§1

(See hitps:

1.

UNAVOIDABLE

cs.stanford.edu/ knuth/programs.htm] for date.)

Intro.

A quickie to find a longest string that avoids the interesting set of “unavoidable” m-ary strings

of length n constructed by Champarnaud, Hansel, and Perrin.

Their construction can be viewed as finding the minimum number of arcs to remove from the de Bruijn
graph of (n — 1)-tuples so that the resulting graph has no oriented cycles. (Because each n-letter string

corresponds to an arc that must be avoided.)
This program constructs the graph and finds a longest path.

#define m 2
#define n 20
#define space

/* this many letters in the alphabet */
/* this many letters in each string */

(1<« (n-1)) /* mnL %/

#include <stdio.h>

char avoid[m space]; /* nonzero if the arc is removed %/

int deg|[spacel; /+ outdegree, also used as pointer to next level */

int link[space]; /* stack of vertices whose degree has dropped to zero */
int a[n + 1]; /* staging area x*/

int count; /* the number of vertices on the current level */

int code; /* an n-tuple represented in m-ary notation x/

main ()

{
register int d,j, k[, q;
register int top; /x top of the linked stack x/
(Compute the avoid and deg tables 2);
for (d = 0; count; d++) {
printf ("Vertices at distance_ %d: %d\n",d, count);
for (I = top,top = —1, count = 0; 1 > 0; | = link[l])

(Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5)

}

(Print out a longest path 6);

Algorithm 7.2.1.1F gives us the relevant prime powers here.

(Compute the avoid and deg tables 2) =
for (j =0; j < space; j++) deg[j] = m;
count = d = 0;
top = —1;
for (j =mn; j; j—) alj] =0;
a[()] =-Lj=1
while (1) {
if (n% j =0) (Generate an n-tuple to avoid 3);
for (j =n; aljl=m—1; j—) ;
if (j =0) break;
alj]++;
for (k=j+1; k<n; k++) alk] = a[k — jl;

}

printf ("m=Y%d, n=%d:,avoiding one arc,in each of %d disjoint,cycles\n",m,n,d);

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO UNAVOIDABLE §3

3. At this point A = a1...qa; is a prime string and o = ay...a, = A\"/i_ The crux of the Champar-
naud/Hansel/Perrin method is to find the shortest prime p such that « has the form pln/ 14l 8 and to avoid
the string Spul™/I#l,

We have p = A and 8 = € if 7 < n. Otherwise we can use Duval’s algorithm to discover all the prime
prefixes of «, stopping when one of them has the desired form. (The resulting algorithm is quite pretty, if I
do say so myself.)

(Generate an n-tuple to avoid 3) =
{
d-++;
if (j<n)l=jq=mn
else
for (I=1,k=2;; k++) {
/* at this point a; ...a; is prime, and a; ...ag—1 is its (k — 1)-extension */
if (alk —1] <alk]) {
q = lx (int)(n/l);
if (k> q) break;
l=k;
if (k=n) break;
}

for (code =0,k =q+1; k <n; k++) code = m * code + alk];
for (k=1; k <gq; k++) code =m x code + alk];
(Avoid the n-tuple encoded by code 4);

}

This code is used in section 2.

4. (Avoid the n-tuple encoded by code 4) =
avoid[code] = 1;
q = code/m;
deglq]——;
if (deglq] =0) deg[q] = —1, link[g] = top, top = q, count ++;

This code is used in section 3.

5. (Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5) =
for (j=m—1;7>0; j—) {
k =1+ j* space;
if (mavoid[k]) {
q=k/m;
deglq]—;
if (deglq) =0) deg[q] =1, link[q] = top, top = q, count ++;
}
¥

This code is used in section 1.

86 ~ UNAVOIDABLE INTRO 3

6. Here I apologize for using a dirty trick: The current value of k happens to be the most recent value of
[, a vertex with no predecessors.
(Print out a longest path 6) =
printf ("Path:");
for (code =k,j=1; j<n; j++) {
code = code x m,q = code [space;
printf ("uhd", q);
code —= q * space;

while (deg[k] > 0) {
printf ("L %d", deg[k] % m);
k = deg[k];

}

This code is used in section 1.

4 INDEX UNAVOIDABLE 87

7. Index.
a: 1.
avoid: 1, 4, 5.

code: 1, 3, 4, 6.
count: 1, 2, 4, 5.
d: 1.

deg: 1, 2, 4, 5, 6.
VE
k:
l:
link: 1, 4, 5.

m: 1.

main: 1.

n: 1.

printf: 1, 2, 6.
q 1.

space: 1, 2, 5, 6.
top: 1, 2, 4, 5.

= = =

UNAVOIDABLE NAMES OF THE SECTIONS 5
Avoid the n-tuple encoded by code 4) Used in section 3.
Compute the avoid and deg tables 2) Used in section 1.

(

(

(Decrease the degree of I’s predecessors, and stack them if their degree drops to zero 5) Used in section 1.
(

(

Generate an n-tuple to avoid 3) Used in section 2.
Print out a longest path 6) Used in section 1.

UNAVOIDABLE

Section Page

	Intro
	Index
	Names of the sections
	Avoid the n-tuple encoded by code
	Compute the avoid and deg tables
	Decrease the degree of l's predecessors, and stack them if their degree drops to zero
	Generate an n-tuple to avoid
	Print out a longest path

