
§1 SSXCC1 INTRO 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on May 28, 2023)

1. Intro. This program is an “XCC solver” that I’m writing as an experiment in the use of so-called
sparse-set data structures instead of the dancing links structures that I’ve played with for thirty years. I
plan to write it as if I live on a planet where the sparse-set ideas are well known, but doubly linked links are
almost unheard-of. As I begin, I know that the similar program SSXC1 works fine.

I shall accept the DLX input format used in the previous solvers, without change, so that a fair comparison
can be made. (See the program DLX2 for definitions. Much of the code from that program is used to parse
the input for this one.)

My original attempt, SSXC0, kept the basic structure of DLX1 and changed only the data structure
link conventions. The present version incorporates new ideas from Christine Solnon’s program XCC-WITH-

DANCING-CELLS, which she wrote in October 2020. In particular, she proposed saving all the active set
sizes on a stack; program SSXCC0 recomputed them by undoing the forward calculations in reverse. She
also showed how to unify “purification” with “covering.”

https://cs.stanford.edu/~knuth/programs.html

2 INTRO SSXCC1 §2

2. After this program finds all solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” were made. The running
time in “mems” is also reported, together with the approximate number of bytes needed for data storage.
(An “update” is the removal of an option from its item list, or the removal of a satisfied color constraint
from its option. One “mem” essentially means a memory access to a 64-bit word. The reported totals don’t
include the time or space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 5000 /∗ at most this many options in a solution ∗/
#define max cols 100000 /∗ at most this many items ∗/
#define max nodes 10000000 /∗ at most this many nonzero elements in the matrix ∗/
#define savesize 10000000 /∗ at most this many entries on savestack ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all item names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 7 〉;
〈Global variables 3 〉;
〈Subroutines 10 〉;
main (int argc , char ∗argv [])
{

register int c, cc , i, j, k, p, pp , q, r, s, t, cur choice , cur node , best itm ;

〈Process the command line 4 〉;
〈 Input the item names 14 〉;
〈 Input the options 16 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 23 〉;
if (vbose & show tots) 〈Report the item totals 24 〉;
imems = mems ,mems = 0;
if (baditem) 〈Report an uncoverable item 22 〉
else 〈Solve the problem 25 〉;

done : if (vbose & show profile) 〈Print the profile 40 〉;
if (vbose & show max deg)

fprintf (stderr , "The maximum branching degree was "O"d.\n",maxdeg);
if (vbose & show basics) {

fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,", count ,
count ≡ 1 ? "" : "s", imems ,mems);

bytes = (itemlength + setlength) ∗ sizeof (int) + last node ∗ sizeof
(node) + 2 ∗maxl ∗ sizeof (int) + maxsaveptr ∗ sizeof (twoints);

fprintf (stderr , " "O"llu updates, "O"llu bytes, "O"llu nodes.\n", updates , bytes ,nodes);
}
if (sanity checking) fprintf (stderr , "sanity_checking was on!\n");
〈Close the files 5 〉;
}

§3 SSXCC1 INTRO 3

3. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘d〈 integer 〉’ sets delta , which causes periodic state reports on stderr after the algorithm has performed

approximately delta mems since the previous report (default 10000000000);
• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level);
• ‘S〈filename 〉’ to output a “shape file” that encodes the search tree.

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting item totals at start ∗/
#define show warnings 1024 /∗ vbose code for reporting options without primaries ∗/
#define show max deg 2048 /∗ vbose code for reporting maximum branching degree ∗/
〈Global variables 3 〉 ≡

int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution k is output if k is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl ; /∗ maximum level actually reached ∗/
int maxsaveptr ; /∗ maximum size of savestack ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng count ; /∗ solutions found so far ∗/
ullng options ; /∗ options seen so far ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 10000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
FILE ∗shape file ; /∗ file for optional output of search tree shape ∗/
char ∗shape name ; /∗ its name ∗/
int maxdeg ; /∗ the largest branching degree seen so far ∗/

See also sections 8 and 26.

This code is used in section 2.

4 INTRO SSXCC1 §4

4. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 4 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
case ’S’: shape name = argv [j] + 1, shape file = fopen (shape name , "w");

if (¬shape file)
fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", shape name);

break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [m<n>] [d<n>]"" [c<n>] [C<n>] [l<n\

>] [t<n>] [T<n>] [S<bar>] < foo.dlx\n", argv [0]);
exit (−1);
}

This code is used in section 2.

5. 〈Close the files 5 〉 ≡
if (shape file) fclose (shape file);

This code is used in section 2.

§6 SSXCC1 DATA STRUCTURES 5

6. Data structures. Sparse-set data structures were introduced by Preston Briggs and Linda Torczon
[ACM Letters on Programming Languages and Systems 2 (1993), 59–69], who realized that exercise 2.12
in Aho, Hopcroft, and Ullman’s classic text The Design and Analysis of Computer Algorithms (Addison–
Wesley, 1974) was much more than just a slick trick to avoid initializing an array. (Indeed, TAOCP exercise
2.2.6–24 calls it the “sparse array trick.”)

The basic idea is amazingly simple, when specialized to the situations that we need to deal with: We can
represent a subset S of the universe U = {x0, x1, . . . , xn−1} by maintaining two n-element arrays p and q,
each of which is a permutation of {0, 1, . . . , n − 1}, together with an integer s in the range 0 ≤ s ≤ n. In
fact, p is the inverse of q; and s is the number of elements of S. The current value of the set S is then simply
{xp0

, . . . , xps−1
}. (Notice that every s-element subset can be represented in s! (n− s)! ways.)

It’s easy to test if xk ∈ S, because that’s true if and only if qk < s. It’s easy to insert a new element xk

into S: Swap indices so that ps = k, qk = s, then increase s by 1. It’s easy to delete an element xk that
belongs to S: Decrease s by 1, then swap indices so that ps = k and qk = s. And so on.

Briggs and Torczon were interested in applications where s begins at zero and tends to remain small. In
such cases, p and q need not be permutations: The values of ps, ps+1, . . . , pn−1 can be garbage, and the
values of qk need be defined only when xk ∈ S. (Such situations correspond to Aho, Hopcroft, and Ullman,
who started with an array full of garbage and used a sparse-set structure to remember the set of nongarbage
cells.) Our applications are different: Each set begins equal to its intended universe, and gradually shrinks.
In such cases, we might as well maintain inverse permutations. The basic operations go faster when we know
in advance that we aren’t inserting an element that’s already present (nor deleting an element that isn’t).

Many variations are possible. For example, p could be a permutation of {x0, x1, . . . , xn−1} instead of
permutation of {0, 1, . . . , n − 1}. The arrays that play the role of q in the following routines don’t have
indices that are consecutive; they live inside of other structures.

6 DATA STRUCTURES SSXCC1 §7

7. This program has an array called item , with one entry for each item. The value of item [k] is an
index x into a much larger array called set . The set of all options that involve the kth item appears in that
array beginning at set [x]; and it continues for s consecutive entries, where s = size (x) is an abbreviation
for set [x − 1]. If item [k] = x, we maintain the relation pos (x) = k, where pos (x) is an abbreviation for
set [x − 2]. Thus item plays the role of array p, in a sparse-set data structure for the set of all currently
active items; and pos plays the role of q.

Suppose the kth item x currently appears in s options. Those options are indices into nd , which is an
array of “nodes.” Each node has three fields: itm , loc , and clr . If x ≤ q < x + s, let y = set [q]. This is
essentially a pointer to a node, and we have nd [y].itm = x, nd [y].loc = q. In other words, the sequential
list of s elements that begins at x = item [k] in the set array is the sparse-set representation of the currently
active options that contain the kth item. The clr field nd [y].clr contains x’s color for this option. The itm
and clr fields remain constant, once we’ve initialized everything, but the loc fields will change.

The given options are stored sequentially in the nd array, with one node per item, separated by “spacer”
nodes. If y is the spacer node following an option with t items, we have nd [y].itm = −t. If y is the spacer
node preceding an option with t items, we have nd [y].loc = t.

This probably sounds confusing, until you can see some code. Meanwhile, let’s take note of the invariant
relations that hold whenever k, q, x, and y have appropriate values:

pos (item [k]) = k; nd [set [q]].loc = q; item [pos (x)] = x; set [nd [y].loc] = y.

(These are the analogs of the invariant relations p[q[k]] = q[p[k]] = k in the simple sparse-set scheme that
we started with.)

The set array contains also the item names.
We count one mem for a simultaneous access to the itm and loc fields of a node. Each node actually has

a “spare” fourth field, spr , inserted solely to enforce alignment to 16-byte boundaries. (Some modification
of this program might perhaps have a use for spr ?)

#define size (x) set [(x)− 1] /∗ number of active options of the kth item, x ∗/
#define pos (x) set [(x)− 2] /∗ where that item is found in the item array ∗/
#define lname (x) set [(x)− 4] /∗ the first four bytes of x’s name ∗/
#define rname (x) set [(x)− 3] /∗ the last four bytes of x’s name ∗/
〈Type definitions 7 〉 ≡

typedef struct node struct {
int itm ; /∗ the item x corresponding to this node ∗/
int loc ; /∗ where this node resides in x’s active set ∗/
int clr ; /∗ color associated with item x in this option, if any ∗/
int spr ; /∗ a spare field inserted only to maintain 16-byte alignment ∗/
} node;

See also section 9.

This code is used in section 2.

§8 SSXCC1 DATA STRUCTURES 7

8. 〈Global variables 3 〉 +≡
node nd [max nodes]; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
int item [max cols]; /∗ the master list of items ∗/
int second = max cols ; /∗ boundary between primary and secondary items ∗/
int last itm ; /∗ items seen so far during input, plus 1 ∗/
int set [max nodes + 4 ∗max cols]; /∗ the sets of active options for active items ∗/
int itemlength ; /∗ number of elements used in item ∗/
int setlength ; /∗ number of elements used in set ∗/
int active ; /∗ current number of active items ∗/
int oactive ; /∗ value of active before swapping out current-choice items ∗/
int baditem ; /∗ an item with no options, plus 1 ∗/
int osecond ; /∗ setting of second just after initial input ∗/

9. We’re going to store string data (an item’s name) in the midst of the integer array set . So we’ve got to
do some type coercion using low-level C-ness.

〈Type definitions 7 〉 +≡
typedef struct {

int l, r;
} twoints;
typedef union {

unsigned char str [8]; /∗ eight one-byte characters ∗/
twoints lr ; /∗ two four-byte integers ∗/
} stringbuf ;
stringbuf namebuf ;

10. 〈Subroutines 10 〉 ≡
void print item name (int k,FILE ∗stream)
{

namebuf .lr .l = lname (k),namebuf .lr .r = rname (k);
fprintf (stream , " "O".8s",namebuf .str);
}

See also sections 11, 12, 13, 31, 37, 38, and 39.

This code is used in section 2.

8 DATA STRUCTURES SSXCC1 §11

11. An option is identified not by name but by the names of the items it contains. Here is a routine that
prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item list.

〈Subroutines 10 〉 +≡
void print option (int p,FILE ∗stream)
{

register int k, q, x;

x = nd [p].itm ;
if (p ≥ last node ∨ x ≤ 0) {

fprintf (stderr , "Illegal option "O"d!\n", p);
return;

}
for (q = p; ;) {

print item name (x, stream);
if (nd [q].clr) fprintf (stream , ":"O"c",nd [q].clr);
q++;
x = nd [q].itm ;
if (x < 0) q += x, x = nd [q].itm ;
if (q ≡ p) break;

}
k = nd [q].loc ;
fprintf (stream , " ("O"d of "O"d)\n", k − x + 1, size (x));
}
void prow (int p)
{

print option (p, stderr);
}

12. When I’m debugging, I might want to look at one of the current item lists.

〈Subroutines 10 〉 +≡
void print itm (int c)
{

register int p;

if (c < 4 ∨ c ≥ setlength ∨ pos (c) < 0 ∨ pos (c) ≥ itemlength ∨ item [pos (c)] 6= c) {
fprintf (stderr , "Illegal item "O"d!\n", c);
return;

}
fprintf (stderr , "Item");
print item name (c, stderr);
if (c < second) fprintf (stderr , " ("O"d of "O"d), length "O"d:\n", pos (c) + 1, active , size (c));
else if (pos (c) ≥ active)

fprintf (stderr , " (secondary "O"d, purified), length "O"d:\n", pos (c) + 1, size (c));
else fprintf (stderr , " (secondary "O"d), length "O"d:\n", pos (c) + 1, size (c));
for (p = c; p < c + size (c); p++) prow (set [p]);

}

§13 SSXCC1 DATA STRUCTURES 9

13. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 10 〉 +≡

void sanity (void)
{

register int k, x, i, l, r, q, qq ;

for (k = 0; k < itemlength ; k++) {
x = item [k];
if (pos (x) 6= k) {

fprintf (stderr , "Bad pos field of item");
print item name (x, stderr);
fprintf (stderr , " ("O"d,"O"d)!\n", k, x);

}
}
for (i = 0; i < last node ; i++) {

l = nd [i].itm , r = nd [i].loc ;
if (l ≤ 0) {

if (nd [i+ r+ 1].itm 6= −r) fprintf (stderr , "Bad spacer in nodes "O"d, "O"d!\n", i, i+ r+ 1);
qq = 0;

} else {
if (l > r) fprintf (stderr , "itm>loc in node "O"d!\n", i);
else {

if (set [r] 6= i) {
fprintf (stderr , "Bad loc field for option "O"d of item", r − l + 1);
print item name (l, stderr);
fprintf (stderr , " in node "O"d!\n", i);

}
if (pos (l) < active) {

if (r < l + size (l)) q = +1; else q = −1; /∗ in or out? ∗/
if (q ∗ qq < 0) {

fprintf (stderr , "Flipped status at option "O"d of item", r − l + 1);
print item name (l, stderr);
fprintf (stderr , " in node "O"d!\n", i);

}
qq = q;

}
}

}
}
}

10 INPUTTING THE MATRIX SSXCC1 §14

14. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

We use only four entries of set per item while reading the item-name line.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the item names 14 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last itm = 1;
break;
}
if (¬last itm) panic("No items");
for (; o, buf [p];) {
o,namebuf .lr .l = namebuf .lr .r = 0;
for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {

if (buf [p + j] ≡ ’:’ ∨ buf [p + j] ≡ ’|’) panic("Illegal character in item name");
o,namebuf .str [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
oo , lname (last itm � 2) = namebuf .lr .l, rname (last itm � 2) = namebuf .lr .r;
〈Check for duplicate item name 15 〉;
last itm ++;
if (last itm > max cols) panic("Too many items");
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Item name line contains | twice");
second = last itm ;
for (p++; o, isspace (buf [p]); p++) ;

}
}

This code is used in section 2.

15. 〈Check for duplicate item name 15 〉 ≡
for (k = last itm − 1; k; k−−) {

if (o, lname (k � 2) 6= namebuf .lr .l) continue;
if (rname (k � 2) ≡ namebuf .lr .r) break;
}
if (k) panic("Duplicate item name");

This code is used in section 14.

§16 SSXCC1 INPUTTING THE MATRIX 11

16. I’m putting the option number into the spr field of the spacer that follows it, as a possible debugging
aid. But the program doesn’t currently use that information.

〈 Input the options 16 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Option line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this option ∗/
for (pp = 0; buf [p];) {
o,namebuf .lr .l = namebuf .lr .r = 0;
for (j = 0; j < 8∧ (o,¬isspace (buf [p+ j]))∧ buf [p+ j] 6= ’:’; j++) o,namebuf .str [j] = buf [p+ j];
if (¬j) panic("Empty item name");
if (j ≡ 8 ∧ ¬isspace (buf [p + j]) ∧ buf [p + j] 6= ’:’) panic("Item name too long");
〈Create a node for the item named in buf [p] 17 〉;
if (buf [p + j] 6= ’:’) o,nd [last node].clr = 0;
else if (k ≥ second) {

if ((o, isspace (buf [p + j + 1])) ∨ (o,¬isspace (buf [p + j + 2])))
panic("Color must be a single character");

o,nd [last node].clr = (unsigned char) buf [p + j + 1];
p += 2;

} else panic("Primary item must be uncolored");
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Option ignored (no primary items): "O"s", buf);
while (last node > i) {
〈Remove last node from its item list 18 〉;
last node −−;

}
} else {
o,nd [i].loc = last node − i; /∗ complete the previous spacer ∗/
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
options ++;
o,nd [last node].itm = i + 1− last node ;
nd [last node].spr = options ; /∗ option number, for debugging only ∗/

}
}
〈 Initialize item 19 〉;
〈Expand set 20 〉;
〈Adjust nd 21 〉;

This code is used in section 2.

12 INPUTTING THE MATRIX SSXCC1 §17

17. We temporarily use pos to recognize duplicate items in an option.

〈Create a node for the item named in buf [p] 17 〉 ≡
for (k = (last itm − 1)� 2; k; k −= 4) {

if (o, lname (k) 6= namebuf .lr .l) continue;
if (rname (k) ≡ namebuf .lr .r) break;
}
if (¬k) panic("Unknown item name");
if (o, pos (k) > i) panic("Duplicate item name in this option");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o, t = size (k); /∗ how many previous options have used this item? ∗/
o,nd [last node].itm = k � 2,nd [last node].loc = t;
if ((k � 2) < second) pp = 1;
o, size (k) = t + 1, pos (k) = last node ;

This code is used in section 16.

18. 〈Remove last node from its item list 18 〉 ≡
o, k = nd [last node].itm � 2;
oo , size (k)−−, pos (k) = i− 1;

This code is used in section 16.

19. 〈 Initialize item 19 〉 ≡
active = itemlength = last itm − 1;
for (k = 0, j = 4; k < itemlength ; k++) oo , item [k] = j, j += 4 + size ((k + 1)� 2);
setlength = j − 4;
if (second ≡ max cols) osecond = active , second = j;
else osecond = second − 1;

This code is used in section 16.

20. Going from high to low, we now move the item names and sizes to their final positions (leaving room
for the pointers into nb).

〈Expand set 20 〉 ≡
for (; k; k−−) {
o, j = item [k − 1];
if (k ≡ second) second = j; /∗ second is now an index into set ∗/
oo , size (j) = size (k � 2);
if (size (j) ≡ 0 ∧ k ≤ osecond) baditem = k;
o, pos (j) = k − 1;
oo , rname (j) = rname (k � 2), lname (j) = lname (k � 2);
}

This code is used in section 16.

21. 〈Adjust nd 21 〉 ≡
for (k = 1; k < last node ; k++) {

if (o,nd [k].itm < 0) continue; /∗ skip over a spacer ∗/
o, j = item [nd [k].itm − 1];
i = j + nd [k].loc ; /∗ no mem charged because we just read nd [k].itm ∗/
o,nd [k].itm = j,nd [k].loc = i;
o, set [i] = k;
}

This code is used in section 16.

§22 SSXCC1 INPUTTING THE MATRIX 13

22. 〈Report an uncoverable item 22 〉 ≡
{

if (vbose & show choices) {
fprintf (stderr , "Item");
print item name (item [baditem − 1], stderr);
fprintf (stderr , " has no options!\n");

}
}

This code is used in section 2.

23. The “number of entries” includes spacers (because DLX2 includes spacers in its reports). If you want
to know the sum of the option lengths, just subtract the number of options.

〈Report the successful completion of the input phase 23 〉 ≡
fprintf (stderr , "("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",

options , osecond , itemlength − osecond , last node);

This code is used in section 2.

24. The item lengths after input are shown (on request). But there’s little use trying to show them after
the process is done, since they are restored somewhat blindly. (Failures of the linked-list implementation in
DLX2 could sometimes be detected by showing the final lengths; but that reasoning no longer applies.)

〈Report the item totals 24 〉 ≡
{

fprintf (stderr , "Item totals:");
for (k = 0; k < itemlength ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d", size (item [k]));

}
fprintf (stderr , "\n");
}

This code is used in section 2.

14 THE DANCING SSXCC1 §25

25. The dancing. Our strategy for generating all exact covers will be to repeatedly choose an item that
appears to be hardest to cover, namely an item whose set is currently smallest, among all items that still
need to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the sets are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and the sparse-set representations make it particularly easy to undo
what we’ve done at less-deep levels.

The basic operation is “covering an item.” That means removing it from the set of items needing to be
covered, and “hiding” its options: removing them from the sets of the other items they contain.

〈Solve the problem 25 〉 ≡
{

level = 0;
forward : nodes ++;

if (vbose & show profile) profile [level]++;
if (sanity checking) sanity ();
〈Do special things if enough mems have accumulated 27 〉;
〈Set best itm to the best item for branching 33 〉;
if (t ≡ max nodes) 〈Visit a solution and goto backup 34 〉;
〈Swap best itm out of the active list 28 〉;
oactive = active , hide (best itm , 0, 0); /∗ hide its options ∗/
cur choice = best itm ;
〈Save the currently active sizes 35 〉;

advance : oo , cur node = choice [level] = set [cur choice];
tryit : if ((vbose & show choices) ∧ level < show choices max) {

fprintf (stderr , "L"O"d:", level);
print option (cur node , stderr);

}
〈Swap out all other items of cur node 29 〉;
〈Hide the other options of those items, or goto abort 30 〉;
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;

}
goto forward ;

backup : if (level ≡ 0) goto done ;
level −−;
oo , cur node = choice [level], best itm = nd [cur node].itm , cur choice = nd [cur node].loc ;

abort : if (o, cur choice + 1 ≥ best itm + size (best itm)) goto backup ;
〈Restore the currently active sizes 36 〉;
cur choice ++; goto advance ;
}

This code is used in section 2.

§26 SSXCC1 THE DANCING 15

26. We save the sizes of active items on savestack , whose entries have two fields l and r, for an item and
its size. This stack makes it easy to undo all deletions, by simply restoring the former sizes.

〈Global variables 3 〉 +≡
int level ; /∗ number of choices in current partial solution ∗/
int choice [max level]; /∗ the node chosen on each level ∗/
int saved [max level + 1]; /∗ size of savestack on each level ∗/
ullng profile [max level]; /∗ number of search tree nodes on each level ∗/
twoints savestack [savesize];
int saveptr ; /∗ current size of savestack ∗/

27. 〈Do special things if enough mems have accumulated 27 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 25.

28. 〈Swap best itm out of the active list 28 〉 ≡
p = active − 1, active = p;
o, pp = pos (best itm);
o, cc = item [p];
oo , item [p] = best itm , item [pp] = cc ;
oo , pos (cc) = pp , pos (best itm) = p;
updates ++;

This code is used in section 25.

29. Note that a colored secondary item might have already been purified, in which case it has already been
swapped out. We don’t want to tamper with any of the inactive items.

〈Swap out all other items of cur node 29 〉 ≡
p = oactive = active ;
for (q = cur node + 1; q 6= cur node ;) {
o, c = nd [q].itm ;
if (c < 0) q += c;
else {
o, pp = pos (c);
if (pp < p) {
o, cc = item [−−p];
oo , item [p] = c, item [pp] = cc ;
oo , pos (cc) = pp , pos (c) = p;
updates ++;

}
q++;

}
}
active = p;

This code is used in section 25.

16 THE DANCING SSXCC1 §30

30. A secondary item was purified at lower levels if and only if its position is ≥ oactive .

〈Hide the other options of those items, or goto abort 30 〉 ≡
for (q = cur node + 1; q 6= cur node ;) {
o, cc = nd [q].itm ;
if (cc < 0) q += cc ;
else {

if (cc < second) {
if (hide (cc , 0, 1) ≡ 0) goto abort ;

} else { /∗ do nothing if cc already purified ∗/
o, pp = pos (cc);
if (pp < oactive ∧ (o, hide (cc ,nd [q].clr , 1) ≡ 0)) goto abort ;

}
q++;

}
}

This code is used in section 25.

31. The hide routine hides all of the incompatible options remaining in the set of a given item. If check
is nonzero, it returns zero if that would cause a primary item to be uncoverable.

If the color parameter is zero, all options are incompatible. Otherwise, however, the given item is
secondary, and we retain options for which that item has a color match.

When an option is hidden, it leaves all sets except the set of that given item. And the given item is
inactive. Thus a node is never removed from a set twice.

〈Subroutines 10 〉 +≡
int hide (int c, int color , int check)
{

register int cc , s, rr , ss , nn , tt , uu , vv , nnp ;

for (o, rr = c, s = c + size (c); rr < s; rr ++) {
o, tt = set [rr];
if (¬color ∨ (o,nd [tt].clr 6= color)) 〈Remove option tt from the other sets it’s in 32 〉;

}
return 1;
}

§32 SSXCC1 THE DANCING 17

32. 〈Remove option tt from the other sets it’s in 32 〉 ≡
{

for (nn = tt + 1; nn 6= tt ;) {
o, uu = nd [nn].itm , vv = nd [nn].loc ;
if (uu < 0) { nn += uu ; continue; }
if (o, pos (uu) < oactive) {
o, ss = size (uu)− 1;
if (ss ≡ 0 ∧ check ∧ uu < second ∧ (o, pos (uu) < active)) {

if ((vbose & show choices) ∧ level < show choices max) {
fprintf (stderr , " can’t cover");
print item name (uu , stderr);
fprintf (stderr , "\n");

}
return 0;
}
o,nnp = set [uu + ss];
o, size (uu) = ss ;
oo , set [uu + ss] = nn , set [vv] = nnp ;
oo ,nd [nn].loc = uu + ss ,nd [nnp].loc = vv ;
updates ++;

}
nn ++;

}
}

This code is used in section 31.

18 THE DANCING SSXCC1 §33

33. The “best item” is considered to be an item that minimizes the number of remaining choices. If there
are several candidates, we choose the leftmost.

(This program explores the search space in a different order from DLX2, because the ordering of items in
the active list is no longer fixed. Thus ties are broken in a different way.)

〈Set best itm to the best item for branching 33 〉 ≡
t = max nodes ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , "Level "O"d:", level);
for (k = 0; t > 1 ∧ k < active ; k++)

if (o, item [k] < second) {
o, s = size (item [k]);
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {

print item name (item [k], stderr);
fprintf (stderr , "("O"d)", s);

}
if (s < t) {

if (s ≡ 0) fprintf (stderr , "I’m confused.\n"); /∗ hide missed this ∗/
best itm = item [k], t = s;

}
}

if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap) {
if (t ≡ max nodes) fprintf (stderr , " solution\n");
else {

fprintf (stderr , " branching on");
print item name (best itm , stderr);
fprintf (stderr , "("O"d)\n", t);

}
}
if (t > maxdeg ∧ t < max nodes) maxdeg = t;
if (shape file) {

if (t ≡ max nodes) fprintf (shape file , "sol\n");
else {

fprintf (shape file , ""O"d", t);
print item name (best itm , shape file);
fprintf (shape file , "\n");

}
fflush (shape file);
}

This code is used in section 25.

34. 〈Visit a solution and goto backup 34 〉 ≡
{

count ++;
if (spacing ∧ (count mod spacing ≡ 0)) {

printf (""O"lld:\n", count);
for (k = 0; k < level ; k++) print option (choice [k], stdout);
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto backup ;
}

This code is used in section 25.

§35 SSXCC1 THE DANCING 19

35. 〈Save the currently active sizes 35 〉 ≡
if (saveptr + active > maxsaveptr) {

if (saveptr + active ≥ savesize) {
fprintf (stderr , "Stack overflow (savesize="O"d)!\n", savesize);
exit (−5);

}
maxsaveptr = saveptr + active ;
}
for (p = 0; p < active ; p++)

ooo , savestack [saveptr + p].l = item [p], savestack [saveptr + p].r = size (item [p]);
o, saved [level + 1] = saveptr = saveptr + active ;

This code is used in section 25.

36. 〈Restore the currently active sizes 36 〉 ≡
o, saveptr = saved [level + 1];
o, active = saveptr − saved [level];
for (p = −active ; p < 0; p++) oo , size (savestack [saveptr + p].l) = savestack [saveptr + p].r;

This code is used in section 25.

37. 〈Subroutines 10 〉 +≡
void print savestack (int start , int stop)
{

register k;

for (k = start ; k ≤ stop ; k++) {
print item name (savestack [k].l, stderr);
fprintf (stderr , "("O"d), "O"d\n", savestack [k].l, savestack [k].r);

}
}

38. 〈Subroutines 10 〉 +≡
void print state (void)
{

register int l;

fprintf (stderr , "Current state (level "O"d):\n", level);
for (l = 0; l < level ; l++) {

print option (choice [l], stderr);
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
fprintf (stderr , " "O"lld solutions, "O"lld mems, and max level "O"d so far.\n", count ,

mems ,maxl);
}

20 THE DANCING SSXCC1 §39

39. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, . . . , 61 are denoted by

0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z.

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k−1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it tends to grow monotonically.)

〈Subroutines 10 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
for (f = 0.0, fd = 1.0, l = 0; l < level ; l++) {
c = nd [choice [l]].itm , d = size (c), k = nd [choice [l]].loc − c + 1;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is k of d ∗/
fprintf (stderr , " "O"c"O"c", k < 10 ? ’0’ + k : k < 36 ? ’a’ + k − 10 : k < 62 ? ’A’ + k − 36 : ’*’,

d < 10 ? ’0’ + d : d < 36 ? ’a’ + d− 10 : d < 62 ? ’A’ + d− 36 : ’*’);
if (l ≥ show levels max) {

fprintf (stderr , "...");
break;

}
}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);
}

40. 〈Print the profile 40 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (level = 0; level ≤ maxl ; level ++) fprintf (stderr , ""O"3d: "O"lld\n", level , profile [level]);
}

This code is used in section 2.

§41 SSXCC1 INDEX 21

41. Index.

abort : 25, 30.
active : 8, 12, 13, 19, 25, 28, 29, 32, 33, 35, 36.
advance : 25.
argc : 2, 4.
argv : 2, 4.
backup : 25, 34.
baditem : 2, 8, 20, 22.
best itm : 2, 25, 28, 33.
buf : 3, 14, 16.
bufsize : 2, 3, 14, 16.
bytes : 2, 3.
c: 2, 12, 31, 39.
cc : 2, 28, 29, 30, 31.
check : 31, 32.
choice : 25, 26, 34, 38, 39.
clr : 7, 11, 16, 30, 31.
color : 31.
count : 2, 3, 34, 38, 39.
cur choice : 2, 25.
cur node : 2, 25, 29, 30.
d: 39.
delta : 3, 4, 27.
done : 2, 25, 27, 34.
exit : 4, 14, 25, 35.
f : 39.
fclose : 5.
fd : 39.
fflush : 33, 34.
fgets : 14, 16.
fopen : 4.
forward : 25.
fprintf : 2, 4, 10, 11, 12, 13, 14, 16, 22, 23, 24, 25,

27, 32, 33, 35, 37, 38, 39, 40.
hide : 25, 30, 31, 33.
i: 2, 13.
imems : 2, 3.
isspace : 14, 16.
item : 7, 8, 12, 13, 19, 20, 21, 22, 24, 28, 29, 33, 35.
itemlength : 2, 8, 12, 13, 19, 23, 24.
itm : 7, 11, 13, 16, 17, 18, 21, 25, 29, 30, 32, 39.
j: 2.
k: 2, 10, 11, 13, 37, 39.
l: 9, 13, 38, 39.
last itm : 8, 14, 15, 17, 19.
last node : 2, 8, 11, 13, 16, 17, 18, 21, 23.
level : 25, 26, 32, 33, 34, 35, 36, 38, 39, 40.
lname : 7, 10, 14, 15, 17, 20.
loc : 7, 11, 13, 16, 17, 21, 25, 32, 39.
lr : 9, 10, 14, 15, 16, 17.
main : 2.
max cols : 2, 8, 14, 19.

max level : 2, 25, 26.
max nodes : 2, 8, 16, 17, 25, 33.
maxcount : 3, 4, 34.
maxdeg : 2, 3, 33.
maxl : 2, 3, 25, 33, 38, 40.
maxsaveptr : 2, 3, 35.
mems : 2, 3, 27, 38, 39.
mod: 2, 34.
namebuf : 9, 10, 14, 15, 16, 17.
nb : 20.
nd : 7, 8, 11, 13, 16, 17, 18, 21, 25, 29, 30,

31, 32, 39.
nn : 31, 32.
nnp : 31, 32.
node: 2, 7, 8.
node struct: 7.
nodes : 2, 3, 25.
O: 2.
o: 2.
oactive : 8, 25, 29, 30, 32.
oo : 2, 14, 18, 19, 20, 25, 28, 29, 32, 36.
ooo : 2, 35.
options : 3, 16, 23.
osecond : 8, 19, 20, 23.
p: 2, 11, 12, 39.
panic : 14, 15, 16, 17.
pos : 7, 12, 13, 17, 18, 20, 28, 29, 30, 32.
pp : 2, 16, 17, 28, 29, 30.
print item name : 10, 11, 12, 13, 22, 32, 33, 37.
print itm : 12.
print option : 11, 25, 34, 38.
print progress : 27, 39.
print savestack : 37.
print state : 27, 38.
printf : 34.
profile : 25, 26, 40.
prow : 11, 12.
q: 2, 11, 13.
qq : 13.
r: 2, 9, 13.
rname : 7, 10, 14, 15, 17, 20.
rr : 31.
s: 2, 31.
sanity : 13, 25.
sanity checking : 2, 13, 25.
saved : 26, 35, 36.
saveptr : 26, 35, 36.
savesize : 2, 26, 35.
savestack : 2, 3, 26, 35, 36, 37.
second : 8, 12, 14, 16, 17, 19, 20, 24, 30, 32, 33.
set : 7, 8, 9, 12, 13, 14, 20, 21, 25, 31, 32.

22 INDEX SSXCC1 §41

setlength : 2, 8, 12, 19.
shape file : 3, 4, 5, 33.
shape name : 3, 4.
show basics : 2, 3.
show choices : 3, 22, 25, 32.
show choices gap : 3, 4, 33.
show choices max : 3, 4, 25, 32, 33.
show details : 3, 33.
show full state : 3, 27.
show levels max : 3, 4, 38, 39.
show max deg : 2, 3.
show profile : 2, 3, 25.
show tots : 2, 3.
show warnings : 3, 16.
size : 7, 11, 12, 13, 17, 18, 19, 20, 24, 25, 31,

32, 33, 35, 36, 39.
spacing : 3, 4, 34.
spr : 7, 16.
ss : 31, 32.
sscanf : 4.
start : 37.
stderr : 2, 3, 4, 11, 12, 13, 14, 16, 22, 23, 24, 25,

27, 32, 33, 35, 37, 38, 39, 40.
stdin : 14, 16.
stdout : 34.
stop : 37.
str : 9, 10, 14, 16.
stream : 10, 11.
stringbuf : 9.
strlen : 14, 16.
t: 2.
thresh : 3, 4, 27.
timeout : 3, 4, 27.
tryit : 25.
tt : 31, 32.
twoints: 2, 9, 26.
uint: 2.
ullng: 2, 3, 26.
updates : 2, 3, 28, 29, 32.
uu : 31, 32.
vbose : 2, 3, 4, 16, 22, 25, 27, 32, 33.
vv : 31, 32.
x: 11, 13.

SSXCC1 NAMES OF THE SECTIONS 23

〈Adjust nd 21 〉 Used in section 16.

〈Check for duplicate item name 15 〉 Used in section 14.

〈Close the files 5 〉 Used in section 2.

〈Create a node for the item named in buf [p] 17 〉 Used in section 16.

〈Do special things if enough mems have accumulated 27 〉 Used in section 25.

〈Expand set 20 〉 Used in section 16.

〈Global variables 3, 8, 26 〉 Used in section 2.

〈Hide the other options of those items, or goto abort 30 〉 Used in section 25.

〈 Initialize item 19 〉 Used in section 16.

〈 Input the item names 14 〉 Used in section 2.

〈 Input the options 16 〉 Used in section 2.

〈Print the profile 40 〉 Used in section 2.

〈Process the command line 4 〉 Used in section 2.

〈Remove option tt from the other sets it’s in 32 〉 Used in section 31.

〈Remove last node from its item list 18 〉 Used in section 16.

〈Report an uncoverable item 22 〉 Used in section 2.

〈Report the item totals 24 〉 Used in section 2.

〈Report the successful completion of the input phase 23 〉 Used in section 2.

〈Restore the currently active sizes 36 〉 Used in section 25.

〈Save the currently active sizes 35 〉 Used in section 25.

〈Set best itm to the best item for branching 33 〉 Used in section 25.

〈Solve the problem 25 〉 Used in section 2.

〈Subroutines 10, 11, 12, 13, 31, 37, 38, 39 〉 Used in section 2.

〈Swap out all other items of cur node 29 〉 Used in section 25.

〈Swap best itm out of the active list 28 〉 Used in section 25.

〈Type definitions 7, 9 〉 Used in section 2.

〈Visit a solution and goto backup 34 〉 Used in section 25.

SSXCC1

Section Page
Intro . 1 1
Data structures . 6 5
Inputting the matrix . 14 10
The dancing . 25 14
Index . 41 21

	Intro
	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Adjust nd
	Check for duplicate item name
	Close the files
	Create a node for the item named in buf[p]
	Do special things if enough mems have accumulated
	Expand set
	Global variables
	Hide the other options of those items, or goto abort
	Initialize item
	Input the item names
	Input the options
	Print the profile
	Process the command line
	Remove option tt from the other sets it's in
	Remove last_node from its item list
	Report an uncoverable item
	Report the item totals
	Report the successful completion of the input phase
	Restore the currently active sizes
	Save the currently active sizes
	Set best_itm to the best item for branching
	Solve the problem
	Subroutines
	Swap out all other items of cur_node
	Swap best_itm out of the active list
	Type definitions
	Visit a solution and goto backup

