81 SQUAREPAL INTRO 1

1. Intro. This program finds all odd n-bit palindromes z that are perfect squares, using roughly 27/4
steps of computation. Thus I hope to use it for n well over 100. The idea is to try all 2! combinations of the
rightmost and leftmost ¢ + 3 bits, for ¢t & n/4, and to use number theory to rule out the bad cases rather
quickly.

(When n = 100 I'll be using ¢t = 22. This program is a big improvement over the one I wrote in 2013; that
one used ¢ = 31 when n = 100, and ¢ &~ n/3 in general. Michael Coriand surprised me last week by claiming
that he had a method using only about n/4. At first I was mystified, baffled, stumped. But aha, I woke up
this morning with a good guess about what he’d discovered! He asked me to doublecheck his results; and I
can’t resist, even though I've got more than enough other things to do, because it’s fun to write useless code
like this.)

I haven’t optimized this program for computational speed. My main goal was to get it right, with my
personal time minimized. On the other hand I could easily have made it run a lot slower: I didn’t pass up
some “obvious” ways to avoid redundant computations.

#define mazn 180 /* T could go a little higher, but there won’t be time */

#include <stdio.h>
#include <stdlib.h>
int n; /* the length of palindromes sought */

unsigned long long y[mazn /2], r[maxn /2]; /* table of partial square roots */
unsigned long long ¢[mazn /4], gq[mazn /4]; /x table of partial modular sqrts */
unsigned long long pretrial[2], trial [3], acc[6]; /* multiplication workspace */

main (int argc, char xargv|])
{
register unsigned long long prod, sqrtxl, a, bit;
register int j, k. t,p,j7, kk;
(Process the command line 2);
printf ("Binary_ palindromic_squares with,%d bits:\n",n);
{Choose t and initialize the tables 12);
for (a=0; a <1pL < t; a++) (See if case a leads to any square palindromes 13);

2. (Process the command line 2) =

if (arge # 2V sscanf (argv[1],"%d", &n) # 1) {
forintf (stderr, "Usage: hs.n\n", argv[0]);
exit(—1);

}

if (n <15V n > mazn) {
forintf (stderr, "Sorry: n should be between 15 and %d.\n", mazn);
exit (—2);

}

This code is used in section 1.

2 INTRO SQUAREPAL 83

3. Here’s the theory: Let aqas...a; be a binary string, and suppose
x o= 2ol 42" Bay 4o 2" 3 g b 20 20, 4 2%y + 230 +1 = 3R

Let ¢y = 21 4 2n—4g, + 27 %y + .- 4+ 273, and x, = x; + 2" 3L.

It’s easy to prove by induction on ¢ that there’s a unique integer ¢ between 0 and 22 such that ¢ mod 4 = 1
and ¢® mod 2t13 = 2t+2q, + - - - + 2%a5 + 23a; + 1, whenever ¢t > 0. Hence the lower bits of the square root,
y mod 2!+2, must be either g or 242 — ¢.

On the other hand z; < < x,; hence \/z; < y < /z,. This tells us about the upper bits: We have
xy = x;(1 + 6), where § = 2”737/ z;; hence /x, — & = Vo (V1I+6 — 1) < 2 6/2 = 2"/ /o) <
2”*44/2(”’1)/2 = 27/2-7/2=t The integers between V27 and /z,, will therefore be distinct, modulo 2t+2,
if we have n/2 —7/2—t <t+2.

It follows that we need only check two potential values of ¥, for each of the 2 choices of aias . .. as, when
t > (n —11)/4. Furthermore, this estimate is somewhat crude; there won’t be many cases to try even if ¢ is
a bit smaller.

For example, let’s consider the case n = 25 and ¢ = 3. In the first case ajasaz = 000, we have x;
and z,, = 224 +219; 50 y lies between (1000000000000)2 and (1000000111111)5. Furthermore y mod 25 must
be 1 or 31. So the only possible square roots of a binary palindrome having the form (100000 . ..000001),
are

— 224

(1000000000001)2, (1000000011111), (1000000100001)2, (1000000111111),.

In the last case ajasas = 111, we have z; = 22 + 222 — 219 and z, = 22* + 2%22; so y lies between
(1000110101001)5 and (1000111100011),. Furthermore y mod 2° must be 21 or 11. Again there are only
four y’s to try:

(1000110101011), (1000110110101)2, (1000111001011)5, (1000111010101),.

(And the first of these actually works! Its square is (1001110000010100000111001)5.)

The program below actually finds it convenient to try a few cases that could have been ruled out by
the arguments above. For example, it will try also (1000111101011)5 and (1000111110101)5 in the previous
example.

4. We'll have to compute 2¢ “modular square roots” ¢. Let g[j] be the square root of 2j+2aj 44230, +1
(modulo 2773), and let qq[j] be the rightmost t + 2 bits of its square. If j < t, ¢[j + 1] will be either g[j] or
qlj] + 2%, depending on the (j + 2)nd bit of gq[j].

When ay...a; = 0...0, we have ¢[j] = ¢q[j] = 1 for all j. And when moving from any a; ...a; to its
successor, we need only recompute a few of the entries — ¢[t] always, g[t — 1] half the time, ¢[t — 2] one-fourth
of the time, etc.

(Initialize the ¢ and gq tables 4) =
for (j=1; j <t; j++) qlj] = @alj] = 1;

This code is used in section 12.

5. (Update g and ¢gg when a, changes from 0 to 1 5) =
qlpl =1L < (p+1);
qq[p] = alp] * q[p};
for (j=p+1; j<t; j++) {
if (qqj — 1] & (I < (1 +2))) qli] =qlj — 1] & (luL < (5 +1));
else g[j] = q[j —1];
qq(j] = ald] * aljl;

This code is used in section 13.

86 SQUAREPAL INTRO 3

6. Similarly, we’ll have to compute 2¢ approximate square roots for the leading bits of y. Let y[j] be bits
m through j of \/z;, where m = |n/2| — 1 is the index of the leading bit. The classical algorithm for square
root extraction tells us how to go from y[j] to y[j —1]: We have a “remainder” r[j] representing the difference
from the leading bits of z; and y[j]°, where r[j] < 2y[j]. To preserve this invariant when ay ...a; = 0...0,
we set y[j — 1] = 2y[j] and r[j — 1] = 4r[j]; if then r[j — 1] > 2y[j — 1] we subtract 2y[j — 1] + 1 from r[j — 1]
and increase y[j — 1] by 1. To preserve the invariant for other values of a; ... a;, the same steps apply except
that r[j — 1] = 4r[j] + 2a; + a;4+1 for an appropriate value of i. The bits of the square root need only be
computed for j > t + 2; therefore all computations fit easily into a single long long register.

Once again it’s easy to prime the pump when a1 ...a; = 0...0, and to move to the successor by updating
fewer than two entries on average (plus roughly n/8 entries “in the middle” where x; has roughly n/4 zeros).

(Initialize the y and r tables 6) =

if (n&1) {
yl(n =3)/2] = 2,r[(n - 3)/2] = 0;

} for (J;{: (n=5)/2 §>t+2 j—) yljl = 2xyli +1,7[5] = 0;
else
yln/2 =1 =1,r[n/2 -1 =1;
for (j=n/2—-2; j=t+2; j—) {

yli] = 2% ylji+ 11, rlj] = 4 %1l + 11

I > 22) 7] == 20l Ll

}

This code is used in section 12.

7. (Update y and r when a, changes from 0 to 1 7) =
j=(n-3-p)/%
if (n+p)&l) rlj] +=1;
else r[j] =4xr[j+1]+2,y[j] = 2% y[j + 1];
if (r[j] > 2+ ylj]) rlj] == 2xyli]+ 1, ylj]++;
for (j—; j>t+2 j—) {
ylil =2xylj+ 1],r[j] =4 r[j+ 1}
} if (rlj] >2xyli]) rlj] —=2*ylj] + L ylj]+

This code is used in section 13.

4 INTRO SQUAREPAL 68

8. Now comes the boring stuff. T hope I don’t mess up here. To make the final test, I'll need to square a
number of up to 90 bits. I simply treat it as three 32-bit chunks, and multiply by the textbook method.

#define m32 #ffffffff /% 32-bit mask =/

(Square the contents of trial 8) =

for (j=0; j <3; j++) {
prod = trial[j] * trial [0];
if (j) prod += acclj;
acclj] = prod & m32;
prod >= 32;
prod += trial[j] * trial [1];
if (j) prod += acclj + 1J;
acclj + 1] = prod & m32;
prod >= 32;
prod += trial[j] * trial [2];
if (§) prod += acclj +2J;
acclj + 2] = prod & m32;
acc[j + 3] = prod > 32;

}

This code is used in section 14.

9. To manufacture the trial, I need to shift the leading digits appropriately and combine them with the
trailing digits. First, I put the leading digits into pretrial and trial. (This can be tricky: If n = 129 or 130,
so that ¢ = 29, there are 34 leading digits; one of them will go into trial[0], 32 into trial[l], and one into
trial[2].)
(Shift the leading digits 9) =

if (t+2 < 32) pretrial[0] = (sqrizl < (t +2)) & m32, pretrial[1] = (sqrizl > (30 — t)) & m32;

else pretrial[0] = 0, pretrial[l] = (sgrtzl < (t —30)) & m32;

trial [2] = sqrtzl > (62 — t);

This code is used in section 13.

10. (Add g[t] to the trial 10) =
if (t4 2 < 32) trial[0] = pretrial[0] + q[t], trial[1] = pretrial [1];
else trial[0] = q[t] & m32, trial[1] = pretrial[1] + (q[t] > 32);

This code is used in section 13.

11. #define comp(z) ((1oL < (t+2)) — ()
(Add the complement of ¢[t] to the trial 11) =
if (t+4 2 < 32) trial[0] = pretrial[0] + comp(q[t]), trial[1] = pretrial[1];
else trial[0] = comp(q[t]) & m32, trial[1] = pretrial[1] + (comp(q[t]) > 32);

This code is used in section 13.

12. Imaket = [(n—11)/4]. (It will be between 1 and 42.)
(Choose t and initialize the tables 12) =

t=(n—11)/4;

(Initialize the ¢ and gq tables 4);

(Initialize the y and r tables 6);

This code is used in section 1.

813 SQUAREPAL INTRO 5

13. And now at last the denouement, where we put everything together.

(See if case a leads to any square palindromes 13) =
{
sqrizl = y[t + 2J;
for (p=1t,bit =1; a& bit; p—, bit <=1) ;
(Update y and r when a, changes from 0 to 1 7);
if (y[t + 2] > sqrtal + 4) fprintf (stderr, "Something’ s wrong in case_ %11x!'\n",a);
for (; sqrtzl <ylt+ 2]; sqrtal++) {
(Shift the leading digits 9);
(Add ¢[t] to the trial 10);
(Check if trial is a solution 14);
(Add the complement of ¢[t] to the trial 11);
(Check if trial is a solution 14);

}

(Update ¢ and ¢g¢ when a, changes from 0 to 1 5)

}

This code is used in section 1.

14. (Check if trial is a solution 14) =
(Square the contents of trial 8);
for (j=0k=n—-1; j<k; j++,k—) {
i = ((acelj > 5 & (1 < (j & #1£))) # 0);
kk = ((acclk > 5] & (1 < (k & #1£))) # 0);
if (jj # kk) break;

if (j > k) /% solution! */
printf ("%0811x%0811x%0811x"2=%0811x%0811x%0811x%0811x%0811x%0811x\n", trial [2], trial[1],
trial[0], acc[5], acc[4], acc[3], acc[2], acc[1], acc[0]);

This code is used in section 13.

6 INDEX
15. Index.
a: 1.

acc: 1, 8, 14.
arge: 1, 2.
argv: 1, 2.
bit: 1, 13.
comp: 11.
exit: 2.
forintf: 2, 13.
7o 1.

g7 1, 14.

k: 1.

kk: 1, 14.
main: 1.

mazn: 1, 2.

m32: §, 9, 10, 11.
n:
p: 1
pretrial: 1, 9, 10, 11.
printf: 1, 14.

prod: 1, 8.

q 1.

qq: 1, 4, 5.

r: 1.

sqrtzl: 1, 9, 13.
sscanf: 2.

stderr: 2, 13.

t: 1.

1.
1.

trial: 1, 8, 9, 10, 11, 14.

y: 1.

SQUAREPAL

§15

SQUAREPAL NAMES OF THE SECTIONS

(Add the complement of ¢[t] to the ¢rial 11) Used in section 13.
(Add ¢[t] to the trial 10) Used in section 13.

(Check if trial is a solution 14) Used in section 13.

(Choose t and initialize the tables 12) Used in section 1.

(Initialize the ¢ and gq tables 4) Used in section 12.

(Initialize the y and r tables 6) Used in section 12.

(Process the command line 2) Used in section 1.

(See if case a leads to any square palindromes 13) Used in section 1.
(Shift the leading digits 9) Used in section 13.

(Square the contents of ¢rial 8) Used in section 14.

(Update ¢ and qgq when a, changes from 0 to 1 5) Used in section 13.
(Update y and r when a, changes from 0 to 1 7) Used in section 13.

SQUAREPAL

Section Page

	Intro
	Index
	Names of the sections
	Add the complement of q[t] to the trial
	Add q[t] to the trial
	Check if trial is a solution
	Choose t and initialize the tables
	Initialize the q and qq tables
	Initialize the y and r tables
	Process the command line
	See if case a leads to any square palindromes
	Shift the leading digits
	Square the contents of trial
	Update q and qq when a_p changes from 0 to 1
	Update y and r when a_p changes from 0 to 1

