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1. Introduction. I’m trying to calculate a few billion Ulam numbers. This sequence

(U1, U2, . . . ) = (1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, . . . )

is defined by setting U1 = 1, U2 = 2, and thereafter letting Un+1 be the smallest number greater than Un

that can be written Uj + Uk for exactly one pair (j, k) with 1 ≤ j < k ≤ n. (Such a number must exist;
otherwise the pair (j, k) = (n− 1, n) would qualify and lead to a contradiction.)

The related sequence

(1, 2, 23, 25, 33, 35, 43, 45, 67, 92, 94, 96, 111, 121, 136, . . . )

of “Ulam misses” contains all numbers that cannot be expressed as the sum of two distinct Ulams.
This program is based on some beautiful ideas due to Philip E. Gibbs, whose Java code in 2015 was first

to beat the billion-number barrier. It runs much, much faster than the bitwise-oriented program ULAM that
I wrote ten years ago. And it has some interesting touches that taught me some lessons, which I’m keen to
pass on to others.

Ulam mentioned this sequence in SIAM Review 6 (1964), 348, as part of a more general discussion. Its
properties have baffled number theorists for many years; but new insights are beginning to change the picture:
Stefan Steinerberger discovered empirically that Un/λ mod 1 almost always lies in the interval

[
1
3 . .

2
3 ], where

λ ≈ 2.443443 [“A hidden signal in the Ulam sequence,” Report DCS/TR-1508 (Yale University, 2015)].
Then Gibbs [“An efficient method for computing Ulam numbers,” viXra:1508.0085 (2015)] exploited that
property in nontrivial ways, finding that roughly O(N) time and O(N) space suffice to compute the first N
terms. He subsequently discovered how to significantly decrease the coefficients of N in the time and space
requirements; and when I asked him how he did it, he kindly sent me a copy of his program.

Of course I couldn’t resist translating it from Java into CWEB, because that’s what I do for a living. So
this is the result.

2. This program has lots of tunable parameters, and it should prove to be interesting to see how they
affect the performance. Of course the main parameter is N , the desired number of outputs. Other options
are preceded on the command line by a letter; for example, ‘v5’ sets the verboseness parameter to 5.

Each parameter will be explained later, but it’s convenient to summarize the option letters here:

• ‘v〈 integer 〉’ to enable various binary-coded levels of verbose output on stderr (default=1).
• ‘p〈positive integer 〉’ to specify the numerator of a rational approximation to λ (default=120500181).
• ‘q〈positive integer 〉’ to specify the denominator of a rational approximation to λ (default=49315733).

The program assumes that p and q are less than 232, and that 2 < p/q ≤ 3.
• ‘m〈positive integer 〉’ to specify the spacing of outputs; every mth Ulam number will be written to standard

output. (The default is m = 1000000; m0 will report only UN .)
• ‘g〈positive integer 〉’ to specify the largest gap for which statistics are kept (default=2000).
• ‘o〈positive integer 〉’ to specify the space allocated for “outliers” and “near-outliers” (default=1000000).
• ‘i〈positive integer 〉’ to specify the size of the indexes to those lists (default=100000).
• ‘T〈positive real 〉’ to specify the threshold in the definition of ‘near outlier’ (default=100).
• ‘b〈positive integer 〉’ to specify the number of bits of the is um table that are stored in a single byte

(default=18). (That default is optimum: b19 turns out to be too high, if N > 2198412.)
• ‘B〈positive integer 〉’ to specify the number of initial is ulam entries that are encoded with one bit per

byte (default=18000). This value should be a multiple of the b option, and at least 3.
• ‘w〈positive integer 〉’ to specify the window size for remembering recently computed Ulam numbers (de-

fault=1000000). The window size must be at least 3.
• ‘M〈filename 〉’ to produce METAPOST illustrations showing the distributions of Ulam numbers and Ulam

misses, modulo λ.

https://cs.stanford.edu/~knuth/programs.html
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3. The vbose parameter is the sum of the following binary codes. To enable everything, you can say ‘v−1’.

#define show usage stats 1 /∗ reports time and space usage ∗/
#define show compression stats 2 /∗ reports details of is ulam encoding ∗/
#define show histograms 4 /∗ reports Ulams and misses mod λ ∗/
#define show gap stats 8 /∗ gives histogram and examples of every gap ∗/
#define show record gaps 16 /∗ reports every gap that exceeded all predecessors ∗/
#define show record outliers 32 /∗ reports outliers that exceeded earlier ones ∗/
#define show outlier details 64 /∗ reports insertion or deletion of all outliers ∗/
#define show record cutoffs 128 /∗ reports residue cutoffs for near outliers ∗/
#define show omitted inliers 256 /∗ reports inliers that aren’t near outliers ∗/
#define show brute winners 512 /∗ reports unusual cases after brute-force trials ∗/
#define show inlier anchors 1024 /∗ reports cases when two inliers make Ulam ∗/

4. Here then is an outline of the whole program:

#define o mems ++ /∗ count one mem (one access to or from 64 bits of memory) ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

typedef unsigned char uchar; /∗ a convenient abbreviation ∗/
typedef unsigned int uint; /∗ ditto ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 9 〉
〈Global variables 6 〉
〈Subroutines 10 〉
main (int argc , char ∗argv [ ])
{

register int i, j, k, r, rp , t, x, y, hits , count ;
register ullng n, u, up ;

〈Process the command line 5 〉;
〈Allocate the arrays 16 〉;
〈 Initialize the data structures 17 〉;
for (u = 3; n < maxn ; u++) 〈Decide whether u is an Ulam number or an Ulam miss or neither, and

update the data structures accordingly 32 〉;
if (mp file ) 〈Output the METAPOST file 56 〉;

finish up : 〈Print farewell messages 51 〉;
}
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5. If a command-line parameter is specified twice, the first one wins.

〈Process the command line 5 〉 ≡
if (argc ≡ 1) k = 1;
else {
k = sscanf (argv [argc − 1], ""O"lld",&maxn )− 1; /∗ read N ∗/
for (j = argc − 2; j; j−−)

switch (argv [j][0]) {
〈Respond to a command-line option, setting k nonzero on error 7 〉;

default: k = 1; /∗ unrecognized command-line option ∗/
}

}
〈 If there’s a problem, print a message about Usage: and exit 8 〉;

This code is used in section 4.

6. 〈Global variables 6 〉 ≡
ullng maxn ; /∗ desired number of Ulams to compute ∗/
int vbose = show usage stats ; /∗ level of verbosity ∗/
uint lamp = 120500181; /∗ numerator of λ ∗/
uint lamq = 49315733; /∗ denominator of λ ∗/
ullng spacing ; /∗ spacing between outputs; 0 means give only the last ∗/
ullng misses ; /∗ we’ve seen these many Ulam misses ∗/
int biggestgap = 1; /∗ the largest gap seen so far ∗/
int maxgap = 2000; /∗ the largest gap for which we keep histogram data ∗/
int outliers = 1000000; /∗ maximum number of outliers and near-outliers to remember ∗/
int isize = 100000; /∗ total size of the two indexes (is always even) ∗/
double thresh = 100; /∗ threshold for remembering a near-outlier ∗/
ullng mems , last mems ; /∗ mem count ∗/
clock t last clock ; /∗ the last time we called clock ( ) ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
int bits per compressed byte = 18; /∗ packing parameter ∗/
int uncompressed bytes = 18000; /∗ this many initial is ulam bits not packed ∗/
ullng window size = 1000000; /∗ we remember this many previous Ulams ∗/
FILE ∗mp file ; /∗ file for optional output of METAPOST code ∗/
char ∗mp name ; /∗ its name ∗/

See also sections 15, 25, 35, 45, and 57.

This code is used in section 4.
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7. 〈Respond to a command-line option, setting k nonzero on error 7 〉 ≡
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose )− 1); break;
case ’p’: k |= (sscanf (argv [j] + 1, ""O"u",&lamp)− 1); break;
case ’q’: k |= (sscanf (argv [j] + 1, ""O"u",&lamq )− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"lld",&spacing )− 1); break;
case ’g’: k |= (sscanf (argv [j] + 1, ""O"d",&maxgap)− 1); break;
case ’o’: k |= (sscanf (argv [j] + 1, ""O"d",&outliers )− 1); break;
case ’i’: k |= (sscanf (argv [j] + 1, ""O"d",&isize )− 1);

isize = (isize + 1) &−2; break; /∗ round isize up to nearest even number ∗/
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lg",&thresh )− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, ""O"d",&bits per compressed byte )− 1); break;
case ’B’: k |= (sscanf (argv [j] + 1, ""O"d",&uncompressed bytes )− 1); break;
case ’w’: k |= (sscanf (argv [j] + 1, ""O"lld",&window size )− 1); break;
case ’M’: mp name = argv [j] + 1,mp file = fopen (mp name , "w");

if (¬mp file ) fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n",mp name );
break;

This code is used in section 5.

8. 〈 If there’s a problem, print a message about Usage: and exit 8 〉 ≡
if (k ∨ uncompressed bytes < 3 ∨ uncompressed bytes mod bits per compressed byte ∨

(lamp − 1)/lamq 6= 2 ∨ window size < 3) {
fprintf (stderr , "Usage: "O"s [v<n>] [p<n>] [q<n>] [m<n>] [g<n>] [o<n>] [i<n>]", argv [0]);
fprintf (stderr , " [T<f>] [b<n>] [B<n>] [w<n>] [Mfoo.mp] N\n");
exit (−1);
}

This code is used in section 5.

9. Statistics about important loop counts are kept in stat structures.

〈Type definitions 9 〉 ≡
typedef struct {

ullng n; /∗ the number of samples ∗/
float mean ; /∗ the empirical mean ∗/
int max ; /∗ the empirical maximum ∗/
ullng ex ; /∗ the extreme example that led to max ∗/
} stat;

See also section 24.

This code is used in section 4.

10. 〈Subroutines 10 〉 ≡
void record stat (stat ∗s, int datum ,ullng u) {

if (s~n ≡ 0) s~n = 1, s~mean = (float) datum , s~max = datum , s~ex = u;
else {
s~n++;
s~mean += ((float) datum − s~mean )/((float) s~n);
if (datum > s~max ) s~max = datum , s~ex = u;

}
}

See also sections 18, 28, 29, and 30.

This code is used in section 4.
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11. The ideas behind the algorithm. Gibbs’s method is based on the amazing fact that almost all
of the values (Un/λ) mod 1 lie between 1/3 and 2/3. Indeed, here’s one of the pictures produced by the
METAPOST option of this program, showing the distribution of those residues for 1 ≤ n ≤ N = 1000000:

The colors range from green for small n to red for n near N , so we can see the way things “settle down” to
a fairly stable distribution as n grows.

Let U be an integer, and let ρ = (U/λ) mod 1 be its associated residue. We might as well assume that
the quasi-period length λ is irrational, since “God wouldn’t have wanted a rational number that occurs in
problems like this to have a really big denominator.” Under that assumption, ρ is never a rational number,
and ρ 6= ρ′ when U 6= U ′. (Of course, we will actually do our calculations using a rational approximation
to λ; hence we’ll run into many cases where ρ = ρ′.)

Steinerberger found empirically in 2015 that ρn lies between 1/4 and 3/4 for all known values of Un, except
for four cases: U2 = 2, ρ2 ≈ .82; U3 = 3, ρ2 ≈ .23; U15 = 47, ρ15 ≈ .23; U20 = 69, ρ20 ≈ .24. The reasons for
this are unclear, but the facts speak for themselves.

Gibbs went further and defined U to be an ‘outlier’ if ρ < 1/3 or ρ > 2/3. He observed that there must
be infinitely many outliers, because the sum of two ‘inliers’ cannot be an ‘inlier’. But he conjectured that,
for any ε > 0, there are only finitely many n with ρn < 1/3 − ε or ρn > 2/3 + ε. And he observed that in
the vast majority of known cases, the unique representation Un = Ui + Uj has the property that either Ui

or Uj is an outlier.
Let’s pursue this further. If U = U ′ +U ′′, then we have either ρ = ρ′ + ρ′′ or ρ = ρ′ + ρ′′ − 1. The second

case can be written ρ̄ = ρ̄′ + ρ̄′′, where ρ̄ = 1− ρ.
If ρ < 1/4 or ρ > 3/4, it turns out that we can almost always find two completely different representations

of U as a sum of two Ulam numbers, using a short brute-force search.
On the other hand, if 1/4 < ρ < 3/4, we can usually decide whether U is a sum of Ulam numbers U ′+U ′′

by looking at relatively few cases where ρ = ρ′+ρ′′ and ρ′ < ρ′′ or ρ̄ = ρ̄′+ ρ̄′′ and ρ̄′ < ρ̄′′. Gibbs discovered
empirically that it suffices to try cases where U ′ is either an outlier or a ‘near outlier’, where the latter is
defined by the condition

ρ′ < 1/2 and (ρ′ − 1/3)
√
U ′ ≤ θ or ρ̄′ < 1/2 and (ρ̄′ − 1/3)

√
U ′ ≤ θ

and θ is the thresh parameter thresh in our program. If U ′ is large and ρ′ > 1/3, we won’t need to consider
U ′ unless ρ′ is extremely close to 1/3.

Consequently we needn’t remember detailed information about too many of the Ulam numbers already
computed. The brute-force search requires only a reasonably small window; the other searches require only
a dictionary of outliers and near-outliers U ′, sorted by ρ′.
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12. Besides those relatively short tables, we also need a way to determine whether or not a given number
u ≤ UN is an Ulam number. It’s known empirically that UN ≈ 13.5178N , with minor fluctuations; thus we
can safely assume that UN < 14N , and a table of 14N bits will suffice.

Still, 14N bits is 1.75N bytes, which can be substantial when N is many billions. Gibbs was working with
just 16 gigabytes of memory, and necessity was the mother of invention: He devised a way to reduce this
storage requirement to only .778N bytes, by packing 18 bits into a single byte. This reduction turned out
to be possible, and even convenient, because the bit patterns have somewhat low entropy. In fact, at most
256 different patterns actually occur in the is ulam table for 18 consecutive values of n, provided that n is
large enough to make the quasi-periodic system relatively stable.

13. Gibbs’s early program used floating-point arithmetic to compute the residues ρ. But that led to tricky
cases and subtle problems. Then he realized that rational approximations to λ are able to avoid rounding
errors, and his program became simpler besides.

He found a good approximation to λ empirically, by adjusting it until the number of “low” outliers with
ρ < 1/3 was essentially equal to the number of “high” outliers with ρ > 2/3. This value was

λ ≈ 2.443442967784743,

with the next digits as yet undetermined. Consequently the regular continued fraction is

λ = 2 + //2, 3, 1, 11, 1, 1, 4, 1, 1, 7, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, . . . //,

using the notation of Seminumerical Algorithms, §4.5.3. Truncating this continued fraction gives good
rational approximations to λ; in fact they’re the “best possible” such approximations, according to the
theorem of Lagrange in exercise 4.5.3–42:

2;
5

2
;

17

7
;

22

9
;

259

106
;

281

115
;

540

221
;

2441

999
; . . . ;

35876494

14682763
;

84623687

34632970
or

120500181

49315733
.

The latter two seem to bracket the true value of λ. The final one is the current default, but the other one
will probably give equally good results.

When we use the approximation λ = p/q, the formula ρ = U/λ mod 1 becomes transformed:

r = qU mod p.

The residue is now an integer called r, and it lies between 0 and p− 1, instead of being a fraction ρ between
0 and 1. (Program variables lamp and lamq correspond to p and q.)

14. These ideas may be easiest to absorb if we work first with small numbers. Suppose p = 22 and q = 9;
this gives a fairly decent approximation 2.4444 . . . to λ. The first 100 values of rn = 9Un mod 22 turn out
to be nicely concentrated:

{5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12,

12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 18}.

Using the better approximation λ ≈ 540/221 = 2.44344 . . . , rn = 221Un mod 540 gives more detail:

{123, 127, 129, 148, 166, 173, 176, 177, 182, 185, 185, 189, 198, 202, 202, 204, 206, 206, 208, 209,

210, 211, 217, 218, 220, 221, 222, 225, 227, 230, 233, 234, 235, 237, 241, 242, 243, 244, 246, 246,

248248, 249, 252, 252, 258, 261, 262, 265, 271, 277, 278, 279, 282, 289, 293, 296, 298, 299, 301,

302, 303, 306, 308, 308, 309, 311, 316, 318, 324, 325, 327, 327, 330, 331, 332, 334, 335, 336, 337,

339, 341, 342, 344, 344, 346, 346, 348, 354, 360, 363, 373, 376, 377, 380, 393, 396, 399, 402, 442}.

The outliers for λ = 540/221 have r < 180 or r ≥ 360. Note that U100 = 690.
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15. The compression scheme. Let’s build up some confidence by beginning to write low-level routines
for the is ulam table. That table consists of two parts: For 0 ≤ n < uncompressed bytes , we simply have
is ulam [n] = 1 when n is an Ulam number, is ulam [n] = 0 when it isn’t. But for n ≥ uncompressed bytes , a
compressed table called is um contains the necessary information in a lightly encoded form.

Namely, let b = bits per compressed byte be the b option on the command line (normally 18). Then
is um [n/b] will be a byte t such that is ulam [n] appears as bit n mod b of code [t]. This convention applies
for uncompressed bytes ≤ n < cur slot , where cur slot is b×bu/bc and u is the number that we’re currently
examining. Finally, the is ulam bits for b numbers beginning at cur slot are maintained as the b-bit number
cur code .

Of course we must give up if more than 256 different codewords are needed. Auxiliary tables are maintained
to provide further information: code use [t] records the number of times we’ve used code [t]; code example [t]
records the smallest cur slot that needed code [t]. Such information is maintained behind the scenes, although
I could have omitted code use and code example if I were going all out for speed. Their values are always
calculated, but reported only if show compression stats is selected.

The is um table accounts for most of the memory required by this program. It occupies d14maxn/be
bytes, because 14maxn is an upper bound on the numbers u that we need to consider. (Notice that the first
uncompressed bytes/b of is um are never used. That’s a small price to pay for ease of programming.)

〈Global variables 6 〉 +≡
uchar ∗is ulam , ∗is um ; /∗ the main arrays for ulamness tests ∗/
ullng cur sl ; /∗ this many bytes of is um have been set correctly ∗/
ullng cur slot ; /∗ bits per compressed byte ∗ cur sl ∗/
uint cur code = 0; /∗ the next bits per compressed byte bits to be compressed ∗/
uint code [256]; /∗ the expanded “meaning” of each compressed byte ∗/
uchar ∗inv code ; /∗ inverse of the code table ∗/
int code ptr = 1; /∗ this many codes have been defined so far ∗/
ullng code use [256], code example [256]; /∗ the code stats ∗/
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16. Full disclosure: The number of memory bytes used, kept in bytes , accounts only for necessary tables
like is ulam , is um , and code . It doesn’t mention the memory that is devoted to diagnostic data, in arrays
such as code use or code example . Any memory allocated to the program itself, and to its atomic global
variables, is also blithely ignored.

I also ignore the cost of system calls to malloc and calloc ; the memory accesses that they make, while this
program is launching itself, are not reported in mems .

#define alloc quit (name , size )
{

fprintf (stderr , "Couldn’t allocate the "O"s array (size "O"lld)!\n",
name , (long long) size );

exit (−666);
}

〈Allocate the arrays 16 〉 ≡
is ulam = (uchar ∗) malloc(uncompressed bytes ∗ sizeof (uchar));
if (¬is ulam ) alloc quit ("is_ulam", uncompressed bytes );
bytes += uncompressed bytes ∗ sizeof (uchar);
u = (14 ∗maxn − 1)/bits per compressed byte + 1;
is um = (uchar ∗) malloc(u ∗ sizeof (uchar));
if (¬is um ) alloc quit ("is_um", u);
bytes += u ∗ sizeof (uchar);
inv code = (uchar ∗) calloc(1� bits per compressed byte , sizeof (uchar));
if (¬inv code ) alloc quit ("inv_code", 1� bits per compressed byte );
bytes += (1� bits per compressed byte ) ∗ sizeof (uchar);
bytes += 256 ∗ sizeof (uint); /∗ for the preallocated code table ∗/

See also sections 22, 26, and 46.

This code is used in section 4.

17. By definition, we know that U1 = 1 and U2 = 2. This gets us started.

〈 Initialize the data structures 17 〉 ≡
ooo , is ulam [0] = 0, is ulam [1] = is ulam [2] = 1;
cur slot = uncompressed bytes , cur sl = cur slot/bits per compressed byte ;

See also sections 27, 31, 36, and 47.

This code is used in section 4.

18. Here in detail is how we test the ulamness of a given x. (We assume implicitly that x is less than the
current number u, and that u is at most cur slot + bits per compressed byte .)

〈Subroutines 10 〉 +≡
int ulamq (ullng x) { /∗ returns nonzero if x is an Ulam number ∗/

register int c, r, t;
register ullng q;

if (x ≥ cur slot ) return (cur code & (1� (x− cur slot )));
if (x < uncompressed bytes ) return is ulam [x];
q = x/bits per compressed byte , r = x mod bits per compressed byte ;
o, c = is um [q];
o, t = code [c];
return t& (1� r);
}
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19. When we’ve decided the ulamness of u, we enter it into the tables in the following way.

〈Record ulamness in the is ulam or is um table 19 〉 ≡
if (u < cur slot ) o, is ulam [u] = ulamness ;
else if (u ≡ cur slot + bits per compressed byte ) 〈Store cur code and get ready for another 20 〉
else if (ulamness ) cur code += 1� u− cur slot ;

This code is used in section 32.

20. We always have code [0] = 0.

〈Store cur code and get ready for another 20 〉 ≡
{
o, t = inv code [cur code ];
if (¬t) {

if (cur code ) 〈Define a new code t 21 〉
else if (¬code example [0]) code example [0] = cur slot ;

}
o, is um [cur sl ] = t;
code use [t]++; /∗ no mem charged for diagnostic stats ∗/
cur sl ++, cur slot += bits per compressed byte ;
cur code = ulamness ;
}

This code is used in section 19.

21. 〈Define a new code t 21 〉 ≡
{

if (code ptr ≡ 256) {
fprintf (stderr , "Oops, we need more than 256 codes! You must decrease b.\n");
goto finish up ;

}
o, t = inv code [cur code ] = code ptr ;
code example [code ptr ] = cur slot ; /∗ no mem charged ∗/
o, code [code ptr ++] = cur code ;
}

This code is used in section 20.
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22. Remembering key Ulam numbers. Continuing at the low level, let’s implement the other data
structures that record important facts about the Ulam numbers we’ve seen.

First there’s the window table, which is easy: It is simply a cyclic buffer for the most recent window size
Ulam numbers discovered.

〈Allocate the arrays 16 〉 +≡
window = (ullng ∗) malloc(window size ∗ sizeof (ullng));
if (¬window ) alloc quit ("window",window size );
bytes += window size ∗ sizeof (ullng);

23. We’ll maintain the value nw = n mod window size .

〈Place u into the window 23 〉 ≡
o,window [nw ] = u;

This code is used in section 37.

24. The other structures, which remember the outliers and near-outliers that have been discovered so far,
are more interesting. We need to process those numbers in order of their residues.

Gibbs introduced a special data structure for them, using an index into a doubly linked list. A similar
but simpler structure is implemented here, with two indexes into two singly linked lists.

The number of outliers and near-outliers is, fortunately, small enough that we needn’t be too fussy about
saving memory space when we store them. Each node of a search list has three fields: Two for the number
itself and its residue; one for a link to the successor node.

〈Type definitions 9 〉 +≡
typedef struct {

ullng u; /∗ an Ulam number ∗/
int r; /∗ its residue ∗/
int next ; /∗ pointer to the next node in order of r ∗/
} node;

25. There are two search lists: One for the outliers and near-outliers with small residues, and one for the
outliers and near-outliers with large residues. In the latter we store the complementary residue r̄ = p − r
instead of r itself as the search key, because we’ll be traversing each list in order of increasing keys.

Nodes with the same r key are ordered by their u values.
All nodes of these lists appear in the nmem array, with their list heads lo out and hi out in positions 0

and 1.

#define bar (r) (lamp − (r))
#define lo out 0
#define hi out 1

〈Global variables 6 〉 +≡
ullng ∗window ; /∗ a cyclic buffer that remembers recent Ulam numbers ∗/
int nw ; /∗ n mod window size ∗/
node ∗nmem ; /∗ the nodes of binary search trees ∗/
int node ptr = 2; /∗ this many nodes are in use ∗/
uint ∗inx [2]; /∗ indexes to the lists ∗/
uint avail ; /∗ head of the stack of available nodes ∗/
stat ins stats [4]; /∗ statistics for insertion into the four trees ∗/
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26. 〈Allocate the arrays 16 〉 +≡
nmem = (node ∗) malloc((2 + outliers ) ∗ sizeof (node));
if (¬nmem ) alloc quit ("nmem", outliers );
bytes += (2 + outliers ) ∗ sizeof (node);
inx [0] = (uint ∗) malloc((isize/2 + 1) ∗ sizeof (uint));
if (¬inx [0]) alloc quit ("inx[0]", outliers );
inx [1] = (uint ∗) malloc((isize/2 + 1) ∗ sizeof (uint));
if (¬inx [1]) alloc quit ("inx[1]", outliers );
bytes += (isize + 2) ∗ sizeof (uint);

27. Lists are terminated either by the null link 0 or by the danger link 1 (which will be discussed below).
Initially the lists are empty, and all index entries point to the list head, whose r field is 0.

#define null 0 /∗ end of list ∗/
#define danger 1 /∗ end of list that has been cut off ∗/
〈 Initialize the data structures 17 〉 +≡

oo ,nmem [lo out ].next = null ,nmem [lo out ].r = 0;
oo ,nmem [hi out ].next = null ,nmem [hi out ].r = 0;
for (i = 0; i ≤ isize/2; i++) oo , inx [0][i] = lo out , inx [1][i] = hi out ;
avail = 0;

28. Here’s now we insert new nodes into such a list. The key invariant is that, if key r causes us to start
at index entry j, then every index j′ > j will be examined only for keys that are strictly greater than r.
Therefore it is legal for them to point to the newly inserted node.

This subroutine is called only when u is larger than any of the u fields already in the list.

#define insert (head , u, r)
if (¬ins (head , u, r)) {

fprintf (stderr , "Oh oh, there’s outlier overflow (size="O"d)!\n", outliers );
goto finish up ;
}

〈Subroutines 10 〉 +≡
int ins (int head ,ullng u, register int r) {

register int j, x, y, z, count ;

if (avail ) o, z = avail , avail = nmem [avail ].next ; /∗ reuse a recycled node ∗/
else if (node ptr < 2 + outliers ) z = node ptr ++;
else return 0; /∗ there’s no more room ∗/
oo ,nmem [z].u = u,nmem [z].r = r;
if (vbose & show outlier details )

fprintf (stderr , " (remembering "O"soutlier "O"lld, "O"s="O"d)\n",
r > lamp/3 ? "near−" : "", u, head ≡ hi out ? "rbar" : "r", r);

j = ((ullng) r ∗ isize )/lamp ;
o, x = inx [head ][j];
for (o, y = nmem [x].next , count = 1; y > danger ∧ (o,nmem [y].r ≤ r); o, x = y, y = nmem [x].next )

count ++;
oo ,nmem [x].next = z,nmem [z].next = y;
for (j++; j ≤ isize/2; j++, count ++) {

if (oo ,nmem [inx [head ][j]].r > r) break;
o, inx [head ][j] = z;

}
record stat (&ins stats [head ], count , u);
return 1;
}
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29. We will also sometimes discard a near-outlier, if it becomes more “in” than a discarded inlier. This is
where danger creeps in to the data.

Again, this subroutine is called only when u is larger than any of the u fields already in the list.
We will never insert items with residue ≥ r again, so there’s no need to update the index.

〈Subroutines 10 〉 +≡
void delete (int head ,ullng u, register int r) {

register int j, x, y, count ;
ullng uu ;

j = ((ullng) r ∗ isize )/lamp ;
o, x = inx [head ][j];
for (o, y = nmem [x].next , count = 1; y > danger ∧ (o,nmem [y].r ≤ r); o, x = y, y = nmem [x].next )

count ++;
o,nmem [x].next = danger ; /∗ cut off all further elements ∗/
if (y > danger ) {

for (x = y; o,nmem [y].next > danger ; count ++) {
if (vbose & show outlier details ) {
r = nmem [y].r, uu = nmem [y].u; /∗ no mem charged for diagnostics ∗/
fprintf (stderr , " (forgetting "O"soutlier "O"lld, "O"s="O"d)\n",

r > lamp/3 ? "near−" : "", uu , head ≡ hi out ? "rbar" : "r", r);
}
y = nmem [y].next ;

}
o,nmem [y].next = avail , avail = x;

}
record stat (&ins stats [head ], count , u);
}
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30. That index and link mechanism is somewhat tricky, so I’d better have a subroutine to check that it
isn’t messed up.

#define flag #80000000 /∗ flag temporarily placed into the next fields ∗/
#define panic(m)

{
fprintf (stderr , "Oops, "O"s! (h="O"d, r="O"d, j="O"d, x="O"d)\n",m, h, r, j, x);
return;
}

〈Subroutines 10 〉 +≡
void sanity (void)
{

register int h, j, nextj , x, y, r, lastr ;
ullng u, lastu ;

for (h = lo out ; h ≤ hi out ; h++) {
lastr = 0, lastu = 0, j = 1;
for (x = h; ; x = y) {
r = nmem [x].r, u = nmem [x].u, y = nmem [x].next ;
if (r < lastr ∨ (r ≡ lastr ∧ u < lastu )) panic("Out of order");
nextj = ((ullng) r ∗ isize )/lamp ;
for ( ; j ≤ nextj ; j++)

if (¬(nmem [inx [h][j]].next & flag )) panic("Index bad");
nmem [x].next = y + flag ;
if (y ≤ danger ) break;
lastr = r, lastu = u;

}
for (x = h; ; x = y) {
y = nmem [x].next − flag ;
nmem [x].next = y;
if (y ≤ danger ) break;

}
}
}

31. Our assumption that b(p − 1)/qc = 2 ensures that U1 = 1 is a low near-outlier and that U2 = 2 is a
high outlier.

Fine point: Since 1 and 2 cannot be expressed as a sum of distinct Ulam numbers, they are Ulam misses
as well as Ulam numbers.

〈 Initialize the data structures 17 〉 +≡
oo ,window [1] = 1,window [2] = 2;
n = nw = misses = 2;
insert (lo out , 1, lamq );
insert (hi out , 2, bar (2 ∗ lamq ));
if (spacing ≡ 1) printf ("U1=1\n");
if (spacing ≡ 1 ∨ spacing ≡ 2) printf ("U2=2\n");
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32. The brute-force tests. Now we’re ready to attack the main problem, which is to decide if the
current number u is an Ulam number, an Ulam miss, or neither. Gibbs’s strategy, as stated above, is
to do this in two different ways, depending on u’s residue r. Half of the time, when r ≤ lamp/4 or
lamp − r ≤ lamp/4, a brute-force search using the previously windowed results will suffice.

〈Decide whether u is an Ulam number or an Ulam miss or neither, and update the data structures
accordingly 32 〉 ≡

{
〈Compute u’s residue, r 33 〉;
hits = 0; /∗ this is the number of solutions we’ve found to u = u′ + u′′ ∗/
if (r ≤ lamp � 2 ∨ bar (r) ≤ lamp � 2) 〈Decide the question via brute force 34 〉
else 〈Decide the question via outlier testing 48 〉;

ulam miss : misses ++;
miss bin [n/alpha ][r/beta ]++;

not ulam : ulamness = 0;
goto finish ;

ulam yes : yes bin [n/alpha ][r/beta ]++;
〈Record u as the next Ulam number 37 〉;
ulamness = 1;

finish : 〈Record ulamness in the is ulam or is um table 19 〉;
}

This code is used in section 4.

33. The residue must be computed in two steps, because lamq ∗u will exceed 64 bits when u is sufficiently
large.

〈Compute u’s residue, r 33 〉 ≡
r = u mod lamp ;
r = (lamq ∗ (ullng) r) mod lamp ;

This code is used in section 32.



§34 ULAM-GIBBS THE BRUTE-FORCE TESTS 15

34. The brute-force search uses the simple idea that we can have u = u′+u′′ with u′ > u′′ only if u′ > u/2.
So we look at the previously computed numbers u′ = Un, Un−1, . . . , until we’ve either found two cases with
u− u′ an Ulam number, or u′ is too small, or we run out of suitable numbers in the window.

〈Decide the question via brute force 34 〉 ≡
{
x = nw ;
for (o, up = window [x], count = 1; up > (u� 1); o, up = window [x]) {

if (ulamq (u− up)) { /∗ we found a new solution to u = u′ + u′′ ∗/
if (hits ) { /∗ u not uniquely represented ∗/

record stat (&window stats , count , u);
goto not ulam ;
}
hits = 1;

}
if (++count > window size ) {

fprintf (stderr , "Oh oh, there’s window overflow (size="O"lld)!\n",window size );
goto finish up ;

}
if (x) x−−; else x = window size − 1;

}
record stat (&window stats , count , u);
if (vbose & show brute winners ) fprintf (stderr ,

" (in brute−force phase, "O"lld is an Ulam "O"s)\n", u, hits ? "number" : "miss");
if (hits ) goto ulam yes ;
}

This code is used in section 32.

35. Histograms for the Ulam numbers and Ulam misses are kept in the arrays yes bin and miss bin , which
are of size 16 × 128. (The first index determines the color in the METAPOST illustrations; the second
determines the percentage point in the range of r.)

#define bincolors 16
#define binsize 128

〈Global variables 6 〉 +≡
stat window stats ; /∗ a record of window loop times ∗/
ullng yes bin [bincolors ][binsize ], miss bin [bincolors ][binsize ];
ullng alpha ; /∗ scale factor for the first index ∗/
int beta ; /∗ scale factor the second index ∗/

36. 〈 Initialize the data structures 17 〉 +≡
alpha = ((maxn − 1)/bincolors ) + 1, beta = ((lamp − 1)/binsize ) + 1;
yes bin [0/alpha ][lamq/beta ] = 1,miss bin [0/alpha ][lamq/beta ] = 1;
yes bin [1/alpha ][(2 ∗ lamq )/beta ] = 1,miss bin [1/alpha ][(2 ∗ lamq )/beta ] = 1;
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37. Absorbing a new Ulam number. When we’ve discovered that Un+1 = u, we celebrate in various
ways.

First we increase n and put u into the window.

〈Record u as the next Ulam number 37 〉 ≡
n++,nw ++;
if (nw ≡ window size ) nw = 0;
〈Place u into the window 23 〉;

See also sections 38, 43, and 44.

This code is used in section 32.

38. Next we must decide whether u is an outlier or nearly so.

〈Record u as the next Ulam number 37 〉 +≡
if (r ≤ lamp/3) 〈Record u as a low outlier 39 〉
else if (r ≤ lamp/2) 〈 If u is a low near-outlier, record it 41 〉
else if (bar (r) ≤ lamp/3) 〈Record u as a high outlier 40 〉
else 〈 If u is a high near-outlier, record it 42 〉;

39. 〈Record u as a low outlier 39 〉 ≡
{

if (r ≤ lowest outlier ) {
lowest outlier = r;
if (vbose & show record outliers )

fprintf (stderr , " (record low outlier r="O"d, u="O"lld)\n", r, u);
}
insert (lo out , u, r);
}

This code is used in section 38.

40. 〈Record u as a high outlier 40 〉 ≡
{

if (r ≥ highest outlier ) {
highest outlier = r;
if (vbose & show record outliers )

fprintf (stderr , " (record high outlier r="O"d, u="O"lld\n", r, u);
}
insert (hi out , u, bar (r));
}

This code is used in section 38.
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41. Gibbs’s heuristic “inness” score, (ρ− 1
3 )
√
u when ρ ≤ 1

2 , must be T or less if u is to be remembered as
a low near-outlier. We know that r ≥ (p+ 1)/3 at this point; hence T/(ρ− 1/3) = 3Tp/(3r − p) ≤ 3Tp.

When we do not store u, we must ensure that a mistake hasn’t been made. So we will flag an error if any
future search for a near-outlying “anchor point” would have encountered a number whose residue is greater
than r, or equal to r with an associated value greater than u. (Because in such a case, the algorithm should
have really encountered the number we’re dropping.)

Think about this carefully, because it’s the most subtle point of the program!
We prevent such errors by cutting off the search lists, and recognizing danger when we encounter it. We

also retain lo r bound , remembering where cutoffs have previously occurred.

〈 If u is a low near-outlier, record it 41 〉 ≡
{

register double g = lampthresh/((ullng)(3 ∗ r − lamp));

if (u ≥ g ∗ g) { /∗ not near, so we’ll drop it ∗/
if (vbose & show omitted inliers )

fprintf (stderr , " (omitting r="O"d, u="O"lld, g="O"g)\n", r, u, g ∗ g/u);
if (r < lo r bound ) {

lo r bound = r;
if (vbose & show record cutoffs )

fprintf (stderr , " (record low cutoff r="O"d, u="O"lld, g="O"g)\n", r, u, g ∗ g/u);
delete (lo out , u, r);

}
} else if (r < lo r bound ) insert (lo out , u, r);
}

This code is used in section 38.

42. 〈 If u is a high near-outlier, record it 42 〉 ≡
{

register double g = lampthresh/((ullng)(3 ∗ bar (r)− lamp));

if (u ≥ g ∗ g) { /∗ not near, so we’ll drop it ∗/
if (vbose & show omitted inliers )

fprintf (stderr , " (omitting rbar="O"d, u="O"lld, g="O"g)\n", bar (r), u, g ∗ g/u);
if (bar (r) < hi r bound ) {

hi r bound = bar (r);
if (vbose & show record cutoffs ) fprintf (stderr ,

" (record high cutoff rbar="O"d, u="O"lld, g="O"g)\n", bar (r), u, g ∗ g/u);
delete (hi out , u, bar (r));

}
} else if (bar (r) < hi r bound ) insert (hi out , u, bar (r));
}

This code is used in section 38.
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43. Next we look at the gap between u and the previous Ulam number, prevu .

〈Record u as the next Ulam number 37 〉 +≡
j = u− prevu ;
if (j > maxgap) gapcount [maxgap + 1]++;
else gapcount [j]++;
if (j ≥ biggestgap) {

biggestgap = j;
if (vbose & show record gaps )

fprintf (stderr , " (gap "O"d = U"O"lld−U"O"lld, U"O"lld="O"lld)\n", j, n, n−1, n−1, prevu );
}
prevu = u;

44. Finally, we report u itself, if n is a multiple of spacing . Other statistics are also printed to stderr , if
requested.

〈Record u as the next Ulam number 37 〉 +≡
if (spacing ∧ (n mod spacing ≡ 0)) {

register clock t t = clock ( );

printf ("U"O"lld="O"lld\n", n, u);
if (vbose & show usage stats ) fprintf (stderr , " ("O"lld misses, "O"lld mems, "O".2f sec)\n",

misses − prevmisses ,mems − prevmems , (double)(t− prevclock )/(double) CLOCKS_PER_SEC);
prevmisses = misses , prevmems = mems , prevclock = t;
}

45. We’d better declare the variables that we’ve been using.

〈Global variables 6 〉 +≡
double lampthresh ; /∗ lamp ∗ thresh ∗/
int lowest outlier , highest outlier ; /∗ extreme outliers ∗/
ullng prevu ; /∗ the Ulam number most recently found ∗/
ullng ∗gapcount ; /∗ how often each gap has occurred ∗/
int rbound , rbarbound ; /∗ search limits on the residue ∗/
ullng ubound ; /∗ search limits on the value, when residue is max ∗/
int anchorx ; /∗ the node corresponding to the unique u′ with u = u′ + u′′ ∗/
int lo r bound , hi r bound ; /∗ residues at which we’ve cut data off ∗/
ullng prevmisses ; /∗ the number of misses most recently reported ∗/
ullng prevmems ; /∗ the number of mems most recently reported ∗/
clock t prevclock ; /∗ the number of microseconds most recently reported ∗/
stat lo out stats , hi out stats ;
int ulamness ; /∗ is u an Ulam number? ∗/

46. 〈Allocate the arrays 16 〉 +≡
gapcount = (ullng ∗) malloc((maxgap + 2) ∗ sizeof (ullng));
if (¬gapcount ) alloc quit ("gapcount",maxgap);
bytes += (maxgap + 2) ∗ sizeof (ullng);

47. And we’d better initialize them too.

〈 Initialize the data structures 17 〉 +≡
lampthresh = lamp ∗ thresh ;
lowest outlier = lo r bound = hi r bound = lamp ;
highest outlier = 2 ∗ lamq ;
gapcount [1] = 1;
prevu = 2;
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48. The residue-based tests. OK, we’re ready to tackle the main loop of the calculation. I should
really say “main loops” (plural), because we use two search lists in this process.

If a unique solution to u = u′ + u′′ is found, anchorx will be the node corresponding to u′.

〈Decide the question via outlier testing 48 〉 ≡
〈Try to decide by anchoring in lo out 49 〉;
〈Try to decide by anchoring in hi out 50 〉;
if (hits ) {

if (nmem [anchorx ].r > lamp/3 ∧ (vbose & show inlier anchors ))
fprintf (stderr , " (inlier anchor U"O"lld="O"lld+"O"lld)\n", n,nmem [anchorx ].u,

u− nmem [anchorx ].u);
goto ulam yes ;
}

This code is used in section 32.

49. If u = u′ + u′′ and r = r′ + r′′, we can assume that r′ ≤ r′′, hence r′ ≤ r/2. Furthermore if r′ = r′′ we
can assume that u′ < u′′, hence u′ < u/2. These facts limit the search, and keep us from finding the same
solution twice.

〈Try to decide by anchoring in lo out 49 〉 ≡
rbound = r � 1, ubound = (u− 1)� 1;
for (o, x = nmem [lo out ].next , count = 1; ; o, x = nmem [x].next , count ++) {

if (x ≤ danger ) break;
oo , rp = nmem [x].r, up = nmem [x].u;
if (rp ≥ rbound ) {

if (rp > rbound ∨ (rp + rp ≡ r ∧ up > ubound )) break;
}
o, up = nmem [x].u;
if (ulamq (u− up)) { /∗ we found a new solution to u = u′ + u′′ ∗/

if (hits ) {
record stat (&lo out stats , count , u);
goto not ulam ;

}
hits = 1, anchorx = x;

}
}
record stat (&lo out stats , count , u);
if (x ≡ danger ) {

fprintf (stderr , "Sorry, the T threshold is too low!\n");
fprintf (stderr , " (r="O"d,u="O"lld,lo_r_bound="O"d)\n", r, u, lo r bound );
goto finish up ;
}

This code is used in section 48.
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50. Similar observations apply when we’re solving u = u′ + u′′, r̄ = r̄′ + r̄′′.

〈Try to decide by anchoring in hi out 50 〉 ≡
rbarbound = bar (r)� 1;
for (o, x = nmem [hi out ].next , count = 1; ; o, x = nmem [x].next , count ++) {

if (x ≤ danger ) break;
oo , rp = nmem [x].r, up = nmem [x].u;
if (rp ≥ rbarbound ) {

if (rp > rbarbound ∨ (rp + rp ≡ bar (r) ∧ up > ubound )) break;
}
if (ulamq (u− up)) { /∗ we found a new solution to u = u′ + u′′ ∗/

if (hits ) {
record stat (&hi out stats , count , u);
goto not ulam ;

}
hits = 1, anchorx = x;

}
}
record stat (&hi out stats , count , u);
if (x ≡ danger ) {

fprintf (stderr , "Sorry, the T threshold is too low!\n");
fprintf (stderr , " (rbar="O"d,u="O"lld,hi_r_bound="O"d)\n", bar (r), u, hi r bound );
goto finish up ;
}

This code is used in section 48.
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51. Finishing up. When we’re done, we publish the requested subsets of everything that we’ve learned.

〈Print farewell messages 51 〉 ≡
if (n ≡ maxn ∧ ¬(spacing ∧ (n mod spacing ≡ 0))) printf ("U"O"lld="O"lld\n", n, u− 1);

/∗ that statement prints the final answer, if not already printed ∗/
if (n < maxn ) fprintf (stderr , "I found "O"lld Ulam numbers and", n);
else fprintf (stderr , "I found");
fprintf (stderr , " "O"lld Ulam misses < "O"lld.\n",misses , u);
if (vbose & show gap stats ) 〈Print the gap statistics 52 〉;
if (vbose & show histograms ) 〈Print the histograms 53 〉;
if (vbose & show compression stats ) 〈Print the compression statistics 54 〉;
if (vbose & show usage stats ) 〈Print statistics re time and space 55 〉;

This code is used in section 4.

52. 〈Print the gap statistics 52 〉 ≡
{

fprintf (stderr , "****** Gap statistics thru U"O"lld ******\n", n);
for (j = 1; j ≤ maxgap ; j++)

if (gapcount [j]) fprintf (stderr , ""O"5d:"O"14lld\n", j, gapcount [j]);
if (gapcount [maxgap + 1]) fprintf (stderr , ">"O"4d:"O"14lld\n",maxgap , gapcount [maxgap + 1]);
}

This code is used in section 51.

53. 〈Print the histograms 53 〉 ≡
{

fprintf (stderr , "****** Histograms thru U"O"lld ******\n", n);
fprintf (stderr , " Hits:\n");
for (j = 0; j < binsize ; j++) {

for (i = 0, u = 0; i < bincolors ; i++) u += yes bin [i][j];
if (u) fprintf (stderr , ""O"4d/"O"d:"O"14lld\n", j, binsize , u);

}
fprintf (stderr , " Misses:\n");
for (j = 0; j < binsize ; j++) {

for (i = 0, u = 0; i < bincolors ; i++) u += miss bin [i][j];
if (u) fprintf (stderr , ""O"4d/"O"d:"O"14lld\n", j, binsize , u);

}
}

This code is used in section 51.

54. 〈Print the compression statistics 54 〉 ≡
{

fprintf (stderr , "****** Compression summary: ******\n");
for (j = (code use [0] ? 0 : 1); j < code ptr ; j++) {

fprintf (stderr , " "O"02x ", j);
for (k = 1� (bits per compressed byte − 1); k; k �= 1) fprintf (stderr , ""O"d", code [j] & k ? 1 : 0);
fprintf (stderr , ""O"14lld"O"14lld\n", code use [j], code example [j]);

}
}

This code is used in section 51.
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55. #define dump stats (st )
fprintf (stderr , "n "O"lld, mean "O"g, max "O"d ("O"lld)\n", st .n, st .mean , st .max , st .ex );

〈Print statistics re time and space 55 〉 ≡
{

fprintf (stderr , "\nBrute−force loop stats: ");
dump stats (window stats );
fprintf (stderr , "Low−outlier insertion stats: ");
dump stats (ins stats [lo out ]);
fprintf (stderr , "Low−outlier loop stats: ");
dump stats (lo out stats );
fprintf (stderr , "High−outlier insertion stats: ");
dump stats (ins stats [hi out ]);
fprintf (stderr , "High−outlier loop stats: ");
dump stats (hi out stats );
fprintf (stderr , "The outlier lists used "O"d cells.\n",node ptr − 2);
fprintf (stderr , "Altogether "O"lld bytes, "O"lld mems, "O".2f sec.\n", bytes ,mems , (double)

clock ( )/(double) CLOCKS_PER_SEC);
}

This code is used in section 51.
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56. The METAPOST output. Pretty pictures, comin’ right up.

〈Output the METAPOST file 56 〉 ≡
{

fprintf (mp file , ""O""O" created by gibbs−ulam "O"lld\n",maxn );
〈Output the boilerplate 58 〉;
factor = (double)(binsize ∗ binsize )/((double) 9 ∗maxn );
fprintf (mp file , "\nbeginfig(1) init; "O""O" distribution of Ulam numbers\n");
for (j = 0; j < binsize ; j++) acc [j] = 0, prev [j] = 0;
for (i = bincolors − 1; i ≥ 0; i−−) {

fprintf (mp file , "doit("O"d)\n  ", i);
for (j = 0; j < binsize ; j++) {

acc [j] += yes bin [i][j];
t = (int)(factor ∗ acc [j] + 0.5);
fprintf (mp file , ""O"d"O"s", t− prev [j],

j + 1 ≡ binsize ? ";\n" : (j & #f) ≡ #f ? ",\n  " : ",");
prev [j] = t;

}
}
fprintf (mp file , "endfig;\n\n");
fprintf (mp file , "beginfig(0) init; "O""O" distribution of Ulam misses\n");
for (j = 0; j < binsize ; j++) acc [j] = 0, prev [j] = 0;
for (i = bincolors − 1; i ≥ 0; i−−) {

fprintf (mp file , "doit("O"d)\n  ", i);
for (j = 0; j < binsize ; j++) {

acc [j] += miss bin [i][j];
t = (int)(factor ∗ acc [j] + 0.5);
fprintf (mp file , ""O"d"O"s", t− prev [j],

j + 1 ≡ binsize ? ";\n" : (j & #f) ≡ #f ? ",\n  " : ",");
prev [j] = t;

}
}
fprintf (mp file , "endfig;\n\nbye.\n");
fclose (mp file );
fprintf (stderr , "METAPOST code written to file "O"s.\n",mp name );
}

This code is used in section 4.

57. 〈Global variables 6 〉 +≡
ullng acc [binsize ]; /∗ accumulated histogram data ∗/
int prev [binsize ]; /∗ previously output and rounded histogram data ∗/
double factor ; /∗ scale factor for histogram data in the METAPOST output ∗/
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58. 〈Output the boilerplate 58 〉 ≡
fprintf (mp file , "newinternal n; numeric a[];\n\n");
fprintf (mp file , "def init =\n  draw (1,0)−−("O"d,0);\n", binsize );
fprintf (mp file , "  for j=1 upto "O"d: a[j]:=0; endfor\n", binsize );
fprintf (mp file , "  pickup pencircle;\nenddef;\n\n");
fprintf (mp file , "def doit(text j) text l =\n");
fprintf (mp file , "  drawoptions(withcolor j/"O"d[green,red]);\n", bincolors );
fprintf (mp file , "  n:=1;\n");
fprintf (mp file , "  for t=l:\n");
fprintf (mp file , "   if t>0: draw (n,a[n])−−(n,a[n]+t); a[n]:=a[n]+t; fi\n");
fprintf (mp file , "   n:=n+1;\n");
fprintf (mp file , "  endfor\nenddef;\n");

This code is used in section 56.
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