
§1 SQUAREPAL INTRO 1

1. Intro. This program finds all odd n-bit palindromes x that are perfect squares, using roughly 2n/4

steps of computation. Thus I hope to use it for n well over 100. The idea is to try all 2t combinations of the
rightmost and leftmost t + 3 bits, for t ≈ n/4, and to use number theory to rule out the bad cases rather
quickly.

(When n = 100 I’ll be using t = 22. This program is a big improvement over the one I wrote in 2013; that
one used t = 31 when n = 100, and t ≈ n/3 in general. Michael Coriand surprised me last week by claiming
that he had a method using only about n/4. At first I was mystified, baffled, stumped. But aha, I woke up
this morning with a good guess about what he’d discovered! He asked me to doublecheck his results; and I
can’t resist, even though I’ve got more than enough other things to do, because it’s fun to write useless code
like this.)

I haven’t optimized this program for computational speed. My main goal was to get it right, with my
personal time minimized. On the other hand I could easily have made it run a lot slower: I didn’t pass up
some “obvious” ways to avoid redundant computations.

#define maxn 180 /∗ I could go a little higher, but there won’t be time ∗/
#include <stdio.h>

#include <stdlib.h>

int n; /∗ the length of palindromes sought ∗/
unsigned long long y[maxn/2], r[maxn/2]; /∗ table of partial square roots ∗/
unsigned long long q[maxn/4], qq [maxn/4]; /∗ table of partial modular sqrts ∗/
unsigned long long pretrial [2], trial [3], acc [6]; /∗ multiplication workspace ∗/
main (int argc , char ∗argv [])
{

register unsigned long long prod , sqrtxl , a, bit ;
register int j, k, t, p, jj , kk ;

〈Process the command line 2 〉;
printf ("Binary palindromic squares with %d bits:\n", n);
〈Choose t and initialize the tables 12 〉;
for (a = 0; a < 1LL � t; a++) 〈See if case a leads to any square palindromes 13 〉;
}

2. 〈Process the command line 2 〉 ≡
if (argc 6= 2 ∨ sscanf (argv [1], "%d",&n) 6= 1) {
fprintf (stderr , "Usage: %s n\n", argv [0]);
exit (−1);
}
if (n < 15 ∨ n > maxn) {
fprintf (stderr , "Sorry: n should be between 15 and %d.\n",maxn);
exit (−2);
}

This code is used in section 1.

2 INTRO SQUAREPAL §3

3. Here’s the theory: Let a1a2 . . . at be a binary string, and suppose

x = 2n−1 + 2n−4a1 + 2n−5a2 + · · ·+ 2n−3−tat + · · ·+ 2t+2at + · · ·+ 24a2 + 23a1 + 1 = y2.

Let xl = 2n−1 + 2n−4a1 + 2n−5a2 + · · ·+ 2n−3−tat and xu = xl + 2n−3−t.
It’s easy to prove by induction on t that there’s a unique integer q between 0 and 2t+2 such that q mod 4 = 1

and q2 mod 2t+3 = 2t+2at + · · ·+ 24a2 + 23a1 + 1, whenever t > 0. Hence the lower bits of the square root,
y mod 2t+2, must be either q or 2t+2 − q.

On the other hand xl < x < xu; hence
√
xl < y <

√
xu. This tells us about the upper bits: We have

xu = xl(1 + δ), where δ = 2n−3−t/xl; hence
√
xu −

√
xl =

√
xl
(√

1 + δ − 1
)
<
√
xl δ/2 = 2n−4−t/

√
xl ≤

2n−4−t/2(n−1)/2 = 2n/2−7/2−t. The integers between
√
xl and

√
xu will therefore be distinct, modulo 2t+2,

if we have n/2− 7/2− t ≤ t+ 2.
It follows that we need only check two potential values of y, for each of the 2t choices of a1a2 . . . at, when

t ≥ (n− 11)/4. Furthermore, this estimate is somewhat crude; there won’t be many cases to try even if t is
a bit smaller.

For example, let’s consider the case n = 25 and t = 3. In the first case a1a2a3 = 000, we have xl = 224

and xu = 224 + 219; so y lies between (1000000000000)2 and (1000000111111)2. Furthermore y mod 25 must
be 1 or 31. So the only possible square roots of a binary palindrome having the form (100000 . . . 000001)2
are

(1000000000001)2, (1000000011111)2, (1000000100001)2, (1000000111111)2.

In the last case a1a2a3 = 111, we have xl = 224 + 222 − 219 and xu = 224 + 222; so y lies between
(1000110101001)2 and (1000111100011)2. Furthermore y mod 25 must be 21 or 11. Again there are only
four y’s to try:

(1000110101011)2, (1000110110101)2, (1000111001011)2, (1000111010101)2.

(And the first of these actually works! Its square is (1001110000010100000111001)2.)
The program below actually finds it convenient to try a few cases that could have been ruled out by

the arguments above. For example, it will try also (1000111101011)2 and (1000111110101)2 in the previous
example.

4. We’ll have to compute 2t “modular square roots” q. Let q[j] be the square root of 2j+2aj + · · ·+23a1 +1
(modulo 2j+3), and let qq [j] be the rightmost t+ 2 bits of its square. If j < t, q[j + 1] will be either q[j] or
q[j] + 2j+1, depending on the (j + 2)nd bit of qq [j].

When a1 . . . at = 0 . . . 0, we have q[j] = qq [j] = 1 for all j. And when moving from any a1 . . . at to its
successor, we need only recompute a few of the entries — q[t] always, q[t−1] half the time, q[t−2] one-fourth
of the time, etc.

〈 Initialize the q and qq tables 4 〉 ≡
for (j = 1; j ≤ t; j++) q[j] = qq [j] = 1;

This code is used in section 12.

5. 〈Update q and qq when ap changes from 0 to 1 5 〉 ≡
q[p] ⊕= 1LL � (p+ 1);
qq [p] = q[p] ∗ q[p];
for (j = p+ 1; j ≤ t; j++) {

if (qq [j − 1] & (1LL � (j + 2))) q[j] = q[j − 1]⊕ (1LL � (j + 1));
else q[j] = q[j − 1];
qq [j] = q[j] ∗ q[j];
}

This code is used in section 13.

§6 SQUAREPAL INTRO 3

6. Similarly, we’ll have to compute 2t approximate square roots for the leading bits of y. Let y[j] be bits
m through j of

√
xl, where m = bn/2c − 1 is the index of the leading bit. The classical algorithm for square

root extraction tells us how to go from y[j] to y[j−1]: We have a “remainder” r[j] representing the difference

from the leading bits of xl and y[j]
2
, where r[j] ≤ 2y[j]. To preserve this invariant when a1 . . . at = 0 . . . 0,

we set y[j − 1] = 2y[j] and r[j − 1] = 4r[j]; if then r[j − 1] > 2y[j − 1] we subtract 2y[j − 1] + 1 from r[j − 1]
and increase y[j−1] by 1. To preserve the invariant for other values of a1 . . . at, the same steps apply except
that r[j − 1] = 4r[j] + 2ai + ai+1 for an appropriate value of i. The bits of the square root need only be
computed for j ≥ t+ 2; therefore all computations fit easily into a single long long register.

Once again it’s easy to prime the pump when a1 . . . at = 0 . . . 0, and to move to the successor by updating
fewer than two entries on average (plus roughly n/8 entries “in the middle” where xl has roughly n/4 zeros).

〈 Initialize the y and r tables 6 〉 ≡
if (n& 1) {
y[(n− 3)/2] = 2, r[(n− 3)/2] = 0;
for (j = (n− 5)/2; j ≥ t+ 2; j−−) y[j] = 2 ∗ y[j + 1], r[j] = 0;
} else {
y[n/2− 1] = 1, r[n/2− 1] = 1;
for (j = n/2− 2; j ≥ t+ 2; j−−) {
y[j] = 2 ∗ y[j + 1], r[j] = 4 ∗ r[j + 1];
if (r[j] > 2 ∗ y[j]) r[j] −= 2 ∗ y[j] + 1, y[j]++;

}
}

This code is used in section 12.

7. 〈Update y and r when ap changes from 0 to 1 7 〉 ≡
j = (n− 3− p)/2;
if ((n+ p) & 1) r[j] += 1;
else r[j] = 4 ∗ r[j + 1] + 2, y[j] = 2 ∗ y[j + 1];
if (r[j] > 2 ∗ y[j]) r[j] −= 2 ∗ y[j] + 1, y[j]++;
for (j−−; j ≥ t+ 2; j−−) {
y[j] = 2 ∗ y[j + 1], r[j] = 4 ∗ r[j + 1];
if (r[j] > 2 ∗ y[j]) r[j] −= 2 ∗ y[j] + 1, y[j]++;
}

This code is used in section 13.

4 INTRO SQUAREPAL §8

8. Now comes the boring stuff. I hope I don’t mess up here. To make the final test, I’ll need to square a
number of up to 90 bits. I simply treat it as three 32-bit chunks, and multiply by the textbook method.

#define m32 #ffffffff /∗ 32-bit mask ∗/
〈Square the contents of trial 8 〉 ≡

for (j = 0; j < 3; j++) {
prod = trial [j] ∗ trial [0];
if (j) prod += acc [j];
acc [j] = prod & m32 ;
prod �= 32;
prod += trial [j] ∗ trial [1];
if (j) prod += acc [j + 1];
acc [j + 1] = prod & m32 ;
prod �= 32;
prod += trial [j] ∗ trial [2];
if (j) prod += acc [j + 2];
acc [j + 2] = prod & m32 ;
acc [j + 3] = prod � 32;
}

This code is used in section 14.

9. To manufacture the trial , I need to shift the leading digits appropriately and combine them with the
trailing digits. First, I put the leading digits into pretrial and trial . (This can be tricky: If n = 129 or 130,
so that t = 29, there are 34 leading digits; one of them will go into trial [0], 32 into trial [1], and one into
trial [2].)

〈Shift the leading digits 9 〉 ≡
if (t+ 2 < 32) pretrial [0] = (sqrtxl � (t+ 2)) & m32 , pretrial [1] = (sqrtxl � (30− t)) & m32 ;
else pretrial [0] = 0, pretrial [1] = (sqrtxl � (t− 30)) & m32 ;
trial [2] = sqrtxl � (62− t);

This code is used in section 13.

10. 〈Add q[t] to the trial 10 〉 ≡
if (t+ 2 ≤ 32) trial [0] = pretrial [0] + q[t], trial [1] = pretrial [1];
else trial [0] = q[t] & m32 , trial [1] = pretrial [1] + (q[t]� 32);

This code is used in section 13.

11. #define comp(x) ((1LL � (t+ 2))− (x))

〈Add the complement of q[t] to the trial 11 〉 ≡
if (t+ 2 ≤ 32) trial [0] = pretrial [0] + comp(q[t]), trial [1] = pretrial [1];
else trial [0] = comp(q[t]) & m32 , trial [1] = pretrial [1] + (comp(q[t])� 32);

This code is used in section 13.

12. I make t = b(n− 11)/4c. (It will be between 1 and 42.)

〈Choose t and initialize the tables 12 〉 ≡
t = (n− 11)/4;
〈 Initialize the q and qq tables 4 〉;
〈 Initialize the y and r tables 6 〉;

This code is used in section 1.

§13 SQUAREPAL INTRO 5

13. And now at last the denouement, where we put everything together.

〈See if case a leads to any square palindromes 13 〉 ≡
{
sqrtxl = y[t+ 2];
for (p = t, bit = 1; a& bit ; p−−, bit �= 1) ;
〈Update y and r when ap changes from 0 to 1 7 〉;
if (y[t+ 2] ≥ sqrtxl + 4) fprintf (stderr , "Something’s wrong in case %llx!\n", a);
for (; sqrtxl ≤ y[t+ 2]; sqrtxl ++) {
〈Shift the leading digits 9 〉;
〈Add q[t] to the trial 10 〉;
〈Check if trial is a solution 14 〉;
〈Add the complement of q[t] to the trial 11 〉;
〈Check if trial is a solution 14 〉;

}
〈Update q and qq when ap changes from 0 to 1 5 〉
}

This code is used in section 1.

14. 〈Check if trial is a solution 14 〉 ≡
〈Square the contents of trial 8 〉;
for (j = 0, k = n− 1; j < k; j++, k−−) {
jj = ((acc [j � 5] & (1� (j & #1f))) 6= 0);
kk = ((acc [k � 5] & (1� (k & #1f))) 6= 0);
if (jj 6= kk) break;
}
if (j ≥ k) /∗ solution! ∗/
printf ("%08llx%08llx%08llx^2=%08llx%08llx%08llx%08llx%08llx%08llx\n", trial [2], trial [1],

trial [0], acc [5], acc [4], acc [3], acc [2], acc [1], acc [0]);

This code is used in section 13.

6 INDEX SQUAREPAL §15

15. Index.

a: 1.
acc : 1, 8, 14.
argc : 1, 2.
argv : 1, 2.
bit : 1, 13.
comp : 11.
exit : 2.
fprintf : 2, 13.
j: 1.
jj : 1, 14.
k: 1.
kk : 1, 14.
main : 1.
maxn : 1, 2.
m32 : 8, 9, 10, 11.
n: 1.
p: 1.
pretrial : 1, 9, 10, 11.
printf : 1, 14.
prod : 1, 8.
q: 1.
qq : 1, 4, 5.
r: 1.
sqrtxl : 1, 9, 13.
sscanf : 2.
stderr : 2, 13.
t: 1.
trial : 1, 8, 9, 10, 11, 14.
y: 1.

SQUAREPAL NAMES OF THE SECTIONS 7

〈Add the complement of q[t] to the trial 11 〉 Used in section 13.

〈Add q[t] to the trial 10 〉 Used in section 13.

〈Check if trial is a solution 14 〉 Used in section 13.

〈Choose t and initialize the tables 12 〉 Used in section 1.

〈 Initialize the q and qq tables 4 〉 Used in section 12.

〈 Initialize the y and r tables 6 〉 Used in section 12.

〈Process the command line 2 〉 Used in section 1.

〈See if case a leads to any square palindromes 13 〉 Used in section 1.

〈Shift the leading digits 9 〉 Used in section 13.

〈Square the contents of trial 8 〉 Used in section 14.

〈Update q and qq when ap changes from 0 to 1 5 〉 Used in section 13.

〈Update y and r when ap changes from 0 to 1 7 〉 Used in section 13.

SQUAREPAL

Section Page
Intro . 1 1
Index . 15 6

	Intro
	Index
	Names of the sections
	Add the complement of q[t] to the trial
	Add q[t] to the trial
	Check if trial is a solution
	Choose t and initialize the tables
	Initialize the q and qq tables
	Initialize the y and r tables
	Process the command line
	See if case a leads to any square palindromes
	Shift the leading digits
	Square the contents of trial
	Update q and qq when a_p changes from 0 to 1
	Update y and r when a_p changes from 0 to 1

