p], x[kk] = 0;

x3 : o, ay [k] = q;
x4 : ooo , u[k] = p, l[p] = l[q], k++, kk = (kk ? kk − 1 : n);

goto x2 ;
x5 : o, p = q, q = l[p];

if (q ≤ t) {
oo , x[kk]++;
goto x3 ;
}

x6 : if (−−k ≥ 0) {
kk = (kk ≡ n ? 0 : kk + 1);
ooo , p = u[k], q = ay [k], l[p] = q;
goto x5 ;
}

This code is used in section 8.

§6 WHIRLPOOL-COUNT INTRO 5

6. At this point we’re ready to do the “inner loop” calculation, by using all counts c(xt−n, . . . , xt) for
0 ≤ xt−n ≤ t−n to obtain updated counts that will allow us to increase t. The array an−1 . . . a0 corresponds
to yt−n+1 . . . yt in the discussion above; we want to loop over all choices for yt−n, namely all choices for an.
Fortunately there’s a linked list containing precisely those choices, beginning at l[t+ 1].

〈Visit a0 . . . an−1 and goto x6 6 〉 ≡
{
〈 If possible, find p and pdel so that c(xt−n, . . . , xt) is count [p+ pdel ∗ x[kk]] 7 〉;
for (d = 0; d ≤ t+ 1; d++) o,newcount [d] = 0;
oo , b = ay [n− 1], c = ay [0];
if (b < c) bb = b, cc = c;
else bb = c, cc = b; /∗ min and max ∗/
{

register unsigned long long tmp ;

for (oo , a = l[t+ 1], x[kk] = 0; a ≤ t; oo , a = l[a], x[kk]++) {
if (pdel) tmp = count [p+ x[kk] ∗ pdel];
else tmp = count [mu (t− n)]; /∗ if pdel = 0 then mu (t) = mu (t− n) ∗/
if (j ≡ 0) newcount [0] += tmp ; /∗ no constraint, beginning a new row ∗/
else if (a < bb ∨ a > cc) { /∗ whirlpool constraint when a not middle ∗/

for (d = bb + 1; d ≤ cc ; d++) oo ,newcount [d] += tmp ;
} else { /∗ whirlpool constraint when d not middle ∗/

for (d = 0; d ≤ bb ; d++) oo ,newcount [d] += tmp ;
for (d = cc + 1; d ≤ t+ 1; d++) oo ,newcount [d] += tmp ;
}

}
if (pdel) {

for (d = 0; d ≤ t− n; d++) oo , count [p+ d ∗ pdel] = newcount [j ? d : 0];
for (; d ≤ t+ 1; d++) ooo , x[kk] = d, count [mu (t+ 1)] = newcount [j ? d : 0];

} else {
for (d = 0; d ≤ t+ 1; d++) ooo , x[kk] = d, count [mu (t+ 1)] = newcount [j ? d : 0];

}
}
goto x6 ;
}

This code is used in section 5.

7. Our example of µ8(k, 1, 3, 2) shows that the mission of this step is sometimes impossible. But the
addressing scheme is usually simple, so I decided to exploit that fact. (Being aware, of course, that premature
optimization is the root of all evil in programming.)

〈 If possible, find p and pdel so that c(xt−n, . . . , xt) is count [p+ pdel ∗ x[kk]] 7 〉 ≡
for (tt = t, a = 0, r = t % (n+ 1); a < n; a++, tt −−, r = (r ? r − 1 : n))

if (o, x[r] ≥ tt − n) break;
if (a ≡ n) pdel = 0; /∗ a difficult case ∗/
else {

for (p = pdel = 0, a = 0; a ≤ n; a++, r = (r ? r − 1 : n)) {
if (r 6= kk) p = p ∗ (tt + 1− a) + x[r], pdel = pdel ∗ (tt + 1− a);
else p = p ∗ (tt + 1− a), pdel = pdel ∗ (tt + 1− a) + 1;

}
}

This code is used in section 6.

6 INTRO WHIRLPOOL-COUNT §8

8. 〈Handle constraint (i, j) 8 〉 ≡
{
t = n ∗ i+ j − 1;
if (t < n) {

for (p = 0; p < tpow [n+ 1]; p++) o, count [p] = 1;
continue;

}
〈Generate the x’s and y’s 5 〉;
fprintf (stderr , " done with %d,%d ..%lld, %lld mems\n", i, j, count [0],mems);
}

This code is used in section 1.

9. #define thresh 1000000000000000000

〈Print the grand total 9 〉 ≡
for (newcount [0] = newcount [1] = newcount [2] = 0, p = tpow [mn]− 1; p ≥ 0; p−−) {

if (count [p] > newcount [2]) newcount [2] = count [p], pdel = p;
o,newcount [0] += count [p];
if (newcount [0] ≥ thresh) ooo ,newcount [0] −= thresh ,newcount [1]++;
}
fprintf (stderr , "(Maximum count %lld is obtained for params",newcount [2]));
for (q = mn − n− 1; q < mn ; q++) {
fprintf (stderr), " %d", pdel % (q + 1));
pdel /= q + 1;
}
fprintf (stderr , ")\n"();
if (newcount [1] ≡ 0)
printf ("Altogether %lld %dx%d whirlpool perms (%lld mems).\n",newcount [0],m, n,mems);

else printf ("Altogether %lld%018lld %dx%d whirlpool perms (%lld mems).\n",newcount [1],
newcount [0],m, n,mems);

This code is used in section 1.

§10 WHIRLPOOL-COUNT INDEX 7

10. Index.

a: 1, 4.
acc : 2.
argc : 1, 2.
argv : 1, 2.
ay : 1, 5, 6.
b: 1.
bb : 1, 6.
c: 1.
cc : 1, 6.
count : 1, 2, 6, 8, 9.
d: 1.
exit : 2.
fprintf : 2, 8, 9.
i: 1.
j: 1.
k: 1.
kk : 1, 5, 6, 7.
l: 1.
m: 1.
main : 1.
malloc : 2.
maxmn : 1, 2.
maxn : 1, 2.
mems : 1, 8, 9.
mn : 1, 2, 9.
mu : 4, 6.
n: 1.
newcount : 1, 6, 9.
o: 1.
oo : 1, 5, 6.
ooo : 1, 5, 6, 9.
p: 1, 4.
pdel : 1, 6, 7, 9.
printf : 9.
q: 1.
r: 1, 4.
sscanf : 2.
stderr : 2, 8, 9.
t: 1, 4.
thresh : 9.
tmp : 6.
tpow : 1, 2, 8, 9.
tt : 1, 4, 7.
u: 1.
x: 1.
x1 : 5.
x2 : 5.
x3 : 5.
x4 : 5.
x5 : 5.
x6 : 5, 6.

8 NAMES OF THE SECTIONS WHIRLPOOL-COUNT

〈Generate the x’s and y’s 5 〉 Used in section 8.

〈Handle constraint (i, j) 8 〉 Used in section 1.

〈 If possible, find p and pdel so that c(xt−n, . . . , xt) is count [p+ pdel ∗ x[kk]] 7 〉 Used in section 6.

〈Print the grand total 9 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

〈Subroutines 4 〉 Used in section 1.

〈Visit a0 . . . an−1 and goto x6 6 〉 Used in section 5.

WHIRLPOOL-COUNT

Section Page
Intro . 1 1
Index . 10 7

	Intro
	Index
	Names of the sections
	Generate the x's and y's
	Handle constraint (i,j)
	If possible, find p and pdel so that c(x_t-n,,x_t) is count[p+pdel*x[kk]]
	Print the grand total
	Process the command line
	Subroutines
	Visit a_0a_n-1 and goto x6

