§1 TREEPROBS INTRO 1

(See tips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. TI'm experimenting with what may be a new twist(?) on dynamic programming. It’s motivated
by “Bayesian networks” that form a binary tree. With this method we can answer queries that are much
different from the usual “marginal” distributions. For example, with binary states, we can determine the
probability that exactly half of the nodes are 1, in O(n?) steps. In general we can determine the probability
that a Boolean function f(z1,...,x,) is true, as long as the BDD for that function is small when the nodes
appear in arbitrary order. (More precisely, I have a particular order in mind, for each binary tree; the
function should have a small BDD when the variables are inspected in that order.)

Here’s the problem: Given a binary tree of n nodes, with n — 1 weight functions wy(x;, zx) on the edge
from node j to a child node k. Assign binary values (z1,...,2,) to the nodes. Every such state occurs with
relative weight W (z1,...,2,) = [[wi(z;,zr), where the product is over all edges.

For example, the binary tree

has the weight function

W(z1,...,210) = wa(z1, x2) ws(z1, T3) Wa(T3, T4) W5 (T4, Ts5)

we (x4, Te) wr(xs, T7) ws(x7, T8) Wo (T8, T9) Wig(Ts, T10)-

Without loss of generality we can assume that the left subtree of each node has at most as many nodes
as the corresponding right subtree, and that the nodes have been numbered in preorder. Both of these
assumptions are in fact fulfilled in the example above. (Surprise!)

If the QDD for a Boolean function f(z1,...,2,) has N nodes, a variant of the algorithm below computes
S{W (1, ... xn) | f(21,...,2,) =1} in O(nN) steps. Here I demonstrate the idea when f is the symmetric
function Sy, (z1,...,2,) = [x1+ -+ zp=m].

2. For1<i<mn,let Wi(zi,...,z,) =[] wk(z;,zx), where the product includes only edges jk with j > 1.
Thus, for instance, Wy (27, xs, 29, X10) in the example above is wg(z7, xs) wo(xs, Tg) wig(xs, x10). In general
we have W,,(z,) = 1 and Wy (z1,...,2,) = W(z1,...,z5).

If node j has no children, W;(z;,...,zn) = Wjt1(2j41,...,2,). If node j has one child, it’s the right
child, and it’s node j+1; hence Wj(z;,...,2,) = wjt1(z;, 1) Wit1(z 41, ..., 2n) in that case. Otherwise
node j has two children, j + 1 and k; then we have

Wiz, oy an) = wisa (25, @j01) wi(@5, 00) Wika (Tjg1, - Tn).

Let S; be the set of all =), such that k > j and k is the right child of ¢ for some i < j. For example, the
S’s corresponding to the tree above are

Sy =10, Se = {x7},
Sy = {3}, Sz =0,
S3 =10, Sg =0,
Sy = {7}, So = {z10},
S5 = {xg, 7}, S10 = 0.

These sets are easy to compute, for increasing values of j:

Si\{zj+1}, if node j is childless;
Sjy1 =14 95j, if it has just the right child j + 1;
S;U{xr}, if its children are j + 1 and k.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO TREEPROBS §2

3. What'’s the point? Well, the S’s allow us to compute the functions
TSJ?J, Z{W x]a-”vxn)|Jjj+"'+$n28},

where the sum is over all variables x) with k£ > j that are not in S;. For example, in the tree above,

5(2,0,1) ZZZWG 0,1,p,q,r)[p+q+r=1].

p=0qg=0r=0

The overall answer that we're trying to compute is T (m, 0) + T1(m, 1).
And the T’s satisfy a simple bottom-up recursion, starting with

Tn(s,2y) = [Tn=35].

Namely, if node j is childless, for j < n, we have Tj(s,x;,S;) = Tj+1(s — z;, 241, Sj+1); notice that this
formula makes sense, because x;4+1 € S; by the definition of preorder. On the other hand if node j has the
unique child j + 1, we have T}(s,z;,5;) = Z;:o wjt1(zj,p) Tjy1(s — x4, p,5;). And finally if node j has
both 7 + 1 and k as children, the formula is

T S l’], ij+1 x]ap Z (l'qu)Tj+l(57xj,p,q,Sj)-

In this case xj, is the “leftmost” element of S;11, because the S’s grow in a last-in-first-out manner.
It suffices to restrict the value of s to the range max(0,m + 1 — j) < s < min(m,n + 1 — j), because no
other values of s at step j contribute to the final 77 (m,0) and T7(m, 1).

4. Still we might ask, what’s the point? We’ve computed each function value for 7; with only a few
multiplications and additions, but the number of such function values is potentially huge. If S; has r
elements, we need to keep 2" values of T} (s, z;, S;) for each relevant value of s.

Fortunately, r cannot become very large; and that, in fact, is the real point of this whole method. The
value of r 4+ 1 cannot exceed |lg(n 4+ 1)| (and it is often much smaller).

Proof. Let M, be the largest value of |S;| + 1, over all binary trees with n vertices; we shall show that
M, = |lg(n+ 1)], by induction. Clearly My = 0, if we understand that case properly. When n > 0, it’s not
difficult to see that M, 11 = maxo<i<n—r(max(My+1, M, _1)); and this will exceed M,, only if My = M, _,
because My < M,,_; whenever k <n — k. QED.

(Even more is true, in fact: The total of 2”1 over all levels j is always O(n'¢3) = O(n!°*°). Thus the
total running time for the algorithm is O(n?:58%), not merely O(n?); in general, for functions with at most
M nodes per level in their QDD, the running time is O(n!*®>M). I have some notes on this, and have
submitted it as OEIS sequence A193494.)

85 TREEPROBS IMPLEMENTATION 3

5. Implementation. Instead of allocating storage and computing the results myself, I'm just testing the
formulas today. So this program simply outputs a Mathematica program that does the actual computation.
The input on stdin is supposed to be a list of edge pairs “j k", one per line, in lexicographic order. The
program doesn’t check carefully for bad input, but it does panic if something unexpected happens.
The command line should contain the parameter m.

#define mazn 100
#define bufsize 50

#include <stdio.h>
#include <stdlib.h>
char buf[bufsize];
int edgej[maxn], edgek [mazn];
int S[mazn][mazn]; /* overkill, but we accept left-heavy trees */
int kids[mazn];
int where[mazn];
int x[mazn];
main (int argc, char xargv|])
{
register int j,k,n,p,q,r,s;
int m;
(Parse the command line 6);
(Input the tree 7);
(Compute the S’s 8);
{ Output the necessary computations 9);

6. (Parse the command line 6) =
if (arge # 2V sscanf (argu[1], "%d", &m) # 1) {
forintf (stderr, "Usage: hs.m\n", argv[0]);
exit (—99);
¥

This code is used in section 5.

7. #define panic(mess)
{ forintf (stderr,"%s'\n", mess); exit(—1); }
(Input the tree 7) =
for (n=1; ; n++) {

if (—fgets(buf, bufsize, stdin)) break;
if (n = mazn) panic("too many edges");
if (sscanf (buf, "%hdukd", &edgej[n], &edgek[n]) # 2) panic("bad input line");
kids|edgej [n]]++;
where[edgej [n]] = n;

if (edgek[n — 1] #n) panic("inconsistent,input");

This code is used in section 5.

4 IMPLEMENTATION

8. (Compute the S’s 8) =
for (j=1; j <mn; j++) {
switch (kids[j]) {
case 2: S[j + 1][0] = edgek [where[j]];
for (k= 0; S[K); k++) S[j+ 1k + 1] = S[I[K)
if (edgek|[where[j] — 1] # j + 1) panic("bad edge, for two-kid, node");
break;
case 1: for (k =0; S[j]|[k]; k++) S[j + 1][k] = S[j][¥];
if (edgek[where[j]] # 7+ 1) panic("bad edge for one-kid node");
break;
case 0: if (S[j][0] # j + 1) panic("bad preorder for no-kid node");
for (k =1; S[[K]; k++) Sl + [k —1] = S[HI[K];
break;
default: panic("too many_ kids");

}

if (S[n][0]) panic("S[n]l_not_empty");

This code is used in section 5.

9. (Output the necessary computations 9) =
for (s=0; s <2; s++)
for (k=0; k <2; k++) printf ("T[%d,%d,%d1=%d\n" ,n, s, k, s = k);
for (j=n—-1; j; j—) {
for (s=0; s <m; s++) {
if (s<m+1—j) s=m+1-—7;
if (s>n+1—j) break;
for (k= 0; S[j][k]; k++) ;
r==k;
while (1) {
(Output T[4, s, z[0],...,z[r]] 10);
for (k =0; x[k]; k++) {
x[k] = 0;

if (k > r) break;
x[k] = 1;
}
}
}

printf ("ans=T[1,%d,0]1+T[1,%d,1]1\n",m, m);

This code is used in section 5.

TREEPROBS

68

10 TREEPROBS

10. (Output T[4, s, z[0],...,z[r]] 10) =
printf ("T[%d,%d", j, s);
for (k=0; k <r; k++) printf (",%d", z[k]);
printf ("]=");
if (s —z[0] <0V s—z[0] >n—j) printf("0");
else
switch (kids[j]) {
case 0: (Output the no-kid case 11); break;

case 1: (Output the one-kid case 12); break;
case 2: (Output the two-kid case 13); break;

printf ("\n");

This code is used in section 9.

11. (Output the no-kid case 11) =
printf ("T[%d,%d",j + 1, s — z[0]);
for (k=1; k <r; k++) printf (", %d", z[k]);
pringf ("1");

This code is used in section 10.

12. (Output the one-kid case 12) =

for (p=0; p<2; p++) {
if (p) printf ("+");
printf ("wl%d,%d,%d1",j + 1,z[0], p);
printf ("T[%d,%d,%d",j + 1,s — z[0], p);
for (k=1; k <r; k++) printf (",%d", z[k]);
printf ("1");

}

This code is used in section 10.

13. (Output the two-kid case 13) =
for (p =0; p <2; p++) {
if (p) printf ("+");
printf ("wl%d,%d,%d] (", j + 1,z[0], p);
for (¢ =10; ¢ <2; q++) {
if (q) printf("+");

printf ("wl%d,%d,%d1", edgek[where[j]], z[0], q);
printf ("TU4d,%d,%d, %", j + 1, s — z[0], p, q);
for (k=1; k <wr; k++) printf (",%d", z[k]);
printf ("1");

}

printf (")");

}

This code is used in section 10.

IMPLEMENTATION

5

6 INDEX TREEPROBS §14

14. Index.

argc: 9, 6.

argv: 5, 6.

buf: 5, 7.

bufsize: 5, T.
edgej: 5, T.
edgek: 5, 7, 8, 13.
exit: 6, 7.

fogets: 7.

forintf: 6, 7.

Jr 5.

k: 5.
kids: 5, 7, 8, 10.
m: 5.
main:
mazn:

o

~en o
~J

mess:

n: 5.

pam;: 7, 8.
printf: 9, 10, 11, 12, 13.

® n 3R
[SESANIS)

sscanf
stderr:
stdin: 5
where:

x: 5.

ot
=2

o
RN

o

, 8, 13.

=

TREEPROBS

Compute the S’s 8) Used in section 5.
Input the tree 7) Used in section 5.
Output T'[j, s,z[0],...,x[r]] 10) Used in section 9.

Output the no-kid case 11) Used in section 10.
Output the one-kid case 12) Used in section 10.
Output the two-kid case 13) Used in section 10.
Parse the command line 6) Used in section 5.

(
(
(
(
(
(
(
(

Output the necessary computations 9) Used in section 5.

NAMES OF THE SECTIONS

7

TREEPROBS

Section Page

015 o 1 1
Implementation 5 3
14 6

IdeX .o

