§1 SQUAREPAL

1. Intro. This program finds all odd *n*-bit palindromes x that are perfect squares, using roughly $2^{n/4}$ steps of computation. Thus I hope to use it for n well over 100. The idea is to try all 2^t combinations of the rightmost and leftmost t + 3 bits, for $t \approx n/4$, and to use number theory to rule out the bad cases rather quickly.

(When n = 100 I'll be using t = 22. This program is a big improvement over the one I wrote in 2013; that one used t = 31 when n = 100, and $t \approx n/3$ in general. Michael Coriand surprised me last week by claiming that he had a method using only about n/4. At first I was mystified, baffled, stumped. But aha, I woke up this morning with a good guess about what he'd discovered! He asked me to doublecheck his results; and I can't resist, even though I've got more than enough other things to do, because it's fun to write useless code like this.)

I haven't optimized this program for computational speed. My main goal was to get it right, with my personal time minimized. On the other hand I could easily have made it run a lot slower: I didn't pass up some "obvious" ways to avoid redundant computations.

```
#define maxn 180 /* I could go a little higher, but there won't be time */
```

```
#include <stdio.h>
```

```
#include <stdlib.h>
              /* the length of palindromes sought */
  int n;
  unsigned long long y[maxn/2], r[maxn/2];
                                                        /* table of partial square roots */
  unsigned long long q[maxn/4], qq[maxn/4];
                                                         /* table of partial modular sqrts */
  unsigned long long pretrial[2], trial[3], acc[6];
                                                           /* multiplication workspace */
  main(int argc, char * argv[])
  ł
     register unsigned long long prod, sqrtxl, a, bit;
     register int j, k, t, p, jj, kk;
     \langle \text{Process the command line } 2 \rangle;
     printf("Binary_palindromic_squares_with_%d_bits:\n", n);
     \langle \text{Choose } t \text{ and initialize the tables } 12 \rangle;
     for (a = 0; a < 1_{\text{LL}} \ll t; a \leftrightarrow) (See if case a leads to any square palindromes 13);
  }
2. (Process the command line 2 \ge 1) =
  if (argc \neq 2 \lor sscanf(argv[1], "%d", \&n) \neq 1) {
     fprintf(stderr, "Usage: "%sun\n", argv[0]);
     exit(-1);
  if (n < 15 \lor n > maxn) {
     fprintf(stderr, "Sorry: \_n\_should\_be\_between\_15\_and\_%d. n", maxn);
     exit(-2);
```

}

This code is used in section 1.

2 INTRO

3. Here's the theory: Let $a_1 a_2 \ldots a_t$ be a binary string, and suppose

$$x = 2^{n-1} + 2^{n-4}a_1 + 2^{n-5}a_2 + \dots + 2^{n-3-t}a_t + \dots + 2^{t+2}a_t + \dots + 2^4a_2 + 2^3a_1 + 1 = y^2$$

Let $x_l = 2^{n-1} + 2^{n-4}a_1 + 2^{n-5}a_2 + \dots + 2^{n-3-t}a_t$ and $x_u = x_l + 2^{n-3-t}$.

It's easy to prove by induction on t that there's a unique integer q between 0 and 2^{t+2} such that $q \mod 4 = 1$ and $q^2 \mod 2^{t+3} = 2^{t+2}a_t + \cdots + 2^4a_2 + 2^3a_1 + 1$, whenever t > 0. Hence the lower bits of the square root, $y \mod 2^{t+2}$, must be either q or $2^{t+2} - q$.

On the other hand $x_l < x < x_u$; hence $\sqrt{x_l} < y < \sqrt{x_u}$. This tells us about the upper bits: We have $x_u = x_l(1+\delta)$, where $\delta = 2^{n-3-t}/x_l$; hence $\sqrt{x_u} - \sqrt{x_l} = \sqrt{x_l}(\sqrt{1+\delta}-1) < \sqrt{x_l} \delta/2 = 2^{n-4-t}/\sqrt{x_l} \le 2^{n-4-t}/2^{(n-1)/2} = 2^{n/2-7/2-t}$. The integers between $\sqrt{x_l}$ and $\sqrt{x_u}$ will therefore be distinct, modulo 2^{t+2} , if we have $n/2 - 7/2 - t \le t + 2$.

It follows that we need only check two potential values of y, for each of the 2^t choices of $a_1a_2...a_t$, when $t \ge (n-11)/4$. Furthermore, this estimate is somewhat crude; there won't be many cases to try even if t is a bit smaller.

For example, let's consider the case n = 25 and t = 3. In the first case $a_1a_2a_3 = 000$, we have $x_l = 2^{24}$ and $x_u = 2^{24} + 2^{19}$; so y lies between $(100000000000)_2$ and $(100000011111)_2$. Furthermore y mod 2^5 must be 1 or 31. So the only possible square roots of a binary palindrome having the form $(100000 \dots 000001)_2$ are

 $(100000000001)_2, (100000011111)_2, (1000000100001)_2, (1000000111111)_2.$

In the last case $a_1a_2a_3 = 111$, we have $x_l = 2^{24} + 2^{22} - 2^{19}$ and $x_u = 2^{24} + 2^{22}$; so y lies between $(10001101001)_2$ and $(1000111100011)_2$. Furthermore y mod 2^5 must be 21 or 11. Again there are only four y's to try:

 $(1000110101011)_2, (1000110110101)_2, (1000111001011)_2, (1000111010101)_2.$

(And the first of these actually works! Its square is (1001110000010100000111001)₂.)

The program below actually finds it convenient to try a few cases that could have been ruled out by the arguments above. For example, it will try also $(100011110101)_2$ and $(100011110101)_2$ in the previous example.

4. We'll have to compute 2^t "modular square roots" q. Let q[j] be the square root of $2^{j+2}a_j + \cdots + 2^3a_1 + 1$ (modulo 2^{j+3}), and let qq[j] be the rightmost t+2 bits of its square. If j < t, q[j+1] will be either q[j] or $q[j] + 2^{j+1}$, depending on the (j+2)nd bit of qq[j].

When $a_1 \ldots a_t = 0 \ldots 0$, we have q[j] = qq[j] = 1 for all j. And when moving from any $a_1 \ldots a_t$ to its successor, we need only recompute a few of the entries — q[t] always, q[t-1] half the time, q[t-2] one-fourth of the time, etc.

 \langle Initialize the q and qq tables $4 \rangle \equiv$

for $(j = 1; j \le t; j \leftrightarrow p)$ q[j] = qq[j] = 1;This code is used in section 12.

5. $\langle \text{Update } q \text{ and } qq \text{ when } a_p \text{ changes from } 0 \text{ to } 1 \text{ 5} \rangle \equiv q[p] \oplus = 1_{\text{LL}} \ll (p+1);$ qq[p] = q[p] * q[p];for $(j = p+1; \ j \leq t; \ j++) \{$ if $(qq[j-1] \& (1_{\text{LL}} \ll (j+2))) \ q[j] = q[j-1] \oplus (1_{\text{LL}} \ll (j+1));$ else q[j] = q[j-1]; qq[j] = q[j] * q[j];}

This code is used in section 13.

§6 SQUAREPAL

6. Similarly, we'll have to compute 2^t approximate square roots for the leading bits of y. Let y[j] be bits m through j of $\sqrt{x_l}$, where $m = \lfloor n/2 \rfloor - 1$ is the index of the leading bit. The classical algorithm for square root extraction tells us how to go from y[j] to y[j-1]: We have a "remainder" r[j] representing the difference from the leading bits of x_l and $y[j]^2$, where $r[j] \leq 2y[j]$. To preserve this invariant when $a_1 \ldots a_t = 0 \ldots 0$, we set y[j-1] = 2y[j] and r[j-1] = 4r[j]; if then r[j-1] > 2y[j-1] we subtract 2y[j-1] + 1 from r[j-1] and increase y[j-1] by 1. To preserve the invariant for other values of $a_1 \ldots a_t$, the same steps apply except that $r[j-1] = 4r[j] + 2a_i + a_{i+1}$ for an appropriate value of i. The bits of the square root need only be computed for $j \geq t+2$; therefore all computations fit easily into a single **long long register**.

Once again it's easy to prime the pump when $a_1 \dots a_t = 0 \dots 0$, and to move to the successor by updating fewer than two entries on average (plus roughly n/8 entries "in the middle" where x_l has roughly n/4 zeros). (Initialize the y and r tables 6) \equiv

 $\begin{array}{l} \text{intrianize tile } y \text{ find } r \text{ tables } 0 r = \\ \text{if } (n \& 1) \\ y[(n-3)/2] = 2, r[(n-3)/2] = 0; \\ \text{for } (j = (n-5)/2; \ j \geq t+2; \ j--) \ y[j] = 2 * y[j+1], r[j] = 0; \\ \end{array} \\ \begin{array}{l} \text{else } \\ y[n/2-1] = 1, r[n/2-1] = 1; \\ \text{for } (j = n/2-2; \ j \geq t+2; \ j--) \\ y[j] = 2 * y[j+1], r[j] = 4 * r[j+1]; \\ \text{if } (r[j] > 2 * y[j]) \ r[j] = 2 * y[j] + 1, y[j] + ; \\ \end{array} \\ \end{array} \\ \end{array}$

This code is used in section 12.

7. $\langle \text{Update } y \text{ and } r \text{ when } a_p \text{ changes from 0 to 1 } 7 \rangle \equiv j = (n-3-p)/2;$ if ((n+p) & 1) r[j] += 1;else r[j] = 4 * r[j+1] + 2, y[j] = 2 * y[j+1];if (r[j] > 2 * y[j]) r[j] -= 2 * y[j] + 1, y[j] ++;for $(j--; j \ge t+2; j--) \{$ y[j] = 2 * y[j+1], r[j] = 4 * r[j+1];if (r[j] > 2 * y[j]) r[j] -= 2 * y[j] + 1, y[j] ++;}

This code is used in section 13.

4 INTRO

8. Now comes the boring stuff. I hope I don't mess up here. To make the final test, I'll need to square a number of up to 90 bits. I simply treat it as three 32-bit chunks, and multiply by the textbook method.

```
#define m32 #fffffff
                                 /* 32-bit mask */
\langle Square the contents of trial | 8 \rangle \equiv
  for (j = 0; j < 3; j ++) {
    prod = trial[j] * trial[0];
    if (j) prod += acc[j];
    acc[j] = prod \& m32;
    prod \gg = 32;
    prod += trial[j] * trial[1];
    if (j) prod += acc[j+1];
    acc[j+1] = prod \& m32;
    prod \gg = 32;
    prod += trial[j] * trial[2];
    if (j) prod += acc[j+2];
    acc[j+2] = prod \& m32;
    acc[j+3] = prod \gg 32;
  }
```

This code is used in section 14.

9. To manufacture the *trial*, I need to shift the leading digits appropriately and combine them with the trailing digits. First, I put the leading digits into *pretrial* and *trial*. (This can be tricky: If n = 129 or 130, so that t = 29, there are 34 leading digits; one of them will go into *trial*[0], 32 into *trial*[1], and one into *trial*[2].)

 \langle Shift the leading digits 9 $\rangle \equiv$

if (t+2 < 32) pretrial $[0] = (sqrtxl \ll (t+2)) \& m32$, pretrial $[1] = (sqrtxl \gg (30-t)) \& m32$; else pretrial [0] = 0, pretrial $[1] = (sqrtxl \ll (t-30)) \& m32$; trial $[2] = sqrtxl \gg (62-t)$; This code is used in section 13.

10. $\langle \text{Add } q[t] \text{ to the trial } 10 \rangle \equiv$ **if** $(t+2 \leq 32)$ trial[0] = pretrial[0] + q[t], trial[1] = pretrial[1]; **else** trial[0] = q[t] & m32, trial $[1] = pretrial[1] + (q[t] \gg 32)$; This code is used in section 13.

11. #define comp(x) $((1_{LL} \ll (t+2)) - (x))$

 $\langle \text{Add the complement of } q[t] \text{ to the trial } 11 \rangle \equiv \mathbf{if} \ (t+2 \leq 32) \ trial[0] = pretrial[0] + comp(q[t]), trial[1] = pretrial[1];$

else $trial[0] = comp(q[t]) \& m32, trial[1] = pretrial[1] + (comp(q[t]) \gg 32);$ This code is used in section 13.

12. I make $t = \lfloor (n-11)/4 \rfloor$. (It will be between 1 and 42.) $\langle \text{Choose } t \text{ and initialize the tables } 12 \rangle \equiv t = (n-11)/4;$ $\langle \text{Initialize the } q \text{ and } qq \text{ tables } 4 \rangle;$ $\langle \text{Initialize the } y \text{ and } r \text{ tables } 6 \rangle;$ This code is used in section 1.

§13 SQUAREPAL

}

13. And now at last the denouement, where we put everything together.

(See if case *a* leads to any square palindromes 13) \equiv

{ sqrtxl = y[t+2];for $(p = t, bit = 1; a \& bit; p - , bit \ll 1)$; (Update y and r when a_p changes from 0 to 1 7); if $(y[t+2] \ge sqrtxl+4)$ fprintf $(stderr, "Something's_uwrong_in_case_l%llx!\n", a);$ for $(; sqrtxl \le y[t+2]; sqrtxl ++)$ { \langle Shift the leading digits 9 \rangle ; $\langle \text{Add } q[t] \text{ to the trial } 10 \rangle;$ (Check if *trial* is a solution 14); $\langle \text{Add the complement of } q[t] \text{ to the trial } 11 \rangle;$ $\langle \text{Check if } trial \text{ is a solution } 14 \rangle;$ $\langle \text{Update } q \text{ and } qq \text{ when } a_p \text{ changes from 0 to 1 5} \rangle$ This code is used in section 1.

14. (Check if *trial* is a solution 14) \equiv \langle Square the contents of *trial* $| 8 \rangle$; for (j = 0, k = n - 1; j < k; j + k - k) { $jj = ((acc[j \gg 5] \& (1 \ll (j \& #1f))) \neq 0);$ $kk = ((acc[k \gg 5] \& (1 \ll (k \& #1f))) \neq 0);$ if $(jj \neq kk)$ break; if $(j \ge k)$ /* solution! */ printf("%0811x%0811x%0811x^2=%0811x%0811x%0811x%0811x%0811x%0811x%0811x], trial[2], trial[1], *trial*[0], *acc*[5], *acc*[4], *acc*[3], *acc*[2], *acc*[1], *acc*[0]); This code is used in section 13.

6 INDEX

15. Index.

 $a: \underline{1}.$ *acc*: 1, 8, 14. argc: $\underline{1}$, $\underline{2}$. $argv: \underline{1}, 2.$ bit: $\underline{1}$, $\underline{13}$. comp: $\underline{11}$. exit: 2. fprintf: 2, 13. $j: \underline{1}$. $jj: \underline{1}, \underline{14}.$ $\begin{array}{ll} \widehat{k}: & \underline{1}, \\ kk: & \underline{1}, & 14. \end{array}$ main: $\underline{1}$. maxn: $\underline{1}$, $\underline{2}$. $m32: \underline{8}, 9, 10, 11.$ $n: \underline{1}.$ $p: \underline{1}.$ *pretrial*: 1, 9, 10, 11. printf: 1, 14.prod: $\underline{1}$, 8. $q: \underline{1}.$ $qq: \underline{1}, 4, 5.$ $r: \underline{1}.$ sqrtxl: $\underline{1}$, $\underline{9}$, $\underline{13}$. sscanf: 2.stderr: 2, 13. $t: \underline{1}.$ *trial*: $\underline{1}$, 8, 9, 10, 11, 14. $y: \underline{1}.$

SQUAREPAL

(Add the complement of q[t] to the trial 11) Used in section 13.

 $\langle \text{Add } q[t] \text{ to the } trial | 10 \rangle$ Used in section 13.

 $\langle \text{Check if } trial \text{ is a solution } 14 \rangle$ Used in section 13.

 $\langle \text{Choose } t \text{ and initialize the tables } 12 \rangle$ Used in section 1.

 \langle Initialize the q and qq tables 4 \rangle Used in section 12.

(Initialize the y and r tables 6) Used in section 12.

 $\langle Process the command line 2 \rangle$ Used in section 1.

(See if case a leads to any square palindromes 13) Used in section 1.

 \langle Shift the leading digits 9 \rangle Used in section 13.

 \langle Square the contents of *trial* $8 \rangle$ Used in section 14.

 $\langle \text{Update } q \text{ and } qq \text{ when } a_p \text{ changes from 0 to 1 5} \rangle$ Used in section 13.

(Update y and r when a_p changes from 0 to 1 7) Used in section 13.

SQUAREPAL

	Section	Page
Intro		1
Index		6