81 UNAVOIDABLE2 INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. A quickie to find a longest string that avoids the interesting set of “unavoidable” m-ary strings
of length n constructed by Mykkeltveit in 1972.

His construction can be viewed as finding the minimum number of arcs to remove from the de Bruijn
graph of (n — 1)-tuples so that the resulting graph has no oriented cycles. (Because each n-letter string
corresponds to an arc that must be avoided.)

This program constructs the graph and finds a longest path.

I hacked it from the previous program UNAVOIDABLE, which uses a different set of strings.

#define m 2 /* this many letters in the alphabet */

#define n 20 /* this many letters in each string, assumed greater than 2 */
#define space (1< (n—1)) J* mnL %/

#include <stdio.h>

#include <math.h>

char avoid[m * space]; /* nonzero if the arc is removed x/

int deg[space]; /* outdegree, also used as pointer to next level */

int link[space]; /* stack of vertices whose degree has dropped to zero */
int a[n + 1J; /* staging area x*/

double sine[n]; /* imaginary parts of the nth roots of unity */

int count; /* the number of vertices on the current level */

int code; /* an n-tuple represented in m-ary notation */

main ()

{
register int d, j,k,l,q;
register int top; /* top of the linked stack x/
double u = 2 % 3.1415926535897932385/(double) n;
register double s;
for (j =0; j <n; j++) sine[j] = sin(j * u);
{ Compute the avoid and deg tables 2);
for (d =0; count; d++) {
printf ("Vertices at distance_ %d: %d\n",d, count);
for (I = top,top = —1, count = 0; 1 > 0; | = link[l])
(Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5)
}

(Print out a longest path 6);

https://cs.stanford.edu/~knuth/programs.html

2 INTRO UNAVOIDABLE2 82

2. Algorithm 7.2.1.1F gives us the relevant prime powers here.

(Compute the avoid and deg tables 2) =

for (j =0; j < space; j++) deg[j] = m;

count = d = 0;

top = —1;

for (j =n; j; j—) alj] = 0;

a[()] =-1Lj=1

while (1) {
if (n% j =0) (Generate an n-tuple to avoid 3);
for (j=mn; aljl=m—-1; j—)
if (j =0) break;
alj]++;
for (k=j4+1; k<n; k++) alk] = alk — j];

}

printf ("m=Y%d, n=%d:,avoiding one arc,in each of %d disjoint,cycles\n",m,n,d);

This code is used in section 1.

3. At this point A =a;...qa; is a prime stringand a = a;...a, = X/ The crux of Mykkeltveit’s method
is to compute an exponential sum s(a) = Zajw(j — 1), where w = €*™/" and to avoid the “first” cyclic
shift of the a array for which the imaginary part of s(a) is positive. (If no such shift exists, an arbitrary shift
is chosen.)

(Generate an n-tuple to avoid 3) =
{
d++;
if (j<n) q=n;
else {
for (¢=1; ; ¢++) {
for 1=1,s=0.0; I <n; l++) s +=all] * sine[(l — 1 4+ n — q) % nl;
if (s <.0001) break;
}
for (¢++; ¢ <n+n; ¢++) {
for (1=1,s=0.0; I <n; I++) s+=a[l] xsine[{—14+n+n—q) %n];
if (s >.0001) break;

if (g>n) ¢g—=mn;
}
for (code =0,k =q+1; k <n; k++) code = m * code + alk];
for (k=1; k <gq; k++) code = m x code + a[k];
(Avoid the n-tuple encoded by code 4);

}

This code is used in section 2.

4. (Avoid the n-tuple encoded by code 4) =
avoid[code] = 1;
q = code/m;
deglq]—;
if (deglq] =0) deg[q] = —1, link[g] = top, top = q, count ++;

This code is used in section 3.

85 UNAVOIDABLE2 INTRO 3

5. (Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5) =
for (j=m—1;j=0; j—) {
k =1+ j* space;
if (—avoidlk]) {
q=k/m;
deglq]—;
if (deglq] =0) degq] =1, link[q] = top, top = q, count ++;

}

This code is used in section 1.

6. Here I apologize for using a dirty trick: The current value of k happens to be the most recent value of
l, a vertex with no predecessors.
(Print out a longest path 6) =
printf ("Path:");
for (code =k,j=1; j<n; j++) {
code = code x m,q = code [space;
printf ("L%d", q);
code —= q * space;

while (deg[k] > 0) {
printf ("L%hd", deg[k] % m);
k = degl[k];

}

This code is used in section 1.

4 INDEX UNAVOIDABLE2 87

7. Index.
a: 1.
avoid: 1, 4, 5.

code: 1, 3, 4, 6.
count: 1, 2, 4, 5.
d: 1.

deg: 1, 2, 4, 5, 6.
VE
k:
l:
link: 1, 4, 5.

= = =

sin: 1.

sine: 1, 3.
space: 1, 2, 5, 6.
top: 1, 2, 4, 5.
u: 1.

UNAVOIDABLE2 NAMES OF THE SECTIONS 5
Avoid the n-tuple encoded by code 4) Used in section 3.
Compute the avoid and deg tables 2) Used in section 1.

(

(

(Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5) Used in section 1.
(

(

Generate an n-tuple to avoid 3) Used in section 2.
Print out a longest path 6) Used in section 1.

UNAVOIDABLE2

Section Page

	Intro
	Index
	Names of the sections
	Avoid the n-tuple encoded by code
	Compute the avoid and deg tables
	Decrease the degree of l's predecessors, and stack them if their degree drops to zero
	Generate an n-tuple to avoid
	Print out a longest path

