81 SUDOKU-GENERAL-DLX INTRO 1

1. Intro. Given the specification of a generalized sudoku puzzle in stdin, this program outputs DLX data
for the problem of finding all solutions.

What is a generalized sudoku puzzle? It is a puzzle whose specification begins with n lines of n characters
each, where n is between 1 and 32. The characters on these lines are of three kinds:

e A digit from 1 to n. (Those digits are 1, 2, ..., 9, a, b, ..., w.) This means that the puzzle will contain
this digit as a clue in this cell.

e The character ‘#’. This means that this cell is a “hole” in the puzzle, not meant to be filled in.

e Any other character. This means that this cell is initially blank.

The specification continues with zero or more additional groups of n lines of n characters. These groups
specify “boxes” (also called “regions”). The characters on these lines are of two kinds:

e A digit from 0 to n — 1. (Those digits are 0, 1, ..., 9, a, b, ..., v.) This means that the cell is part of
the box that has this name.
e The character ‘.’. This means nothing. I mean, it means that nothing about boxes is being specified for

this cell in this group.

Boxes can overlap, but only if they’re specified in different groups. When the input has ended, every box
that has been specified should contain at most n cells.
What is the solution to a generalized sudoku puzzle? It is a way to fill in all of the initially blank cells,
with digits from 1 to n, in such a way that no digit occurs more than once in any row, column, or box.
Here, for example, is the letter ‘A’ from the Puzzlium ABC, which was presented by Serhiy and Peter
Grabarchuk at the Martin Gardner Centennial celebration in Berkeley on 26 October 2014:

122203
12..03
122433
144443
11..43

It specifies five hexomino boxes. (The reader will enjoy finding its solution.)
The clues are repeated in a comment line at the beginning of the output.

#define bufsize 80
#include <stdio.h>

#include <stdlib.h>
char buf [bufsize];

int pos[32][32]; /* clues and holes x/

int row[32][32]; /* does this row contain this clue? */

int col[32][32]; /* does this column contain this clue? =/

int bozx[32][32]; /* does this box contain this clue? x*/

int rowcount[32], colcount [32], boxcount[32]; /* how many cells in this guy? */
int ¢; /* how many clues have been given? x/

int bc; /* how many boxes have been defined? =/

int cells; /* how many cells are left, after holes deducted? =/

unsigned int inboz[32][32]; /* which boxes contain this cell? */

main ()

2 INTRO SUDOKU-GENERAL-DLX 61

register int d,i, 5, k, kk,n, z;
(Input the given problem 2);
(Output the comment line 6);
(Output the item-name line 7);
{ Output the options 8);

2. (Input the given problem 2) =
for (n=k=Fkk=0; ; kk++) {
if (—fgets(buf, bufsize, stdin)) break;
(Make sure buf has exactly n characters 3);
if (kk <n) (Input line k of the overall spec 4)
else (Input line k of a box-definition group 5);

}

if (kk <n) {
forintf (stderr, "There were_ fewer than %d lines of input!\n", n);
exit (—5);

}

if (k+1<n){
forintf (stderr, "Box-definition group %d had fewer than %d lines of input'\n",kk/n,n);
exit (—6);
}
forintf (stderr, "0K, I’ ve got n=Y%d, with,%d boxes and, %d clues, in %d cells.\n", n, bc,c, cells);
This code is used in section 1.

83 SUDOKU-GENERAL-DLX INTRO

3. (Make sure buf has exactly n characters 3) =
if (-n) { /* this is the first line, which has n chars by definition */

for (n =0; buf[n] A buf[n] # °\n’; n++) ; /* advance to end of line */
if (n=0) {
forintf (stderr, "the_ length of the first,line (n) is zero!\n");
exit(—1);

if (n>32) {
fprintf (stderr, "the_ length of the first line (%d)_exceeds; 32!'\n", n);
exit (—2);

}

cells =n *n;
for (j =0; j <n; j++) rowcount[j] = colcount[j] = n;
¥
else {
k = kk % n;
for (j=0; j <n; j++)
if (buf[j] =>\n*) {
forintf (stderr, "input, line %d _has fewer than %d characters!\n", kk,n);
exit (—3);

}
if (buf[j] £ \n’) {
forintf (stderr, "input line %d_has more than %d characters!\n", kk,n);
exit (—4);
}
}

This code is used in section 2.

4. #define encode(d) ((d) <107 °0’° +(d): ’a’ 4+ (d) — 10)
(Input line k of the overall spec 4) =
for (j =0; j <n; j++) {
it (buf [j] > 207 A buf [j] < 797) pos[K|[j] = d = buf [j] — 0"
else if (buf[j] > ’a’ Abuf[j] < *w’) poslk][j] = d = buf[j] — >a’ + 10;
else if (buf[j] = ’#’) poslk][j] = —1, cells —, rowcount [k]—, colcount [j]—;
else pos[k][j] = 0; /x it already is zero, but let’s waste time for clarity */
if (pos[k][j] > 0) {
if (rowlk][d —1]) {
forintf (stderr, "digit, %ic appears,in columns %cyand %cof row,lkc!\n", encode(d),
encode (row[k][d — 1] — 1), encode(3), encode (k));
exit (—10);

rowlk][d—1] =7+ 1;

if (collj]ld—1]) {
forintf (stderr, "digit,%ic appears, in rows_%cyuand %cof column, jc!\n", encode(d),

encode (col[j][d — 1] — 1), encode (k), encode(3));

exit (—11);

}

colljlld—1=k+1;

c++;

}
}

This code is used in section 2.

4 INTRO SUDOKU-GENERAL-DLX §5

5. (Input line k of a box-definition group 5) =
for (j=0; j<mn; j++) {
if (buf[j]="’.’) continue;
£ (buf[j] > 07 A bufj] < 9°) = = buf[j] — *0’;
]

]7
§’v’) :bf[]—’a’—i—l();

else if (buf[j] > ’a’ A buf[j
else {
forintf (stderr, "1line %d of box-definition group %d has the,invalid character %c!\n",k,
kk /., buf [j]);
exit(—7);
} .
d = posk][j];
if (d>0) {

f (box[z][d—1]) {
forintf (stderr, "digit Yhc appears, in rowsyk%cyuand % of box %e!\n", encode(d),
encode (box [z][d — 1] — 1), encode (k), encode(x));
exit (—12);
}
box[z][d—1] =k +1;

if (boxcount[x] =0) bc++;
if (inbox[k][j] & (1 < x)) {
forintf (stderr, "box_%cualready contains the cell in row %c, column,jc!\n", encode(x),
encode (k), encode (j));
exit(—13);

nboz [k][j] |= 1 < x, boxcount [x]++;

if (boxcount[z] >n) {
forintf (stderr, "box k%c contains more than,%d cells!\n", encode(x),n);
exit (—13);

}

}

This code is used in section 2.

6. (Output the comment line 6) =
printf (" | sudoku");
for (i=0; i <mn; i++) {
printf ("'");
for (j=0; j <n; j++)
forintf (stdout, "%he", pos[i][j] < 0?7 *#° : pos[i][j] > 0 7 encode(pos[i][j]) : *.");

forintf (stdout, "\n");

This code is used in section 1.

§7 SUDOKU-GENERAL-DLX INTRO 5

7. The p items precede the r items, which precede the ¢ items, which precede the b items. An item is
omitted if there already was a clue for it. An item is secondary if it doesn’t need to appear n times.

(Output the item-name line 7) =
for (i =0; i <mn; i++)
for (j =0; j <mn; j++)
if (pos[i][j] = 0) printf ("phcheu", encode (i), encode(j));
for (i=0; i <mn; i++)
for (d=0; d <n; d++)
if (rowcount[i] = n A —rowl[i][d]) printf ("rhchel", encode (i), encode(d 4 1));
for (j =0; j <n; j++)
for (d=0; d <n; d++)
if (colcount[j] = n A —col[j][d]) printf ("chechen", encode(j), encode(d + 1));
for (z =0; v <32; z++)
for (d=0; d <n; d++)
if (boxcount|x] = n A —box[x][d]) printf ("blhcheu", encode(x), encode(d + 1));
printf ("1");
for (i=0; i <n; i++)
for (d=0; d <n; d++)
if (rowcount[i] A rowcount[i] < n A —rowli][d]) printf ("urhche", encode(i), encode(d + 1));
for (j=0; j <mn; j++)
for (d=0; d <n; d++)
if (colcount[j] A colcount[j] < n A —col[j][d]) printf ("uchehe", encode(j), encode(d + 1));
for (z =0; z <32; z++)
for (d=0; d <n; d++)
if (bozcount[z] A boxcount[z] < n A —box[x][d]) printf ("ubhche", encode(z), encode(d + 1));
printf ("\n");

This code is used in section 1.

8. (Output the options 8) =
for (i=0; i <mn; i++)
for (j=0; j<n; j+)
for (d=0; d<n; d++) {

if (posli][j] # 0V rowl[i][d] # 0V col[j][d] # 0) continue;

for (r =0; v <32; x++) {
if ((inboz[i][j] & (1 < z)) =0) continue;
if (box[x][d] # 0) break;

if (r < 32) continue;
printf ("phcheurhcheuchehe", encode (i), encode(j), encode (i), encode(d + 1), encode (j),
encode (d 4 1));
for (x =0; 2 <32; z++) {
if ((inboz[i][j] & (1 < z)) =0) continue;
printf ("Ubkhche", encode (), encode (d +))
}
printf ("\n");

}

This code is used in section 1.

6 INDEX SUDOKU-GENERAL-DLX 89

box: 1,5, 7, 8.
boxcount: 1, 5,
buf: 1, 2, 3, 4,
bufsize: 1, 2.
c. 1.

cells: 1, 2, 3, 4.

col: 1,4, 7, 8.
colcount: 1, 3, 4, 7.
d: 1.

encode: 4, 5, 6, 7, 8.
exit: 2, 3, 4, 5.
fgets: 2.
forintf: 2, 3, 4, 5, 6.
i 1.

inbox: 1, 5, 8.

7o 1.

k: 1.

kk: 1, 2, 3, 5.
main: 1.

n: 1.

pos: 1,4, 5, 6,7, 8.
printf: 6, 7, 8.

row: 1, 4, 7, 8.
rowcount: 1, 3, 4, 7.
stderr: 2, 3, 4, 5
stdin: 1, 2.

stdout: 6.

x: 1.

=~

)

SUDOKU-GENERAL-DLX

Input line k of a box-definition group 5) Used in section 2.
Input line k of the overall spec 4) Used in section 2.
Input the given problem 2) Used in section 1.

Output the comment line 6) Used in section 1.
Output the item-name line 7) Used in section 1.
Output the options 8) Used in section 1.

(
(
(
(Make sure buf has exactly n characters 3) Used in section 2.
(
(
(

NAMES OF THE SECTIONS

7

SUDOKU-GENERAL-DLX

Section Page

	Intro
	Index
	Names of the sections
	Input line k of a box-definition group
	Input line k of the overall spec
	Input the given problem
	Make sure buf has exactly n characters
	Output the comment line
	Output the item-name line
	Output the options

