
§1 TCALC INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. I’m writing this program to experiment with recursive algorithms on trees that I think
are educational and fun. It’s an interactive system that reads online commands in a primitive language and
displays the results.

The algorithms are based on a recursive way to represent nonnegative integers by binary trees: The empty
tree is r(0), the representation of zero. And the tree that represents the number 2a + b, where 0 ≤ b < 2a,
is the binary tree whose left and right subtrees are r(a) and r(b).

Stating this another way, let ? be the binary operation on nonnegative integers defined by the rule
a ? b = 2a + b. This operator is not associative, so we need to insert parentheses to indicate the meaning;
however, right associativity is implied whenever there’s any doubt, so that a ? b ? c means a ? (b ? c). Notice
that a?b? c = 2a +ab + c, so the partial commutative law a?b? c = b?a?c is valid. We can use ? to assign a
number v(T ) to each binary tree T , by saying that v(Λ) = 0 and v(T ) = v(Tl) ? v(Tr) when T is nonempty.

A binary tree is a normal form if it is the representation of some integer as described above. It isn’t hard
to prove that this condition holds if and only if each node x that has a right child xr satisfies the condition
v(xl) > v(xrl).

The main algorithms in this program compute the sum and product of binary trees, in the sense that
v(T + T ′) = v(T ) + v(T ′) and v(T × T ′) = v(T )v(T ′). If the tree operands are normal, the results are too.
Otherwise the sum and product operations are a bit peculiar, but they are still well defined (they don’t blow
up), and they might even turn out to define interesting groupoids.

Lots of interesting research problems arise immediately in this study, and I haven’t time to answer them
now. So I’ll just state a few of the more obvious ones. For example: How many n-node binary trees are in
normal form? Call this number bn+1. It can be shown that the generating function B(z) is defined by the
formula B(z) = z exp

(
B(z)− 1

2B(z2) 1
3B(z3)− · · ·

)
. I’m virtually certain that a little analysis will establish

the formula bn ∼ cαn/n3/2, where c ≈ 0.36 and α ≈ 2.52, using methods that Pólya applied to the similar
equation A(z) = z exp

(
A(z) + 1

2A(z2) + 1
3A(z3) + · · ·

)
; see Fundamental Algorithms, exercise 2.3.4.4–4. The

latter equation, incidentally, enumerates binary trees that are in normal form under the weaker condition
v(xl) ≥ v(xrl). The operator corresponding to this weaker condition is a ? b = ωa + b; it gives all the “small”
ordinal numbers. The free groupoid on one letter satisfying the axiom a ? b ? c = b ? a ? c is isomorphic to
the binary trees that have this weaker normal form.

Another tantalizing problem: Estimate the size of the binary tree that represents n, when n is large. This
is the solution to the recurrence

f(0) = 0 ; f(2a + b) = 1 + f(a) + f(b) , when 0 ≤ b < 2a.

Let L(1) = 1 and L(n) = blg ncL
(
blg nc

)
for n > 1. (Thus, L(n) = lgn(lg lg n)(lg lg lg n) . . . , rounding

each factor down to an integer and continuing until that integer reaches 1). Then it can be shown that
f(n) = bcL(n)/2lg ∗nc − 2 when n has the special form 2 ↑↑ m − 1 (namely a stack of 2s minus one): 1,
3, 7, 65535, 265536 − 1, etc. Here lg ∗1 = 0 and lg ∗n = 1 + lg ∗blg nc when n > 1. I conjecture that
f(n) ≤ bcL(n)/2lg ∗nc − 2 for all n > 0. It is quite easy to prove the weaker bound f(n) ≤ 4L(n) − 1 by
induction.

How many binary trees give the value n? If this number is cn, the generating function C(z) satisfies

C(z) =
1

1− c0z − c1z2 − c2z4 − c3z8 − · · ·
,

so we find that C(z) = 1 + z + 2z2 + 3z3 + 7z4 + 12z5 + 23z6 + 41z7 + 81z8 + 149z9 + 282z10 + · · · ; what is
the asymptotic growth?

How many distinct values can you get by inserting parentheses into the expression 2 ↑ 2 ↑ · · · ↑ 2, when

there are n 2s? Since 22
b ↑ 22

a

= 22
a?b

, this is the same as the number of distinct values you can get by
inserting parentheses into the expression 0?0?· · ·?0 when there are n 0s. So it’s the number of distinct values
obtainable from n− 1-node binary trees. This sequence begins 1, 1, 1, 2, 4, 8, 17, 36, 78, 171, 379, according to
Guy and Selfridge [AMM 80 (1973), 868–876], but its general characteristics are unknown.

https://cs.stanford.edu/~knuth/programs.html
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Other problems concern time bounds for the algorithms below.

#include <stdio.h>

〈Type definitions 11 〉
〈Global variables 2 〉
〈Basic subroutines 13 〉
〈Subroutines 20 〉
main ( )
{

register int k;
register node ∗p;
〈 Initialize the data structures 5 〉;
while (1) 〈Prompt the user for a command and execute it 3 〉
}
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2. Input conventions. The user types short commands in a simple postfix language. For example, ‘f2
f3 + s’ means, “fetch a copy of tree”2 (the output of a previous step), also fetch tree 3, add them, and
compute the successor.” This tree will be displayed, and it might be fetched in later commands.

Spaces in the input are ignored. Numbers are treated as decimal parameters for the operator that they
follow; the default is zero if no explicit parameter is given. Each operator is a single character with mnemonic
significance.

The “user manual” is distributed throughout this program, since I keep adding features as I go. The
operator ‘h’ gives online help—a brief summary of all operators.

#define buf size 200

〈Global variables 2 〉 ≡
char ∗helps [128]; /∗ strings describing each operator ∗/
char buf [buf size ]; /∗ the user’s input goes here ∗/
char ∗loc ; /∗ where we are looking in the buffer ∗/
char op ; /∗ the current operator ∗/
int param ; /∗ the parameter to the current operator ∗/

See also sections 12, 24, 28, 45, 50, 53, 58, and 63.

This code is used in section 1.

3. 〈Prompt the user for a command and execute it 3 〉 ≡
{
〈Fill buf with the user’s next sequence of commands 9 〉;
〈Clear the current stack 29 〉;
while (1) {
〈Set op and param for the next operator 10 〉;
switch (op) {
case ’\n’: goto dump stack ;
〈Cases for one-character operators 6 〉

default: printf ("Unknown operator ‘%c’!\n", op);
}

}
dump stack : 〈Display and save all trees currently in the stack 30 〉;
〈Check that the saved trees account for all the used nodes 61 〉;
}

This code is used in section 1.

4. Here’s an example of how each operator is introduced; we begin with the ‘help’ feature.

〈Define the help strings 4 〉 ≡
helps [’h’] = ".helpful summary of all known operators";
/∗ ‘.’ means that this operator ignores its parameter ∗/

See also sections 7, 31, 33, 36, 38, 48, and 51.

This code is used in section 5.

5. 〈 Initialize the data structures 5 〉 ≡
〈Define the help strings 4 〉;

See also section 46.

This code is used in section 1.
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6. I must remember to say break at the end of the program for each case.

〈Cases for one-character operators 6 〉 ≡
case ’h’: printf ("The following operators are currently implemented:\n");

for (k = 0; k < 128; k++)
if (helps [k]) printf ("  %c%s %s\n", k, (∗helps [k] ≡ ’.’ ? ":   " : "<n>:"), helps [k] + 1);

break;

See also sections 8, 32, 34, 35, 37, 39, 40, 41, 42, 43, 49, and 52.

This code is used in section 3.

7. Here’s another easy case: The normal way to stop, instead of resorting to control-C, is to give the quit
command.

〈Define the help strings 4 〉 +≡
helps [’q’] = ".quit the program";

8. 〈Cases for one-character operators 6 〉 +≡
case ’q’: printf ("Type <return> to confirm quitting:");

if (getchar ( ) ≡ ’\n’) return 0;
fgets (buf , buf size , stdin ); /∗ flush the rest of that line ∗/
goto dump stack ;

9. 〈Fill buf with the user’s next sequence of commands 9 〉 ≡
printf ("? "); /∗ this is the prompt ∗/
if (fgets (buf , buf size , stdin ) ≡ 0) return 0; /∗ we quit at end of file ∗/
loc = buf ; /∗ get ready to scan the buffer ∗/

This code is used in section 3.

10. The scanning routine is intentionally simple.

#define large 1000000000 /∗ parameter numbers aren’t allowed to get this big ∗/
#define larg 100000000 /∗ large/10 ∗/
〈Set op and param for the next operator 10 〉 ≡

while (loc < &buf [buf size ] ∧ (∗loc ≡ ’ ’ ∨ ∗loc < 0 ∨ ∗loc ≥ 128)) loc++;
/∗ bypass blanks and exotic characters ∗/

param = 0; /∗ assign the default value ∗/
if (loc ≡ &buf [buf size ]) op = ’\n’;
else {
op = ∗loc++;
if (op 6= ’\n’)

while (loc < &buf [buf size ] ∧ (∗loc ≡ ’ ’ ∨ (∗loc ≤ ’9’ ∧ ∗loc ≥ ’0’))) {
if (∗loc 6= ’ ’) {

if (param ≥ larg ) printf ("(I’m reducing your large parameter mod %d)\n", large );
param = ((param % larg ) ∗ 10) + ∗loc − ’0’;
}
loc++;

}
}

This code is used in section 3.
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11. Data structures. I’m representing trees in the obvious way: Each node consists of two pointers
and one integer field for multipurpose use.

〈Type definitions 11 〉 ≡
typedef struct node struct {

int val ; /∗ a value temporarily stored with this node ∗/
struct node struct ∗l, ∗r; /∗ left and right subtree pointers ∗/
} node;

This code is used in section 1.

12. Storage allocation is dynamic. We will explicitly free nodes when they are no longer active.

〈Global variables 2 〉 +≡
int used ; /∗ this many nodes are active ∗/
node ∗cur node ; /∗ the next node to be allocated when we run out ∗/
node ∗bad node ; /∗ if cur node equals bad node , we need another block ∗/
node ∗avail ; /∗ head of list of recycled nodes ∗/
int mems ; /∗ the number of memory references to node pointers ∗/

13. #define nodes per block 1000

〈Basic subroutines 13 〉 ≡
node ∗get avail ( ) /∗ allocate a node ∗/
{

register node ∗p;
if (avail ) {
p = avail ;
avail = p~r;

}
else {

if (cur node ≡ bad node ) {
cur node = (node ∗) calloc(nodes per block , sizeof (node));
if (¬cur node ) {
printf ("Omigosh, the memory is all gone!\n");
exit (−1);
}
bad node = cur node + nodes per block ;

}
p = cur node++;

}
p~l = p~r = Λ;
mems++;
used ++;
return p;
}

See also sections 14, 15, 16, 17, 18, 19, 55, 60, and 62.

This code is used in section 1.
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14. 〈Basic subroutines 13 〉 +≡
void free node (p) /∗ deallocate a node ∗/

node ∗p;
{
p~r = avail ;
avail = p;
used −−;
mems++;
}

15. We often want to free all nodes of a tree that has served its purpose.

〈Basic subroutines 13 〉 +≡
void recycle (p) /∗ deallocate an entire tree ∗/

node ∗p;
{

if (¬p) return;
recycle (p~l);
recycle (p~r);
free node (p);
}

16. The algorithms for arithmetic are careful (I hope) to access node pointers only via the subroutines
left , right , and change . This makes the program longer and slightly less readable, but it also ensures that
mems will be properly counted.

In my first draft of this code I implemented a reference counter scheme, but I soon found that explicit
deallocation was much better.;

〈Basic subroutines 13 〉 +≡
node ∗left (p) /∗ get the left subtree of a nonempty binary tree ∗/

node ∗p;
{
mems++;
return p~l;
}
node ∗right (p) /∗ get the right subtree of a nonempty binary tree ∗/

node ∗p;
{
mems++;
return p~r;
}
void change (p, q) /∗ change pointer field p to q ∗/

node ∗∗p;
node ∗q;

{
∗p = q;
mems++;
}
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17. Simple tree operations. The multiplication routine needs to make several copies of subtrees, and
the copying algorithm is one of the simplest we will need. So let’s start with it. We can do the harder stuff
once we get into the groove.

〈Basic subroutines 13 〉 +≡
node ∗copy (p) /∗ make a fresh copy of a binary tree ∗/

node ∗p;
{

register node ∗q;
if (¬p) return Λ;
q = get avail ( );
change (&q~l, copy (left (p)));
change (&q~r, copy (right (p)));
return q;
}

18. Sometimes I want to copy tree behind the scenes; then I don’t want to count mems.

〈Basic subroutines 13 〉 +≡
node ∗cheap copy (p) /∗ make a copy with no mem cost ∗/

node ∗p;
{

register node ∗q;
register int m = mems ;

q = copy (p);
mems = m;
return q;
}

19. Another easy case, frequently needed for arithmetic, is the lexicographic comparison of binary trees.
The compare subroutine returns −1, 0, or +1 according as p < q, p = q, or p > q.

〈Basic subroutines 13 〉 +≡
int compare (p, q) /∗ determine whether p is less than, equal to, or greater than q ∗/

node ∗p, ∗q;
{

register int k;

if (¬p) {
if (¬q) return 0; /∗ they were both empty ∗/
return −1; /∗ only p was empty, so it’s less ∗/

}
if (¬q) return 1; /∗ only q was empty, so p was greater ∗/
k = compare (left (p), left (q));
if (k 6= 0) return k;
return compare (right (p), right (q));
}
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20. Having laid the groundwork, we come now to the first interesting case: The succ function adds one to
the value represented by a binary tree.

This function would have been more efficient if we had represented numbers from right to left instead of
from left to right. (A dual representation considers 2a + b where b is a multiple of 2a+1 rather than a number
less than 2a. The same number of nodes appears in both representations; the difference is sort of a reflection
of the tree about a diagonal line, with a few additional alterations.) But the dual representation makes the
comparison operation slower, and comparisons is more important than successions.

The succ routine is given a pointer to a nonempty binary tree. It changes that tree T so that the new
tree T ′ has v(T ′) = v(T ) + 1; furthermore, T ′ has the same root node as T . Thus this operation is sort of
like ‘T ++’.

〈Subroutines 20 〉 ≡
void succ(p) /∗ add one to tree p ∗/

node ∗p;
{

register node ∗pr , ∗pl , ∗prr , ∗prl ;
pr = right (p);
if (¬pr ) {

pr = get avail ( );
change (&p~r, pr );

}
else succ(pr );
prr = right (pr );
if (¬prr ) { /∗ the successor of pr was a power of two; should we propagate a carry? ∗/

pl = left (p);
prl = left (pr );
if (compare (pl , prl ) ≡ 0) { /∗ yes, we should ∗/
recycle (pr );
change (&p~r,Λ);
if (pl ) succ(pl );
else change (&p~l, get avail ( ));

}
}
}

See also sections 21, 25, 26, 27, 44, 47, 54, and 57.

This code is used in section 1.
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21. Addition. Arithmetic is now within our grasp. Again we need to think a bit about how to do it
from left to right (i.e., from most significant bit to least significant). Here is a way that keeps the number of
subtree comparisons to essentially the same amount as would be needed if we went from right to left.

Trees p and q are destroyed by the action of the sum procedure, which returns a tree that represents
v(T ) + v(T ′). It also sets the global variable easy nonzero if no carry propagated from the most significant
bits.

Incidentally, this addition operation is not associative on abnormal trees. The associative law fails, for
example, on the first case I tried when I got the program working:

b123 + (b456 + b789) = 21+1+4 + 21+1 + 4 + 2 + 21+21+1

+ 1 ;

(b123 + b456) + b789 = 21+1+4 + 21+1 + 4 + 1 + 2 + 21+21+1

.

〈Subroutines 20 〉 +≡
node ∗sum (p, q) /∗ compute the sum of two binary trees ∗/

node ∗p, ∗q;
{

register node ∗pl , ∗ql ;
register int s;

easy = 1;
if (¬p) return q;
if (¬q) return p;
pl = left (p);
ql = left (q);
s = compare (pl , ql );
if (s ≡ 0) {
〈Add right (p) to right (q) and append this to succ(pl ) 23 〉
easy = 0; return p;

}
else {

if (s < 0) 〈Swap p and q so that p > q 22 〉;
q = sum (right (p), q);
if (easy ) goto no sweat ;
else {
ql = left (q);
s = compare (pl , ql ); /∗ does a carry need to be propagated? ∗/
if (s ≡ 0) { /∗ yup ∗/
change (&p~r, right (q));
recycle (ql ); free node (q);
if (pl ) succ(pl );
else change (&p~l, get avail ( ));
return p;
}
else easy = 1; /∗ nope ∗/

}
no sweat : change (&p~r, q);

return p;
}
}
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22. 〈Swap p and q so that p > q 22 〉 ≡
{
pl = ql ;
ql = p;
p = q;
q = ql ;
}

This code is used in section 21.

23. 〈Add right (p) to right (q) and append this to succ(pl ) 23 〉 ≡
recycle (ql );
if (pl ) succ(pl );
else change (&p~l, get avail ( ));
change (&p~r, sum (right (p), right (q)));
free node (q);

This code is used in section 21.

24. 〈Global variables 2 〉 +≡
int easy ; /∗ communication parameter for the sum routine ∗/

25. One nice spinoff of the addition routine is the following procedure for normalization:

〈Subroutines 20 〉 +≡
node ∗normalize (p) /∗ change p to normal form without changing the value ∗/

node ∗p;
{

register node ∗q, ∗qq ;

if (¬p) return Λ;
q = qq = left (p);
q = normalize (q);
if (q 6= qq ) change (&p~l, q);
q = qq = right (p);
q = normalize (q);
change (&p~r,Λ);
return sum (p, q);
}
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26. Multiplication. A moment’s thought reveals the somewhat surprising fact that it’s easier to mul-
tiply by 2a than by a. (Because if b = 2b1 + · · ·+ 2bk , we have 2ab = 2a+b1 − · · ·+ 2a+bk .)

〈Subroutines 20 〉 +≡
node ∗ez prod (p, q) /∗ add p to exponents of q ∗/

node ∗p, ∗q;
{

register node ∗qq , ∗qqr ;

if (¬q) {
recycle (p);
return Λ;

}
for (qq = q; qq ; qq = qqr ) {
qqr = right (qq );
if (qqr ) change (&qq~l, sum (left (qq ), copy (p)));
else change (&qq~l, sum (left (qq ), p));

}
return q;
}

27. Full multiplication is, of course, a sum of such partial multiplications. I am not implementing it in the
cleverest way, since I compute the final sum as ( · · · ((2a1b + 2a2b) + 2a3b) + · · · ) + 2akb, thereby passing k
times over many of the nodes. It’s obvious how to reduce this to log k times per node, but is there a better
way? I leave that as an open problem for now.

A bit of experimentation shows that the product of abnormal trees might not even be commutative, much
less associative.

〈Subroutines 20 〉 +≡
node ∗prod (p, q) /∗ form the product of p and q ∗/

node ∗p, ∗q;
{

register node ∗pp , ∗ppr , ∗ss ;

if (¬p ∨ ¬q) {
recycle (p);
recycle (q);
return Λ;

}
for (pp = p, ss = Λ; pp ; pp = ppr ) {

ppr = right (pp);
if (ppr ) ss = sum (ss , ez prod (left (pp), copy (q)));
else ss = sum (ss , ez prod (left (pp), q));
free node (pp);

}
return ss ;
}
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28. Stack discipline. Some commands put trees on the stack; others operate on those trees. Everything
left on the stack at the end of a command line is displayed, and assigned an identification number for later
use.

#define stack size 20 /∗ this many trees can be on the stack at once ∗/
#define save size 1000 /∗ this many trees can be recalled ∗/
〈Global variables 2 〉 +≡

node ∗saved [save size ]; /∗ trees that the user might recall ∗/
int save ptr ; /∗ the number of saved trees ∗/
node ∗stack [stack size + 1]; /∗ there’s one extra slot for breathing space ∗/
int stack ptr ; /∗ the number of items on the stack ∗/
int showing mems ; /∗ should we tell the user how many mems were used? ∗/
int showing size ; /∗ should we tell the user how big each tree is? ∗/
int showing usage ; /∗ should we tell the user how many nodes are active? ∗/
int old mems ; /∗ holding place for mems until we’re ready to report it ∗/

29. 〈Clear the current stack 29 〉 ≡
stack ptr = 0;
mems = 0;

This code is used in section 3.

30. The tree most recently in the stack is kept in saved [0].

#define operand (n) stack [stack ptr − (n)]

〈Display and save all trees currently in the stack 30 〉 ≡
old mems = mems ;
while (stack ptr ) {
stack ptr −−;
if (++save ptr < save size ) k = save ptr ;
else {
k = 0;
recycle (saved [0]);
save ptr = save size − 1;

}
saved [k] = operand (0);
if (stack ptr ≡ 0 ∧ k > 0) {

recycle (saved [0]);
saved [0] = copy (saved [k]);

}
〈Display tree saved [k] 59 〉;
}
if (showing mems ∧ old mems ) printf ("Operations cost %d mems\n", old mems );
if (showing usage ) printf ("(%d nodes are now in use)\n", used );

This code is used in section 3.

31. 〈Define the help strings 4 〉 +≡
helps [’S’] = ":show tree sizes, if <n> is nonzero";
helps [’T’] = ":show computation time in mems, if <n> is nonzero";
helps [’U’] = ":show node usage, if <n> is nonzero";
helps [’k’] = ":kill %<n> to conserve memory";
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32. 〈Cases for one-character operators 6 〉 +≡
case ’S’: showing size = param ; break;
case ’T’: showing mems = param ; break;
case ’U’: showing usage = param ; break;
case ’k’:

if (param > save ptr )
printf ("You can’t do k%d, because %%%d doesn’t exist!\n", param , param );

else {
recycle (saved [param ]);
saved [param ] = Λ;
}
break;

33. One way to put a new item on the stack is to copy an old item.

〈Define the help strings 4 〉 +≡
helps [’%’] = ":recall a previously computed tree";
helps [’d’] = ":duplicate a tree that’s already on the stack";

34. 〈Cases for one-character operators 6 〉 +≡
case ’%’:

if (param > save ptr ) {
printf ("(%%%d is unknown; I’m using %%0 instead)\n", param );
param = 0;
}
operand (0) = cheap copy (saved [param ]);

inc stack :
if (stack ptr < stack size ) {
stack ptr ++;
break;
}
printf ("Oops−−−the stack overflowed!\n");
recycle (operand (0));
goto dump stack ;

35. The command ‘d’ duplicates the top tree on the stack. Similarly, ‘d3’ duplicates the item three down
from the top.

#define check stack (k)
if (stack ptr < k) {
printf ("Not enough items on the stack for operator %c!\n", op);
goto dump stack ;
}

〈Cases for one-character operators 6 〉 +≡
case ’d’: check stack (param + 1);
operand (0) = cheap copy (operand (param + 1));
goto inc stack ;

36. Here are two trivial operations that seem pointless, because I haven’t allowed the user to define macros.
But in fact, users do have macros, because they can run TCALC from an emacs shell.

〈Define the help strings 4 〉 +≡
helps [’p’] = ".pop the top tree off the stack";
helps [’x’] = ".exchange the top two trees";
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37. Of course I could generalize these commands so that param is relevant.

〈Cases for one-character operators 6 〉 +≡
case ’p’: check stack (1);

stack ptr −−;
recycle (operand (0));
break;

case ’x’: check stack (2);
p = operand (2); operand (2) = operand (1); operand (1) = p;
break;

38. Now we implement the arithmetic operators. Later we’ll define an operator t such that ‘tj’ replaces
tree a by 2a.

〈Define the help strings 4 〉 +≡
helps [’l’] = ".replace tree by its log (the left subtree)";
helps [’r’] = ".replace tree by its remainder (the right subtree)";
helps [’s’] = ".replace tree by its successor";
helps [’n’] = ".normalize a tree";
helps [’+’] = ".replace a,b by a+b";
helps [’*’] = ".replace a,b by ab";
helps [’^’] = ".replace a,b by a^b, assuming that a is a power of 2";
helps [’j’] = ".replace a,b by 2^a+b"; /∗ j is for “join” ∗/
helps [’m’] = ".replace a,b by 2^a b";

39. Here’s a typical unary operator.

〈Cases for one-character operators 6 〉 +≡
case ’n’: check stack (1); /∗ normalization ∗/
operand (1) = normalize (operand (1));
break;

40. And another, only slightly more tricky.

〈Cases for one-character operators 6 〉 +≡
case ’s’: check stack (1); /∗ the succ operation ∗/

if (operand (1)) succ(operand (1));
else operand (1) = get avail ( );
break;
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41. The l and r operators are charged as many mems as it takes to recycle the discarded nodes of the
tree.

〈Cases for one-character operators 6 〉 +≡
case ’l’: check stack (1); /∗ the log operation ∗/
p = operand (1);
if (¬p) printf ("(log 0 is undefined; I’m using 0)\n");
else {
operand (1) = left (p);
recycle (right (p));
free node (p);
}
break;

case ’r’: check stack (1); /∗ the rem operation ∗/
p = operand (1);
if (¬p) printf ("(rem 0 is undefined; I’m using 0)\n");
else {
operand (1) = right (p);
recycle (left (p));
free node (p);
}
break;

42. Binary operations are equally simple.

〈Cases for one-character operators 6 〉 +≡
case ’j’: check stack (2); /∗ prepare for joining ∗/
stack ptr −−;
p = get avail ( );
p~l = operand (1);
p~r = operand (0);

return p : operand (1) = p;
break;

case ’+’: check stack (2); /∗ prepare for addition ∗/
stack ptr −−;
operand (1) = sum (operand (1), operand (0));
break;

case ’*’: check stack (2); /∗ prepare for multiplication ∗/
stack ptr −−;
operand (1) = prod (operand (1), operand (0));
break;

case ’m’: check stack (2); /∗ prepare for power-of-2 multiplication ∗/
stack ptr −−;
operand (1) = ez prod (operand (1), operand (0));
break;
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43. Here’s the only one that’s not quite trivial. Strictly speaking, I should disallow 0x; but the implemen-
tation is so easy, I went ahead and did it.

〈Cases for one-character operators 6 〉 +≡
case ’^’: check stack (2); /∗ prepare for exponentiation ∗/

stack ptr −−;
p = operand (1);
if (¬p) {

if (operand (0)) recycle (operand (0));
else p = get avail ( ); /∗ 00 = 1 ∗/
}
else if (right (p)) {
printf ("Sorry, I don’t do a^b unless a is a power of 2!\n");
stack ptr ++;
goto dump stack ;
}
else change (&p~l, prod (left (p), operand (0)));
goto return p ;
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44. Generating binary trees. But how do the trees get built in the first place? One useful way to
get a fairly big tree is to ask for ‘tn’, the tree that canonically represents n. Then we can get bigger by
multiplication and exponentiation, etc.

If this program is working properly, and if n does not exceed the threshold for compression to be described
below, the binary tree created here will be displayed simply as the integer n.

〈Subroutines 20 〉 +≡
node ∗normal tree (n) /∗ generate the standard tree representation of n ∗/

int n;
{

register int k;
register node ∗p;
if (¬n) return Λ;
for (k = 0; (1� k) ≤ n; k++) ; /∗ compute k = 1 + blg nc ∗/
p = get avail ( ); mems−−;
p~l = normal tree (k − 1);
p~r = normal tree (n− (1� (k − 1)));
return p;
}

45. There’s also a convenient way to build random binary trees, so that we can experiment with abnormal
structures.

For these, it’s handy to have a table of the Catalan numbers, which enumerate the binary trees that have
n nodes.

〈Global variables 2 〉 +≡
int cat [20]; /∗ the first twenty Catalan numbers; cat [19] = 1767263190 ∗/

46. We have to be careful when evaluating cat [n] = (4n− 2)cat [n− 1]/(n+ 1), because the intermediate
result might overflow even though the answer is a single-precision integer.

〈 Initialize the data structures 5 〉 +≡
cat [0] = 1;
for (k = 1; k < 20; k++) {

register int quot = cat [k − 1]/(k + 1), rem = cat [k − 1] % (k + 1);

cat [k] = (4 ∗ k − 2) ∗ quot + (int)(((4 ∗ k − 2) ∗ rem )/(k + 1));
}

47. The btree subroutine is called only when 0 ≤ m < cat [n].

〈Subroutines 20 〉 +≡
node ∗btree (n,m) /∗ generate the mth binary tree that has n nodes ∗/

int n,m;
{

register node ∗p;
register int k;

if (¬n) return Λ;
for (k = 0; cat [k] ∗ cat [n− 1− k] ≤ m; k++) m −= cat [k] ∗ cat [n− 1− k];
p = get avail ( ); mems−−;
p~l = btree (k, (int)(m/cat [n− 1− k]));
p~r = btree (n− 1− k,m % cat [n− 1− k]);
return p;
}
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48. 〈Define the help strings 4 〉 +≡
helps [’t’] = ":the standard tree that represents <n>";
helps [’b’] = ":the binary tree of rank <n> in lexicographic order";

49. Lexicographic order of binary trees is taken to mean that we order them first by number of nodes,
then recursively by the order of the compare function.

〈Cases for one-character operators 6 〉 +≡
case ’t’: operand (0) = normal tree (param );

goto inc stack ;
case ’b’:

for (k = 0; cat [k] ≤ param ; k++) param −= cat [k];
operand (0) = btree (k, param );
goto inc stack ;
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50. Displaying the results. And finally, the grand climax—the most interesting algorithm in this
whole program.

A special form of display is appropriate for the binary trees we’re considering. If a tree is in normal form,
we can describe it by simply stating its value. However, a small binary tree can have a super-astronomical
value; there is in fact a tree with six nodes whose numerical value involves more decimal digits than there
are molecules in the universe! So we use power-of-two notation whenever the value of a subtree exceeds a
given threshold .

If threshold = 0, for example, the printed representation of 19, a tree of seven nodes, takes five lines:

0

2

2 0

2 2 0

2 +2 +2

(There’s one ‘2’ for each node, and one ‘+’ for each node with a nonnull right subtree.) But if threshold = 1,
the displayed output will be

1

2

2 1

2 +2 +1

And with threshold = 2 it becomes simpler yet:

2

2

2 +2+1

With threshold = 3 the ‘2+1’ becomes ‘3’, and with threshold ≥ 19 the whole tree is displayed simply as
‘19’.

If a binary tree is not in normal form, its normal-form subtrees are displayed as usual but its abnormal
subtrees are displayed as if the threshold were exceeded. For example, a two-node tree that has no left
subtree will be displayed as ‘1+1’ for all values of threshold > 0. This convention ensures that the tree
structure is uniquely characterized by the display.

Some binary trees are so huge, we don’t want to see them displayed in full. The user can suppress detailed
output of any tree with max display size or more nodes. The value of max display size must exceed the
default value of 1000.

#define max tree 1000 /∗ we don’t display trees having this many nodes ∗/
〈Global variables 2 〉 +≡

int threshold ; /∗ trees are compressed if their value is at most this ∗/
int max display size = max tree ; /∗ trees are shown if their size is less than this ∗/

51. 〈Define the help strings 4 〉 +≡
helps [’M’] = ".use maximum possible compression threshold for tree display";
helps [’N’] = ":compress tree displays only for t0..t<n>";
helps [’O’] = ":omit display of trees having <n> or more nodes";



20 DISPLAYING THE RESULTS TCALC §52

52. 〈Cases for one-character operators 6 〉 +≡
case ’M’: param = large − 1;
case ’N’: threshold = param ;

break;
case ’O’:

if (param > max tree ) {
printf ("(I’ve changed O%d to the maximum permitted value, O%d)\n", param ,max tree );
param = max tree ;
}
max display size = param ;
break;

53. The idea we’ll use to display a tree is to tackle the job in two phases. First, we compute statistics
about the tree nodes, so that the root of the tree “knows” about its subtrees. Then we recursively print each
line of the display.

The statistics-gathering phase is handled by a routine called get state . It first stamps each node with
a serial number j, which turns out to be the index of that node in postorder. Then it computes several
important facts about that node’s subtree: width [j], the number of columns needed to display this subtree;
height [j], the number of rows needed to display this subtree, not counting the base row; code [j], the numerical
value of this subtree; and lcode [j], which is zero if no + sign will be printed for this subtree, otherwise it’s
the code for the part that precedes the +. An abnormal subtree is always considered large .

Initialization constants here apply to the empty binary tree, whose width is 1 because it’s always displayed
as ‘0’.

〈Global variables 2 〉 +≡
int width [max tree ] = {1}; /∗ columns needed to display a subtree ∗/
int height [max tree ]; /∗ extra rows needed to display a subtree ∗/
int code [max tree ]; /∗ compressed numerical value, or large ∗/
int lcode [max tree ]; /∗ extra info when this subtree needs a + sign ∗/
int count ; /∗ this will be set to the number of nodes in the tree ∗/

54. 〈Subroutines 20 〉 +≡
void get stats (p) /∗ walk the tree and determine widths, lengths, etc. ∗/

node ∗p;
{

register int j, jl , jr ;

if (¬p) return;
get stats (p~l); get stats (p~r); /∗ postorder traversal ∗/
jl = (p~l ? p~l~val : 0);
jr = (p~r ? p~r~val : 0);
p~val = j = ++count ;
if (count < max display size ) 〈Compute stats for j from the stats of jl , jr 56 〉;
}
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55. We need a subroutine to compute the width of a decimal number.

〈Basic subroutines 13 〉 +≡
int dwidth (n) /∗ how many digits do we need to print n? ∗/

int n;
{

register int j, k;

for (j = 1, k = 10; n ≥ k; j++, k ∗= 10) ; /∗ k = 10j ∗/
return j;
}

56. Here we assume that the constant called large is 1000000000. We use the facts that threshold ≤ large
and 229 < large < 230. Also the fact that large + large < maxint .

#define lg large 29 /∗ blog2 largec ∗/
〈Compute stats for j from the stats of jl , jr 56 〉 ≡
{

register int tjl ; /∗ 2jl , or large ∗/
tjl = (code [jl ] ≤ lg large ? 1� code [jl ] : large );
if (tjl ≤ threshold ) {

if (code [jr ] < tjl ∧ tjl + code [jr ] ≤ threshold ) {
code [j] = tjl + code [jr ];
lcode [j] = 0;
width [j] = dwidth (code [j]);
height [j] = 0;

}
else {

code [j] = large ;
lcode [j] = tjl ;
width [j] = dwidth (tjl ) + width [jr ] + 1;
height [j] = height [jr ];

}
}
else {
code [j] = large ;
width [j] = width [jl ] + width [jr ];
if (p~r ≡ 0) lcode [j] = 0;
else lcode [j] = large ,width [j] += 2;
height [j] = 1 + height [jl ];
if (height [jr ] > height [j]) height [j] = height [jr ];

}
}

This code is used in section 54.
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57. The second phase is governed by another recursive procedure. This one, called print rep , has three
parameters representing a subtree to be displayed and its starting line and column numbers. Lines are
numbered 0 and up from bottom to top.

Global variable h contains the line actually being printed. If l 6= h, we keep track of our position but don’t
emit any characters. The subroutine is called only when l ≤ h ≤ l+height [j], where j is the postorder index
of the subtree being printed.

Another global variable, col , represents the number of columns output so far on line h.

#define align to(c)
while (col < c) { col ++; putchar (’ ’); }

#define print digs (n)
{ align to(c); printf ("%d", n); col += dwidth (n); }

#define print char (n)
{ align to(c); putchar (n); col ++; }

〈Subroutines 20 〉 +≡
void print rep(p, l, c) /∗ print the representation of p ∗/

node ∗p; /∗ the subtree in question ∗/
int l, c; /∗ the starting line and column positions ∗/

{
register int j = (p ? p~val : 0);

if (code [j] < large ) {
if (l ≡ h) print digs (code [j]);

}
else if (lcode [j] ∧ lcode [j] < large ) {

if (l ≡ h) print digs (lcode [j]);
}
else {

register int jl = (p~l ? p~l~val : 0);

if (l ≡ h) print char (’2’);
if (l < h ∧ l + 1 + height [jl ] ≥ h) print rep(p~l, l + 1, c+ 1);

}
if (lcode [j]) {

register jr = p~r~val ; /∗ we know that p~r 6= Λ ∗/
if (l + height [jr ] ≥ h) {
c += width [j]− width [jr ]− 1;
if (l ≡ h) print char (’+’);
print rep(p~r, l, c+ 1);

}
}
}

58. 〈Global variables 2 〉 +≡
int h; /∗ the row currently being printed ∗/
int col ; /∗ the col currently being printed ∗/
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59. OK, we’ve built the necessary recursive mechanisms; now we just have to supply the driver program.

〈Display tree saved [k] 59 〉 ≡
count = 0;
p = saved [k];
get stats (p);
if (count ≥ max display size ) printf ("%%%d=large", k);
else

for (h = (p ? height [count ] : 0); h ≥ 0; h−−) {
if (h ≡ 0) printf ("%%%d=", k);
col = (h ≡ 0 ? dwidth (k) + 2 : 0);
print rep(p, 0, dwidth (k) + 2);
if (h) printf ("\n");
else if (showing size ) {

int c = dwidth (k) + 2 + width [count ];

align to(c);
}

}
if (showing size ) printf (" (%d nodes)\n", count );
else printf ("\n");

This code is used in section 30.
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60. Debugging. Finally, here are some quick-and-dirty routines that might be useful while I’m debug-
ging.

The eval routine, which is invoked only by the debugger, computes xl ? xr at every node of a possibly
abnormal tree, and leaves these values in the val fields. It also returns the value of the whole tree.

〈Basic subroutines 13 〉 +≡
int eval (p) /∗ fills the val fields of nodes ∗/

node ∗p;
{

register int lv , rv ;

if (¬p) return 0;
lv = eval (p~l);
rv = eval (p~r);
p~val = (lv ≤ lg large ? 1� lv : large ) + rv ;
if (p~val > large ) p~val = large ;
return p~val ;
}

61. The next routine is used to check that I’ve recycled all the nodes. I could take it out, now that the
program appears to work; but what the heck, this isn’t a production program.

〈Check that the saved trees account for all the used nodes 61 〉 ≡
++time stamp ;
count = 0;
for (k = 0; k ≤ save ptr ; k++) stamp(saved [k]);
if (count 6= used ) printf ("We lost track of %d nodes!\n", used − count );

This code is used in section 3.

62. 〈Basic subroutines 13 〉 +≡
void stamp(p) /∗ stamp all nodes of p with time stamp , and count them ∗/

node ∗p;
{

if (¬p) return;
stamp(p~l);
stamp(p~r);
if (p~val ≡ time stamp) printf ("***Node overlap!!\n");
p~val = time stamp ;
count ++;
}

63. 〈Global variables 2 〉 +≡
int time stamp = large ; /∗ unique number ∗/
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