
§1 TWINTREE-TO-BAXTER INTRO 1

1. Intro. This (hastily written) program computes the Baxter permutation that corresponds to a given
twintree. See exercises MPR–135 and 7.2.2.1–372 in Volume 4B of The Art of Computer Programming for
an introduction to the relevant concepts and terminology.

According to exercise 7.2.2.1–372, a twintree is a data structure characterized by the following interesting
properties: (i) There are n nodes, each of which has four fields called l0, r0, l1, r1. (ii) The l0 and r0 fields
are the left and right links of a binary tree T0 that’s rooted at node t0. (iii) The l1 and r1 fields are the left
and right links of a binary tree T1 that’s rooted at node t1. (iv) The symmetric order of both trees (also
called “inorder”) is 1 2 . . . n. (v) For 1 ≤ k < n, r0[k] is null if and only if r1[k] is nonnull.

Condition (iv) is equivalent to saying that, for 1 ≤ k ≤ n, l0[k] and l1[k] are either null or less than k;
r0[k] and r1[k] are either null or greater than k.

Condition (v) might seem surprising at first, possibly even weird. But it’s not hard to see that a twintree
structure can indeed be obtained from any permutation P = p1p2 . . . pn of {1, 2, . . . , n}, as follows: Create
T0 by using the classic binary tree insertion procedure, Algorithm 6.2.2T, to insert p1, then p2, . . . , then pn,
into an initially empty binary tree. Create T1 by using that same procedure to insert pn, then pn−1, . . . ,
then p1. The roots of those trees, t0 and t1, will of course be p1 and pn, respectively.

[Proof. Conditions (i), (ii), (iii), (iv) are clearly satisfied. To verify (v), suppose 1 ≤ k < n, and let
PR = pn . . . p2p1 be the mirror-reversal of permutation P . Then r0[k] is null if and only if k + 1 comes
before k in P , if and only if k comes after k + 1 in PR, if and only if k + 1 comes after k in PR.]

This program shows in fact that every twintree arises from some permutation in that way: Given the
specification of a twintree, it outputs a permutation P that produces those twins.

Furthermore, the output permutation P will satisfy special conditions. When k is given, let’s say that a
number s less than k is “small” and a number l greater than k + 1 is “large”. Then

if k occurs after k + 1, we don’t have two consecutive elements sl between them; (∗)
if k + 1 occurs after k, we don’t have two consecutive elements ls between them. (∗∗)

In other words, if k + 1 occurs before k in P , any small elements between them must follow any large
ones between them (∗); otherwise any small elements between them must precede any large ones between
them (∗∗). A Baxter permutation is a permutation that satisfies (∗) and (∗∗).

The number of Baxter permutations for n = 0, 1, 2, 3, 4, 5, . . . turns out to be 1, 1, 2, 6, 22, 92, 422,
2074, 10754, 58202, . . . ; in particular, two of the 24 permutations for n = 4 do not qualify. (They are the
“pi-mutation” 3142 and its reverse, 2413.)

On the other hand we’ve seen that every permutation does lead to a twintree. Therefore we must be able
to get the same twintree from two different permutations. For example, both 3142 and 3412 give the same
result when inserted into binary trees, and so do their reverses.
This program outputs only Baxter permutations. So it will output 3412 when presented with the twintree

defined by 3142.
Historical notes: Twintrees were introduced by Serge Dulucq and Olivier Guibert [Discrete Math. 157

(1996), 91–106] in connection with the proof of a conjecture about Young tableaux. Baxter permutations have
a more complex history; they’re named after Glen Baxter, who considered a related class of permutations
while studying the common fixed points of continuous functions from an interval to itself. The story of their
naming and their significance in that domain has been well told by William M. Boyce, Houston Journal of
Mathematics 7 (1981), 175–189.

2 INTRO TWINTREE-TO-BAXTER §2

2. The input to this program, in file stdin , begins with a line that defines the roots, t0 and t1. The next
n lines should then contain five numbers each, namely

k l0[k] r0[k] l1[k] r1[k]

for 1 ≤ k ≤ n, in any order. Null links are represented by zero. For example, here’s one of the ways to input
the twintree defined by 3142:

3 2

3 1 4 0 0

1 0 2 0 0

4 0 0 3 0

2 0 0 1 4

Incorrect input will be rudely rejected.
The output of this program, in file stdout , will be a single line that specifies a Baxter permutation

p1p2 . . . pn from which the input could have been obtained. In the example, that output would be ‘3 4 1 2’.
We’ll prove below that the answer is unique—or equivalently, that distinct Baxter permutations give

distinct twintrees. So we’ve got a one-to-one correspondence between twintrees and Baxter permutations.

#define maxn 1024
#define panic(m, k)

{ fprintf (stderr , "%s! (%d)\n",m, k); exit (−666); }
#define pan (m)

{ fprintf (stderr , "%s!\n",m); exit (−66); }
#include <stdio.h>

#include <stdlib.h>

〈Global variables 4 〉;
〈Subroutines 6 〉;
void main (void)
{

register int i, j, k, l,m, n;

〈 Input the twintree 3 〉;
〈Check the twintree 5 〉;
〈Output the Baxter permutation 17 〉;
}

§3 TWINTREE-TO-BAXTER INTRO 3

3. Notice that r[k] is null if and only if l[k + 1] is nonnull, in any binary tree whose inorder has k + 1
following k. Therefore, using condition (v), l0[k] = 0 if and only if l1[k] > 0, for 1 < k ≤ n. Furthermore
we always have l0[0] = l1[0] = r0[n] = r1[n] = 0. We might as well check those conditions when we read the
input.

(If we’re interested in saving space, a twintree data structure could be compacted by using just one memory
cell to store both l0[k] and l1[k], and another to store both r0[k] and r1[k], with a single bit to tell us which
is null. That’s cute, but it would make each access a bit slower.)

〈 Input the twintree 3 〉 ≡
if (fscanf (stdin , "%d %d",&t0 ,&t1) 6= 2) pan ("I can’t read the root numbers");
for (l = maxn ,m = n = 0; fscanf (stdin , "%d",&inx) ≡ 1; n++) {

if (inx ≤ 0 ∨ inx > l) panic("bad index", inx);
if (inx > m) m = inx ;
if (fscanf (stdin , "%d %d %d %d",&l0 [inx],&r0 [inx],&l1 [inx],&r1 [inx]) 6= 4)
panic("I can’t read l0,r0,l1,r1", inx);

if (l0 [inx] < 0 ∨ l0 [inx] > l) panic("l0 out of range", inx);
if (r0 [inx] < 0 ∨ r0 [inx] > l) panic("r0 out of range", inx);
if (l1 [inx] < 0 ∨ l1 [inx] > l) panic("l1 out of range", inx);
if (r1 [inx] < 0 ∨ r1 [inx] > l) panic("r1 out of range", inx);
if (l0 [inx] ≥ inx ∨ l1 [inx] ≥ inx) panic("l0 or l1 too big", inx);
if ((r0 [inx] ∧ r0 [inx] ≤ inx) ∨ (r1 [inx] ∧ r1 [inx] ≤ inx)) panic("r0 or r1 too small", inx);
if (l0 [inx] 6= 0 ∧ l1 [inx] 6= 0) panic("l0 and l1 overlap", inx);
if (r0 [inx] 6= 0 ∧ r1 [inx] 6= 0) panic("r0 and r1 overlap", inx);
if (r0 [inx] ≡ r1 [inx]) l = inx ; /∗ this inx should be the final n ∗/
}
if (m < n) panic("too many lines of input", n−m);
if (m > n) panic("too few lines of input",m− n);
if (l 6= n) pan ("r0 and r1 zero before item n"); /∗ it’s not easy to get that error! ∗/

This code is used in section 2.

4. 〈Global variables 4 〉 ≡
int inx ; /∗ data input with fscanf ∗/
int t0 , t1 ; /∗ the roots of T0 and T1 ∗/
int l0 [maxn + 1], r0 [maxn + 1], l1 [maxn + 1], r1 [maxn + 1]; /∗ the links ∗/

See also section 18.

This code is used in section 2.

5. We must verify that the arrays l0, r0, l1, r1 define binary trees whose nodes are 1, 2, . . . , n in symmetric
order. This is textbook stuff—and fun, because it isn’t quite as simple as it may seem at first! We’ve got
to make sure that bad input doesn’t get us into an infinite loop, which might happen for example if l[k] = j
and r[j] = k.

〈Check the twintree 5 〉 ≡
checkinorder0 (t0 , 1, n);
checkinorder1 (t1 , 1, n);

This code is used in section 2.

4 INTRO TWINTREE-TO-BAXTER §6

6. 〈Subroutines 6 〉 ≡
void checkinorder0 (int root , int lb , int ub)
{

if (l0 [root] ≡ 0) {
if (root 6= lb) panic("inorder0 fails left", root);

} else {
if (l0 [root] < lb) panic("inorder0 off left", root);
checkinorder0 (l0 [root], lb , root − 1);

}
if (r0 [root] ≡ 0) {

if (root 6= ub) panic("inorder0 fails right", root);
} else {

if (r0 [root] > ub) panic("inorder0 off right", root);
checkinorder0 (r0 [root], root + 1, ub);

}
}
void checkinorder1 (int root , int lb , int ub)
{

if (l1 [root] ≡ 0) {
if (root 6= lb) panic("inorder1 fails left", root);

} else {
if (l1 [root] < lb) panic("inorder1 off left", root);
checkinorder1 (l1 [root], lb , root − 1);

}
if (r1 [root] ≡ 0) {

if (root 6= ub) panic("inorder1 fails right", root);
} else {

if (r1 [root] > ub) panic("inorder1 off right", root);
checkinorder1 (r1 [root], root + 1, ub);

}
}

This code is used in section 2.

§7 TWINTREE-TO-BAXTER HANDY FACTS ABOUT BAXTER PERMUTATIONS 5

7. Handy facts about Baxter permutations. As above, let P be the permutation p1p2 . . . pn, and
let T0 and T1 be the twintrees that result by inserting the elements of P and its reflection PR = pn . . . p2p1

into an initially empty binary tree.
Then the twintrees obtained from PR are obviously T1 and T0. We can express that condition algebraically

by writing
Tθ(P

R) = Tθ̄(P).

And it’s easy to see, directly from the definition, that P is Baxter if and only if PR is Baxter: Condition (∗)
for P is condition (∗∗) for PR, and vice versa.

8. The complement of P is PC = p̄1p̄2 . . . p̄n = (n+1−p1)(n+1−p2) . . . (n+1−pn), obtained by swapping
1↔ n, 2↔ n− 1, etc.

The twintrees corresponding to PC are clearly obtained by reversing the roles of left and right—reflecting
each tree. That is, when l[k] = j in T , we have r[k̄] = ̄ in the reflected tree TR; similarly, r[k] = j in T
implies l[k̄] = ̄ in TR. Thus we can write

Tθ(P
C) = Tθ(P)R.

Again, P is Baxter if and only if PC is Baxter—because complementation, like reflection, interchanges
conditions (∗) and (∗∗). (Notice that k = k + 1 + 1.)

9. The inverse of P , namely P− = q1q2 . . . qn where pj = k ⇐⇒ qk = j, is of course a third basic operation
that takes permutations into permutations. This operation is important to us because of the following basic
“principle of afterness”:

pk > pl ⇐⇒ k comes after l in P−; (†)
k comes after l in P ⇐⇒ qk > ql. (‡)

10. Indeed, the definition of Baxter-hood can be restated nicely in terms of p’s and q’s: A permutation is
Baxter if and only if it doesn’t have indices k and l such that

qk+1 < l and qk > l + 1 and pl < k and pl+1 > k + 1; (∗)
qk < l and qk+1 > l + 1 and pl > k + 1 and pl+1 < k. (∗∗)

It follows that P is Baxter if and only if P− is Baxter, because interchanging q ↔ p and k ↔ l interchanges
(∗)↔ (∗∗).

11. Inversion interacts with reflection and complementation in simple ways, because we have

PR− = P−C and PRC = PCR

for all permutations P . Thus we get up to eight different permutations from any given P , namely

P, PR, PC , PRC , P−, P−R, P−C , P−RC ,

but no more. Sometimes only four of these eight are distinct, as when P = P− or PR = PC . In fact,
sometimes only two of them are distinct; we have PR = PC = P− in cases like P = 3142 or 41352.

But inversion doesn’t affect twintrees in any simple way. Indeed, we can’t determine the twintrees for P−

from the twintrees for P : Both 3142 and 3412 yield the same twins, but 3412 is its own inverse.

6 HANDY FACTS ABOUT BAXTER PERMUTATIONS TWINTREE-TO-BAXTER §12

12. A Baxter permutation remains Baxter if we remove its largest element. (That’s easy to check, because
any new occurrences of sl or ls in (∗) or (∗∗) would have been snl or lns before n is removed.) Therefore
we can obtain all of the Baxter permutations on {1, 2, . . . , n} from those on {1, . . . , n − 1}, if we insert n’s
appropriately.

Consider, for example, the permutation 21836745, which satisfies both (∗) and (∗∗). We can insert 9 into
it in nine ways:

921836745, 291836745, 219836745, 218936745, 218396745, 218369745, 218367945, 218367495, 218367459.

Which of these extensions retains its Baxterhood?
Well, the ones that fail are 291836745 (k = 2), 218396745 (k = 7), 218369745 (k = 7), and 218367495

(k = 5). A bit of thought reveals the general rule: We can Baxterly place n within a Baxter permutation of
order n−1 if and only if we put it just before a left-to-right maximum, or just after a right-to-left maximum.
For example, the left-to-right maxima in our example are 2 and 8; the right-to-left maxima are 5, 7, 8; we
successfully placed 9 before the 2, before the 8, after the 5, after the 7, and after the 8.

Here’s the proof. For convenience let’s call a left-to-right maximum an “LRmax,” etc. The inserted
element n will mess up condition (∗) if and only if we place it just after a small element s between k + 1
and k. That s wasn’t an RLmax, because s < k; nor was s immediately followed by an LRmax, because (∗)
was true. The inserted n will mess up (∗∗) if and only if we place it immediately before a small element s
between k and k + 1. That s wasn’t an LRmax, because s < k; nor was s immediately preceded by an
RLmax, because (∗∗) was true. In either case, failure occurs if and only if we haven’t allowed that position.

13. A Baxter permutation remains Baxter if we remove its final element pn and subtract 1 from each pk for
which k < n and pk > pn. Indeed, this operation is equivalent to deleting n from the inverse permutation!

For example, we’ve seen that 218367945 is a Baxter permutation. Its inverse, 214895637, is therefore also
Baxter. Removing 9 gives the Baxter permutation 21485637, whose inverse 21735684 is Baxter.

14. Similarly, we can remove 1 and decrease each remaining element by 1.
We can also remove p1, and renumber the others.
Indeed, a moment’s thought shows also the converse: If P is non-Baxter, we can use some combination

of the operations remove-the-largest, remove-the-last, remove-the-smallest, and/or remove-the-first, until we
reach either 3142 or 2413.

§15 TWINTREE-TO-BAXTER SOLVING THE PROBLEM 7

15. Solving the problem. Instead of renumbering, after the deletion of n or pn or 1 or p1 from a Baxter
permutation, we can simply consider the remaining sequence to be a permutation of the numbers that are
left; and we can form a twintree with them, ignoring the tree links from nodes that have been removed.

For example, we can regard ‘2763’ as a permutation of the elements {2, 3, 6, 7}. Tree T0 of its twintree
structure has root 2 and links

l0[2] = 0, r0[2] = 7; l0[3] = 0, r0[3] = 0; l0[6] = 3, r0[6] = 0; l0[7] = 6, r0[7] = 0;

tree T1, similarly, has root 3 and links

l1[2] = 0, r1[2] = 0; l1[3] = 2, r1[3] = 6; l1[6] = 0, r1[6] = 7; l1[7] = 0, r1[7] = 0.

All other links are irrelevant. The inorder of both trees is the natural order of the elements that remain,
namely 2367.

Call this a “generalized twintree,” for a “generalized permutation.” If k is an element of a generalized
permutation, the notation ‘k+1’ stands not for the sum of k and 1 but rather for the element that immediately
follows k, namely k’s inorder successor. In our example, 3 + 1 = 6 and 6− 1 = 3.

16. Recall that our task is to discover a Baxter permutation that yields a given twintree. We might as well
extend that task, by assuming that’s we’ve been given a generalized twintree, for which we want to discover
a generalized Baxter permutation.

Suppose we’ve been given a generalized twintree with n nodes. The solution is obvious when n = 1, so we
may assume that n > 1.

The first step is also obvious: We know p1, because it’s the root of T0. So our strategy will be to delete p1

from the generalized twintree, then figure out what generalized twintree should produce the other elements
p2, . . . , pn of the generalized permutation.

Let p = p1. Notice that p is always a leaf of T1, because it was the last element inserted into that tree. So
it’s easy to remove p from T1; we simply zero out the link that pointed to it.

There are two cases. If p was a left child, say l1[i] = p, we’ll want to set l1[i]← 0. In that case i = p + 1,
the inorder successor of p. Otherwise p was a right child, say r1[i] = p, and we’ll want to set r1[i] ← 0; in
that case i = p− 1, the inorder predecessor of p.

How should we remove p from T0? If l0[p] = 0, we simply move the root of T0 down to r0[p]. Similarly, if
r0[p] = 0, we simply move T0’s root to l0[p].

But if both j = l0[p] and k = r0[p] are nonzero, we need to decide which of them should be the new root
of T0, depending on which of them came earlier in the permutation we’re trying to discover. And we also
need to figure out how to merge the other nodes into a single tree.

Fortunately there’s only one way to go. Suppose, for instance, that i = p+1; the other case is symmetrical.
Since j < p, the element p − 1 must exist. And since p is l1[i], p − 1 must have occurred after i in the
permutation.

We now can prove that j itself, and all of its descendants, follow i. Otherwise we’d have p − 1 preceded
by p + 1, preceded by some element s less than p, preceded by p, contradicting (∗) (with k = p − 1 and
l = p + 1).

In particular, the new root of T0 must be k.
Finally, since i = p + 1, we must have l0[i] = 0. Therefore we set l0[i] ← j; this properly reflects the fact

that j and all of its descendants follow i.
(This stunning construction is essentially Lemma 4 of Dulucq and Guibert’s paper, although they worked

with inverse permutations and “increasing binary trees” instead of with binary search trees.)

8 SOLVING THE PROBLEM TWINTREE-TO-BAXTER §17

17. So here’s the algorithm that the argument above has forced upon us.
We start by making a table of everybody’s parent in T1, setting parent [p] = i if l1[i] = p, but parent [p] = −i

if r1[i] = p.

〈Output the Baxter permutation 17 〉 ≡
for (k = 1; k ≤ n; k++) {

if (l1 [k]) parent [l1 [k]] = k;
if (r1 [k]) parent [r1 [k]] = −k;
}
while (1) {
printf ("%d ", t0); /∗ the first element, p, of the remaining generalized perm ∗/
i = parent [t0];
if (i > 0) { /∗ i = p + 1, the case considered above ∗/

l1 [i] = 0; /∗ remove p from T1 ∗/
if (r0 [t0] ≡ 0) t0 = l0 [t0]; /∗ p is the largest that remains ∗/
else {
l0 [i] = l0 [t0];
t0 = r0 [t0];

}
} else if (i ≡ 0) break; /∗ tree size was 1 ∗/
else {
i = −i; /∗ i = p− 1, the symmetrical case ∗/
r1 [i] = 0; /∗ remove p from T1 ∗/
if (l0 [t0] ≡ 0) t0 = r0 [t0]; /∗ p is the smallest that remains ∗/
else {
r0 [i] = r0 [t0];
t0 = l0 [t0];

}
}
}
printf ("\n");

This code is used in section 2.

18. 〈Global variables 4 〉 +≡
int parent [maxn + 1]; /∗ parents in T1 ∗/

§19 TWINTREE-TO-BAXTER INDEX 9

19. Index.

checkinorder0 : 5, 6.
checkinorder1 : 5, 6.
exit : 2.
fprintf : 2.
fscanf : 3, 4.
i: 2.
inx : 3, 4.
j: 2.
k: 2.
l: 2.
lb : 6.
l0 : 3, 4, 6, 17.
l1 : 3, 4, 6, 17.
m: 2.
main : 2.
maxn : 2, 3, 4, 18.
n: 2.
pan : 2, 3.
panic : 2, 3, 6.
parent : 17, 18.
printf : 17.
root : 6.
r0 : 3, 4, 6, 17.
r1 : 3, 4, 6, 17.
stderr : 2.
stdin : 2, 3.
stdout : 2.
t0 : 3, 4, 5, 17.
t1 : 3, 4, 5.
ub : 6.

10 NAMES OF THE SECTIONS TWINTREE-TO-BAXTER

〈Check the twintree 5 〉 Used in section 2.

〈Global variables 4, 18 〉 Used in section 2.

〈 Input the twintree 3 〉 Used in section 2.

〈Output the Baxter permutation 17 〉 Used in section 2.

〈Subroutines 6 〉 Used in section 2.

TWINTREE-TO-BAXTER

Section Page
Intro . 1 1
Handy facts about Baxter permutations . 7 5
Solving the problem . 15 7
Index . 19 9

	Intro
	Handy facts about Baxter permutations
	Solving the problem
	Index
	Names of the sections
	Check the twintree
	Global variables
	Input the twintree
	Output the Baxter permutation
	Subroutines

