
§1 STRONGCHAIN INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program finds the length of the shortest strong addition chain that leads to a
given number n. A strong addition chain — aka a Lucas chain or a Chebyshev chain — is a sequence of
integers 1 = a0 < a1 < · · · < am = n with the property that each element ak, for 1 ≤ k ≤ m, is the sum
ai + aj of prior elements (as in an ordinary addition chain); furthermore, the difference |ai − aj | is either
zero or appears in the chain. The minimum possible value of m is called L(n).

This program calculates L(1), L(2), . . . , getting as far as it can until time runs out. As usual, I wrote it
in a big hurry. My main goal today is to get more experience writing backtrack algorithms, as I rev up to
write the early sections of Volume 4 in earnest.

#define maxn 100000 /∗ size of arrays; I don’t really expect to get this far ∗/
#define maxm 40 /∗ actually 2 lgmaxn will suffice ∗/
#include <stdio.h>

int L[maxn]; /∗ the results ∗/
int ub [maxm], lb [maxm]; /∗ upper and lower bounds on ak ∗/
int choice [4 ∗maxm]; /∗ current choices at each level ∗/
int bound [4 ∗maxm]; /∗ maximum possible choices at each level ∗/
struct {

int ∗ptr ;
int val ;
} assigned [8 ∗maxm ∗maxm]; /∗ for undoing ∗/
int undo ptr ; /∗ pointer to the assigned stack ∗/
int save [4 ∗maxm]; /∗ information for undoing at each level ∗/
int hint [4 ∗maxm]; /∗ additional information at each level ∗/
int verbose = 0; /∗ set nonzero when debugging ∗/
int record = 0; /∗ largest L(n) seen so far ∗/
〈Subroutines 7 〉
main ()
{

register int a, k, l,m, n, t,work ;
int special = 0, ap , app ;

ub [0] = lb [0] = 1;
n = 1; m = 0; work = 0;
while (1) {

L[n] = m;
printf ("L(%d)=%d:", n,m);
if (m > record) {

record = m;
printf ("*");

}
if (special) 〈Print special reason 21 〉
else

for (k = 0; k ≤ m; k++) printf (" %d", ub [k]);
printf (" [%d]\n",work);
n++; work = 0;
〈Find a shortest strong chain for n 2 〉;

}
}

https://cs.stanford.edu/~knuth/programs.html

2 BACKTRACKING STRONGCHAIN §2

2. Backtracking. The choices to be made on levels 0, 1, 2, . . . can be grouped in fours, so that the
actions at level l depend on l mod 4. If l mod 4 = 0, we’re given a number a and we want to decide how to
write it as a sum a′ + a′′. If l mod 4! = 0, we’re given a number b and we want to place it in the chain if it
isn’t already present. The cases l mod 4 = 1, 2, 3 correspond respectively to b = a′, b = a′′, and b = |a′−a′′|
in the previous choice a = a′ + a′′.

We keep the current state of the chain in arrays lb and ub . If lb [k] = ub [k], their common value is ak;
otherwise ak has not yet been specified, but its eventual value will satisfy lb [k] ≤ ak ≤ ub [k]. These bounds
are maintained in such a way that

ub [k] < ub [k + 1] ≤ 2 ∗ ub [k] and lb [k] < lb [k + 1] ≤ 2 ∗ lb [k].

As a consequence, setting the value of ak might automatically fix the value of some of its neighbors.
Variable t records the state of our progress, in the sense that all elements ak are known to satisfy the

strong chain condition for m ≥ k ≥ t.
Variable l is the current level. We don’t find all solutions, since one strong chain is enough to establish

the value of L(n).

〈Find a shortest strong chain for n 2 〉 ≡
〈Set m to the obvious lower bound 3 〉;
while (1) {
〈Check for known upper bound to simplify the work 18 〉;
〈 Initialize to try for a chain of length m 4 〉;
〈Backtrack until finding a solution or exhausting all possibilities 5 〉;

not found : m++;
}
found :

This code is used in section 1.

3. The obvious lower bound is dlg ne.
〈Set m to the obvious lower bound 3 〉 ≡

for (k = (n− 1)� 1,m = 1; k; m++) k �= 1;

This code is used in section 2.

4. A slightly subtle point arises here: We make lb [k] and ub [k] infinite for k > m, because some of our
routines below will look in positions ≥ L(a) when trying to insert an element a.

〈 Initialize to try for a chain of length m 4 〉 ≡
ub [m] = lb [m] = n;
for (k = m− 1; k; k−−) {
lb [k] = (lb [k + 1] + 1)� 1;
if (lb [k] ≤ k) lb [k] = k + 1;
}
for (k = 1; k < m; k++) {
ub [k] = ub [k − 1]� 1;
if (ub [k] > n− (m− k)) ub [k] = n− (m− k);
}
l = 0;
t = m + 1;
for (k = t; k ≤ record ; k++) lb [k] = ub [k] = maxn ;
undo ptr = 0;

This code is used in section 2.

§5 STRONGCHAIN BACKTRACKING 3

5. At each level l we make all choices that lie between choice [l] and bound [l], inclusive. If successful, we
advance l and go to start level ; otherwise we go to backup .

〈Backtrack until finding a solution or exhausting all possibilities 5 〉 ≡
start level : work ++;

if (verbose) 〈Print diagnostic info 6 〉;
if (l & 3) 〈Place hint [l] 14 〉
else 〈Decrease t and vet another entry, or go to found 8 〉;
〈Additional code reached by goto statements 15 〉;

This code is used in section 2.

6. 〈Print diagnostic info 6 〉 ≡
{
printf ("Entering level %d:\n", l);
for (k = 1; k < t; k++) printf (" %d..%d", lb [k], ub [k]);
printf (" |");
for (; k ≤ m; k++) printf (" %d..%d", lb [k], ub [k]);
printf ("\n");
for (k = 0; k < l; k++) printf ("%c%d..%d", (k & 3 ? ’,’ : ’ ’), choice [k], bound [k]);
printf ("\n");
}

This code is used in section 5.

4 CHOOSING THE SUMMANDS STRONGCHAIN §7

7. Choosing the summands. When a is in the chain and we want to express it as a′ + a′′, we can
assume that a′ ≥ a′′. Naturally we want to look first to see if suitable values of a′ and a′′ are already present.

〈Subroutines 7 〉 ≡
int lookup(int x) /∗ is x already in the chain? ∗/
{

register int k;

if (x ≤ 2) return 1;
for (k = L[x]; x > ub [k]; k++) ;
return x ≡ ub [k] ∧ x ≡ lb [k];
}

See also sections 9, 12, 13, and 20.

This code is used in section 1.

8. The values of a1 and a2 can never be a problem.

〈Decrease t and vet another entry, or go to found 8 〉 ≡
save [l] = t; /∗ remember the current value of t, in case we fail ∗/

decr t : t−−;
if (t ≤ 2) goto found ;
if (ub [t] > lb [t]) goto restore t and backup ;
a = ub [t];
for (k = t− 1; ; k−−)

if (ub [k] ≡ lb [k]) {
ap = ub [k], app = a− ap ;
if (app > ap) break;
if (lookup(app) ∧ lookup(ap − app)) goto decr t ; /∗ yes, it’s OK already ∗/

}
choice [l] = (a + 1)� 1; /∗ the minimum choice is a′ = da/2e ∗/
bound [l] = a− 1; /∗ and the maximum choice is a′ = a− 1 ∗/

vet it : 〈Put a′, a′′, and a′ − a′′ into hint [l + 1], hint [l + 2], and hint [l + 3] 10 〉;
advance : l++; goto start level ;

This code is used in section 5.

9. The impossible subroutine determines rapidly when there is no “hole” in which an element can be placed
in the current chain.

〈Subroutines 7 〉 +≡
int impossible (int x) /∗ is there obviously no way to put x in? ∗/
{

register int k;

if (x ≤ 2) return 0;
for (k = L[x]; x > ub [k]; k++) ;
return x < lb [k];
}

10. The impossibility test here is redundant, since we would discover in any case that placement fails. But
the test makes this program run about twice as fast.

〈Put a′, a′′, and a′ − a′′ into hint [l + 1], hint [l + 2], and hint [l + 3] 10 〉 ≡
ap = choice [l]; app = a− ap ;
if (impossible (ap) ∨ impossible (app) ∨ impossible (ap − app)) goto next choice ;
hint [l + 1] = ap ; hint [l + 2] = app ; hint [l + 3] = ap − app ;

This code is used in section 8.

§11 STRONGCHAIN PLACING THE SUMMANDS 5

11. Placing the summands. Any change to the ub and lb table needs to be recorded in the assigned
array, because we may need to undo it.

#define assign (x, y) assigned [undo ptr].ptr = x, assigned [undo ptr ++].val = ∗x, ∗x = y

12. The algorithm for adjusting upper and lower bounds is probably the most interesting part of this whole
program. I suppose I should prove it correct.

(Since this subroutine is called only in one place, I might want to try experimenting to see how much faster
this program runs when subroutine-call overhead is avoided by converting to inline code. Subroutining might
actually turn out to be a win because of the limited number of registers on x86-like computers.)

〈Subroutines 7 〉 +≡
place (int x, int k) /∗ set ak = x ∗/
{

register int j = k, y = x;

if (ub [j] ≡ y ∧ lb [j] ≡ y) return 0;
while (ub [j] > y) {
assign (&ub [j], y); /∗ the upper bound decreases ∗/
j−−, y−−;

}
j = k + 1, y = x + x;
while (ub [j] > y) {
assign (&ub [j], y); /∗ the upper bound decreases ∗/
j++, y += y;

}
j = k, y = x;
while (lb [j] < y) {

assign (&lb [j], y); /∗ the lower bound increases ∗/
j−−, y = (y + 1)� 1;

}
j = k + 1, y = x + 1;
while (lb [j] < y) {

assign (&lb [j], y); /∗ the lower bound increases ∗/
j++, y++;

}
}

13. We need a subroutine that does a bit more than just plain lookup ; choice lookup returns zero if the
entry is ≤ 2, otherwise it returns the least index where the entry might possibly be found based on the ub
table.

〈Subroutines 7 〉 +≡
int choice lookup(int x) /∗ find the smallest viable place for x ∗/
{

register int k;

if (x ≤ 2) return 0;
for (k = L[x]; x > ub [k]; k++) ;
return k;
}

6 PLACING THE SUMMANDS STRONGCHAIN §14

14. In the special case that the entry to be placed is already present, we avoid unnecessary computation
by setting bound [l] to zero.

(Note: I thought this would be a good idea, but it didn’t actually decrease the observed running time.)

〈Place hint [l] 14 〉 ≡
{
a = hint [l];
save [l] = undo ptr ;
k = choice [l] = choice lookup(a);
if (k ≡ 0 ∨ (a ≡ ub [k] ∧ a ≡ lb [k])) {
bound [l] = 0;
goto advance ;

}
else {

while (a ≥ lb [k]) k++;
bound [l] = k − 1;

}
goto next place ;
}

This code is used in section 5.

15. 〈Additional code reached by goto statements 15 〉 ≡
unplace :

if (¬bound [l]) goto backup ;
while (undo ptr > save [l]) {
−−undo ptr ;
∗assigned [undo ptr].ptr = assigned [undo ptr].val ;
}
choice [l]++;
a = hint [l];

next place : if (choice [l] > bound [l]) goto backup ;
place (a, choice [l]);
goto advance ;

See also section 17.

This code is used in section 5.

16. Finally, when we run out of steam on the current level, we reconsider previous choices as follows.

17. 〈Additional code reached by goto statements 15 〉 +≡
restore t and backup : t = save [l];
backup :

if (l ≡ 0) goto not found ;
−−l;
if (l & 3) goto unplace ; /∗ l mod 4 = 1, 2, or 3 ∗/
a = ub [t]; /∗ l mod 4 = 0 ∗/

next choice : choice [l]++;
if (choice [l] ≤ bound [l]) goto vet it ;
goto restore t and backup ;

§18 STRONGCHAIN SIMPLE UPPER BOUNDS 7

18. Simple upper bounds. We can often save a lot of work by using the fact that L(mn) ≤ L(m)+L(n).

〈Check for known upper bound to simplify the work 18 〉 ≡
{

for (k = 2, a = n/k; k ≤ a; k++, a = n/k)
if (n % k ≡ 0 ∧m ≡ L[k] + L[a]) {

special = k;
goto found ;

}
〈Check for binary method 19 〉;
}

This code is used in section 2.

19. Another simple upper bound, L(n) ≤ blg nc+ blg 2
3nc, follows from the fact that a strong chain ending

with (a, a + 1) can be extended by appending either (2a, 2a + 1) or (2a + 1, 2a + 2).
I programmed it here just to see how often it helps, but I doubt if it will be very effective. (Indeed,

experience showed that it was the method of choice only for n = 2, 3, 5, 7, 11, and 23; probably not for any
larger n.)

Incidentally, the somewhat plausible inequality L(2n + 1) ≤ L(n) + 2 is not true, although the analogous
inequality l(2n+1) ≤ l(n)+2 obviously holds for ordinary addition chains. Indeed, L(17) = 6 and L(8) = 3.

〈Check for binary method 19 〉 ≡
if (m ≡ lg (n) + lg ((n + n)/3)) special = 1;

This code is used in section 18.

20. 〈Subroutines 7 〉 +≡
int lg (int n)
{

register int m,x;

for (x = n� 1,m = 0; x; m++) x�= 1;
return m;
}

21. 〈Print special reason 21 〉 ≡
{

if (special ≡ 1) printf (" Binary method");
else printf (" Factor method %d x %d", special , n/special);
special = 0;
}

This code is used in section 1.

22. Experience showed that the factor method often gives an optimum result, at least for small n. Indeed,
the factor method was optimum for all nonprime n < 1219. (The first exception, 1219, is 23×53, the product
of two primes that have worse-than-normal L values.) Yet the factoring shortcut reduced the total running
time by only about 4%, because it didn’t help with the hard cases — the cases that keep the computer
working hardest. (These timing statistics are based only on the calculations for n ≤ 1000; larger values of n
may well be a different story. But I think most of the running time goes into proving that shorter chains are
impossible.)

8 INDEX STRONGCHAIN §23

23. Index.

a: 1.
advance : 8, 14, 15.
ap : 1, 8, 10.
app : 1, 8, 10.
assign : 11, 12.
assigned : 1, 11, 15.
backup : 5, 15, 17.
bound : 1, 5, 6, 8, 14, 15, 17.
choice : 1, 5, 6, 8, 10, 14, 15, 17.
choice lookup : 13, 14.
decr t : 8.
found : 2, 8, 18.
hint : 1, 10, 14, 15.
impossible : 9, 10.
j: 12.
k: 1, 7, 9, 12, 13.
L: 1.
l: 1.
lb : 1, 2, 4, 6, 7, 8, 9, 11, 12, 14.
lg : 19, 20.
lookup : 7, 8, 13.
m: 1, 20.
main : 1.
maxm : 1.
maxn : 1, 4.
n: 1, 20.
next choice : 10, 17.
next place : 14, 15.
not found : 2, 17.
place : 12, 15.
printf : 1, 6, 21.
ptr : 1, 11, 15.
record : 1, 4.
restore t and backup : 8, 17.
save : 1, 8, 14, 15, 17.
special : 1, 18, 19, 21.
start level : 5, 8.
t: 1.
ub : 1, 2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 17.
undo ptr : 1, 4, 11, 14, 15.
unplace : 15, 17.
val : 1, 11, 15.
verbose : 1, 5.
vet it : 8, 17.
work : 1, 5.
x: 7, 9, 12, 13, 20.
y: 12.

STRONGCHAIN NAMES OF THE SECTIONS 9

〈Additional code reached by goto statements 15, 17 〉 Used in section 5.

〈Backtrack until finding a solution or exhausting all possibilities 5 〉 Used in section 2.

〈Check for binary method 19 〉 Used in section 18.

〈Check for known upper bound to simplify the work 18 〉 Used in section 2.

〈Decrease t and vet another entry, or go to found 8 〉 Used in section 5.

〈Find a shortest strong chain for n 2 〉 Used in section 1.

〈 Initialize to try for a chain of length m 4 〉 Used in section 2.

〈Place hint [l] 14 〉 Used in section 5.

〈Print diagnostic info 6 〉 Used in section 5.

〈Print special reason 21 〉 Used in section 1.

〈Put a′, a′′, and a′ − a′′ into hint [l + 1], hint [l + 2], and hint [l + 3] 10 〉 Used in section 8.

〈Set m to the obvious lower bound 3 〉 Used in section 2.

〈Subroutines 7, 9, 12, 13, 20 〉 Used in section 1.

STRONGCHAIN

Section Page
Introduction . 1 1
Backtracking . 2 2
Choosing the summands . 7 4
Placing the summands . 11 5
Simple upper bounds . 18 7
Index . 23 8

	Introduction
	Backtracking
	Choosing the summands
	Placing the summands
	Simple upper bounds
	Index
	Names of the sections
	Additional code reached by goto statements
	Backtrack until finding a solution or exhausting all possibilities
	Check for binary method
	Check for known upper bound to simplify the work
	Decrease t and vet another entry, or go to found
	Find a shortest strong chain for n
	Initialize to try for a chain of length m
	Place hint[l]
	Print diagnostic info
	Print special reason
	Put a', a'', and a'-a'' into hint[l+1], hint[l+2], and hint[l+3]
	Set m to the obvious lower bound
	Subroutines

