
§1 SPSPAN INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program generates all spanning trees of a given series-parallel graph, changing
only one edge at a time, using an interesting algorithm.
The given graph is specified using a simple right-Polish syntax

G → − | GG s | GG p

so that, for example, the specifications −−−−ps−sp−−sp and −−−−p−ss−−spp both denote the graph

a

b

c

d

e

f g

which can also be represented as a tree:

A

a B D

b C e f g

c d

Branch nodes of the tree are either S nodes or P nodes, alternating from level to level.
As we do the computation, we count the total number of spanning trees that were generated and the total

number of memory references that were needed.

#define o mems ++

#define oo mems += 2
#define ooo mems += 3
#define oooo mems += 4
#define call oo /∗ let’s say that a subroutine call costs two mems ∗/
#define verbose (argc > 2) /∗ show the edges of each spanning tree ∗/
#define extraverbose (argc > 3) /∗ show inner workings of the program ∗/
#include <stdio.h>

⟨Type definitions 6 ⟩
⟨Global variables 3 ⟩
unsigned int trees ,mems ;

⟨ Subroutines 9 ⟩
main (int argc , char ∗argv [ ])
{
register int j, k;

if (argc ≡ 1) {
fprintf (stderr , "Usage:␣%s␣SPformula␣[[gory]␣details]\n", argv [0]); exit (0);

}
⟨Parse the formula argv [1] and set up the tree structure 2 ⟩;
⟨Prepare the first spanning tree 14 ⟩;
printf ("␣(%u␣mems␣to␣get␣started)\n",mems ); mems = 0;
⟨Do the algorithm 29 ⟩;
printf ("Altogether␣%u␣spanning␣trees,␣%u␣additional␣mems.\n", trees ,mems );

}

https://cs.stanford.edu/~knuth/programs.html


2 PARSING AND PREPARATION SPSPAN §2

2. Parsing and preparation. We begin by converting the Polish notation into a binary tree.
In the following code, we have scanned j binary operators and there are k items on the stack.

#define abort (mess )
{ fprintf (stderr , "Parsing␣error:␣%.*s|%s,␣%s!\n", p− argv [1], argv [1], p,mess ); exit (−1); }

⟨Parse the formula argv [1] and set up the tree structure 2 ⟩ ≡
{
register char ∗p = argv [1];

for (j = k = 0; ∗p; p++)
if (∗p ≡ ’−’) ⟨Create a new leaf 4 ⟩
else if (∗p ≡ ’s’ ∨ ∗p ≡ ’p’) ⟨Create a new branch 5 ⟩
else abort ("bad␣symbol");

if (k ̸= 1) abort ("disconnected␣graph");
⟨Create the main tree 8 ⟩;

}
This code is used in section 1.

3. #define maxn 1000 /∗ the maximum number of leaves; not checked ∗/
⟨Global variables 3 ⟩ ≡
int stack [maxn ]; /∗ stack for parsing ∗/
int llink [maxn ], rlink [maxn ]; /∗ binary subtrees ∗/

See also section 7.

This code is used in section 1.

4. Mems are not counted in this phase of the operation, because the program is essentially assumed to
begin with the graph represented as a tree.

⟨Create a new leaf 4 ⟩ ≡
stack [k++] = 0;

This code is used in section 2.

5. ⟨Create a new branch 5 ⟩ ≡
{
if (k < 2) abort ("missing␣operand");
rlink [++j] = stack [−−k];
llink [j] = stack [k − 1];
stack [k − 1] = (∗p ≡ ’s’ ? #100 : 0) + j;

}
This code is used in section 2.

6. Now we convert the binary tree to the desired working tree, whose branch nodes appear in preorder.

⟨Type definitions 6 ⟩ ≡
typedef struct node struct {
int typ ; /∗ 1 for series nodes, otherwise 0 ∗/
struct node struct ∗lchild ; /∗ leftmost child; Λ for a leaf ∗/
struct node struct ∗rchild ; /∗ rightmost child; Λ for a leaf ∗/
struct node struct ∗rsib ; /∗ right sibling; wraps around cyclically ∗/
⟨Additional fields of a node 13 ⟩

} node;

This code is used in section 1.



§7 SPSPAN PARSING AND PREPARATION 3

7. The first half of nodelist contains up to maxn leaves; the other half contains up to maxn branches.

⟨Global variables 3 ⟩ +≡
node nodelist [maxn +maxn ]; /∗ nodes of the tree ∗/
node ∗curleaf ; /∗ the leftmost not-yet-allocated leaf node ∗/
node ∗curnode ; /∗ the rightmost allocated branch node ∗/
node ∗root , ∗topnode ; /∗ root of the tree and its parent ∗/

8. A recursive subroutine called build will govern the construction process.

#define isleaf (p) ((p) < nodelist +maxn )

⟨Create the main tree 8 ⟩ ≡
curleaf = nodelist ;
topnode = curnode = nodelist +maxn ;
curnode⃗ typ = 2; /∗ special typ code for the outer level ∗/
root = build (stack [0], curnode );
root⃗ rsib = root ; /∗ unnecessary but tidy ∗/

This code is used in section 2.

9. When we build a leaf node, we simply allocate it. When we build a branch node, we link its children
together via their sibling links.
Only one complication arises: We must prevent serial nodes from having serial children and parallel nodes

from having parallel children. In such cases the child’s family is merged with that of the parent, and the
child goes away.

⟨ Subroutines 9 ⟩ ≡
node ∗build (int stackitem ,node ∗par )
{
register node ∗p, ∗l, ∗r, ∗lc , ∗rc ;
register int t, j;

if (stackitem ≡ 0) return curleaf ++;
t = stackitem ≫ 8, j = stackitem & #ff; /∗ type and location of a binary op ∗/
if (t ̸= par⃗ typ) p = ++curnode , p⃗ typ = t;
else p = par ;
l = build (llink [j], p), lc = l⃗ lchild , rc = l⃗ rchild , r = build (rlink [j], p);
if (l ≡ p) ⟨ Incorporate left child into node p 11 ⟩
else if (r ≡ p) ⟨ Incorporate right child into node p 10 ⟩
else p⃗ lchild = l, p⃗ rchild = r, l⃗ rsib = r, r⃗ rsib = l;
return p;

}
See also sections 15, 16, 17, 18, and 19.

This code is used in section 1.

10. ⟨ Incorporate right child into node p 10 ⟩ ≡
r = p⃗ lchild , p⃗ lchild = l, l⃗ rsib = r, p⃗ rchild⃗rsib = l;

This code is used in section 9.

11. ⟨ Incorporate left child into node p 11 ⟩ ≡
if (r ≡ p) ⟨ Incorporate both children into node p 12 ⟩
else p⃗ rchild = r, rc⃗ rsib = r, r⃗ rsib = lc ;

This code is used in section 9.



4 PARSING AND PREPARATION SPSPAN §12

12. ⟨ Incorporate both children into node p 12 ⟩ ≡
rc⃗ rsib = p⃗ lchild , p⃗ lchild = lc , p⃗ rchild⃗rsib = lc ;

This code is used in section 11.

13. OK, the tree has been set up; our next goal is to decorate it. First let’s take a closer look at the
problem we’re trying to solve.
Each node of the tree corresponds to a series-parallel graph between two vertices u and v, in a straight-

forward way: A leaf is a single edge u−−−v. A nonleaf node p corresponds to a “superedge” formed from the
edges or superedges u1−−−v1, . . . , uk−−−vk of its k ≥ 2 children. If p is a series node, its children are joined
so that vj = uj+1 for 1 ≤ j < k; if p is a parallel node, its children are joined together so that u1 = · · · = uk

and v1 = · · · = vk. In both cases p is then considered to be a superedge between u1 and vk.
Let us say that a near-spanning tree of a series-parallel graph between u and v is a spanning forest that

has exactly two components, where u and v lie in different components.
If p is a series superedge, its spanning trees are spanning trees of all its children; its near-spanning trees

are obtained by designating some child, then constructing a near-spanning tree for that child and a spanning
tree for each of the other children.
If p is a parallel superedge, the roles are reversed: Its near-spanning trees are near-spanning trees of all

its children; its spanning trees are obtained by designating some child, then constructing a spanning tree for
that child and a near-spanning tree for each of the other children.
We shall assign a Boolean value p⃗ val to each leaf node p, specifying whether the corresponding edge is

present or absent in the current spanning tree being considered. The p⃗ val field of a branch node, similarly,
will specify whether the corresponding superedge currently has a spanning tree or a near-spanning tree.
In the following algorithm every branch node p has a designated child, p⃗ des , with the property that

p⃗ val = p⃗ des⃗ val .
Only certain combinations of values are legal; the legal ones, according to the discussion above, are

characterized by two rules:
All non-designated children of a series node have value 1;
All non-designated children of a parallel node have value 0.

In other words, if q is the parent of node p,

p⃗ val =

{
q⃗ val , if p = q⃗ des ;

q⃗ typ , if p ̸= q⃗ des .

For any choice of the designated children, we obtain a unique spanning tree or near-spanning tree for node p
by setting p⃗ val to 1 or 0, respectively, and using this equation to propagate values down to the leaves.
Thus we can generate all the spanning trees of the graph (namely the spanning trees corresponding to

the root node) by setting root⃗ val = 1 and considering all possible settings of designated children p⃗ des
throughout the tree.
However, many settings of the p⃗ des pointers will produce the same result: The value of p⃗ des is irrelevant

for serial nodes of value 1 and for parallel nodes of value 0. We will return to this problem later; meanwhile
let’s put the necessary information into our data structure.

⟨Additional fields of a node 13 ⟩ ≡
int val ; /∗ 0 = off, open, near-spanning; 1 = on, closed, spanning ∗/
struct node struct ∗des ; /∗ the designated child ∗/

See also sections 22 and 25.

This code is used in section 6.



§14 SPSPAN PARSING AND PREPARATION 5

14. To start things off, we might as well designate each node’s leftmost child.
Mems are computed under the assumption that a node’s typ and val can be fetched and stored in a single

operation.

⟨Prepare the first spanning tree 14 ⟩ ≡
o, topnode⃗ typ = 1;
call , init tree (root , topnode );
trees = 1;
if (verbose ) ⟨Print the first tree 20 ⟩;

This code is used in section 1.

15. A few amendments to the data structure will be desirable later, but we’re ready now to write most of
the tree-initializing routine.

⟨ Subroutines 9 ⟩ +≡
void init tree (node ∗p,node ∗par ) /∗ par is the parent of p ∗/
{
register node ∗q;
ooo , p⃗ val = (par⃗des ≡ p ? par⃗val : par⃗ typ);
if (isleaf (p)) ⟨Further initialization of a leaf node 26 ⟩
else {
oo , p⃗ des = p⃗ lchild ;
for (q = p⃗ lchild ; ; q = q⃗ rsib ) {
call , init tree (q, p);
if (o, q⃗ rsib ≡ p⃗ lchild ) break;

}
⟨Further initialization of a branch node 27 ⟩;

}
}



6 DIAGNOSTIC ROUTINES SPSPAN §16

16. Diagnostic routines. Several simple subroutines are used to print all or part of our data structure,
as aids to debugging and/or when the user wants to examine all the spanning trees.
We name the leaves a, b, c, etc., and the branches A, B, C, etc., as in the example at the beginning of this

program.
When I’m debugging this program I plan to save keystrokes and mental energy by typing, say, xx (’A’)

when I want a pointer to node A.

#define leafname (p) (’a’ + ((p)− nodelist ))
#define branchname (p) (’A’ + ((p)− root ))
#define nodename (p) (isleaf (p) ? leafname (p) : branchname (p))

⟨ Subroutines 9 ⟩ +≡
node ∗xx (char c)
{
if (c ≥ ’a’) return nodelist + (c− ’a’);
return nodelist +maxn + (c− ’@’);

}

17. ⟨ Subroutines 9 ⟩ +≡
void printleaf (node ∗p)
{
printf ("%c:%c␣rsib=%c\n", leafname (p), p⃗ val + ’0’,nodename (p⃗ rsib ));

}
void printbranch (node ∗p)
{
printf ("%c:%c␣rsib=%c␣lchild=%c␣des=%c␣rchild=%c", branchname (p), p⃗ val + ’0’,

nodename (p⃗ rsib ),nodename (p⃗ lchild ),nodename (p⃗ des ),nodename (p⃗ rchild ));
⟨Print additional fields of a branch node 28 ⟩;
printf ("\n");

}
void printnode (node ∗p)
{
if (isleaf (p)) printleaf (p);
else printbranch (p);

}

18. ⟨ Subroutines 9 ⟩ +≡
void printtree (node ∗p, int indent )
{
register node ∗q;
register int k;

for (k = 0; k < indent ; k++) printf ("␣");
printnode (p);
if (¬isleaf (p))
for (q = p⃗ lchild ; ; q = q⃗ rsib ) {
printtree (q, indent + 1);
if (q⃗ rsib ≡ p⃗ lchild ) break;

}
}



§19 SPSPAN DIAGNOSTIC ROUTINES 7

19. ⟨ Subroutines 9 ⟩ +≡
void printedges (node ∗p) /∗ print the leaves whose value is 1 ∗/
{
register node ∗q;
if (isleaf (p)) {
if (p⃗ val ) printf ("%c", leafname (p));

} else for (q = p⃗ lchild ; ; q = q⃗ rsib ) {
printedges (q);
if (q⃗ rsib ≡ p⃗ lchild ) break;

}
}

20. ⟨Print the first tree 20 ⟩ ≡
{
if (extraverbose ) printtree (root , 0);
printf ("The␣first␣spanning␣tree␣is␣");
printedges (root );
printf (".\n");

}
This code is used in section 14.



8 OVERVIEW OF THE ALGORITHM SPSPAN §21

21. Overview of the algorithm. A branch node p will be called easy if p⃗ val = p⃗ typ . In such cases
the designated child p⃗ des has no effect on the spanning tree or near-spanning tree, because all children have
the same value.
Let’s say for convenience that the configs of p are its spanning trees if p⃗ val = 1, its near-spanning trees

if p⃗ val = 0. Our problem is to generate all configs of the root.
If p is easy, its configs are the Cartesian product of the configs of its children. But if p is uneasy, its configs

are the union of such Cartesian products, taken over all possible choices of p⃗ des .
Easy nodes are relatively rare: At most one child of an uneasy node (namely the designated child) can be

easy, and all children of easy nodes are uneasy unless they are leaves.

#define easy (p) o, p⃗ typ ≡ p⃗ val

22. Cartesian products of configurations are easily generated in Gray-code order, using essentially a mixed-
radix Gray code for n-tuples. (See Section 7.2.1.1 of The Art of Computer Programming.) In this program
I’m using a “modular” code instead of a “reflected” one, because the modular code requires only rsib links
to cycle through the possible choices of p⃗ des .

Let’s include a new field p⃗ leaf in each node, pointing to the leaf that lies at the end of the path from p
to its designated descendants p⃗ des , p⃗ des⃗ des , etc. All the val fields on this path are the same as p⃗ val .
When p⃗ des is changed from one child to another, say from q to r, only two edge values of the overall

spanning tree are affected. Namely, we have q⃗ typ ̸= p⃗ typ and r⃗ typ = p⃗ typ , so q⃗ leaf⃗val becomes r⃗ typ
and r⃗ leaf⃗val becomes q⃗ typ . Therefore such a change is pleasantly “Gray.”

⟨Additional fields of a node 13 ⟩ +≡
struct node struct ∗leaf ; /∗ the end of the designated path ∗/
struct node struct ∗parent ; /∗ parent of this node ∗/

23. These considerations lead us to the following algorithm to generate all spanning trees: Begin with all
uneasy branch nodes active. Then repeatedly

1) Select the rightmost active node, p, in preorder.

2) Change p⃗ des to p⃗ des⃗ rsib , update all values of the tree, and visit the new spanning tree.

3) Activate all uneasy nodes to the right of p.

4) If p⃗ des has run through all children of p since p last became active, make node p passive.

A field p⃗ done is introduced in order to implement step (4): Node p becomes passive when p⃗ des = p⃗ done ,
and at such a time we reset p⃗ done to the previous value of p⃗ des .

Actually p⃗ done is initially equal to p⃗ rchild , and the rchild pointers are not needed by the main algorithm.
So we can equate p⃗ done with p⃗ rchild .

#define done rchild /∗ the new meaning of the rchild field ∗/



§24 SPSPAN OVERVIEW OF THE ALGORITHM 9

24. For example, let’s apply the algorithm to the series-parallel graph illustrated in the introduction. Since
A is a parallel node and since each leftmost child is initially designated, init tree sets A⃗ val = 1, B⃗ val = 0,
C⃗ val = 1, D⃗ val = 0, and the first spanning tree consists of edges aceg . All four branch nodes are initially
uneasy. (That’s just a coincidence, not a general rule.)
The current state of the algorithm can be indicated by writing each designated child as a subscript, by

enclosing easy nodes in parentheses, and by placing a hat over passive nodes. With these conventions, the
algorithm proceeds as follows:

branch node states spanning tree

Aa Bb Cc Df ac eg

Aa Bb Cc D̂g ac ef

Aa Bb Ĉd Dg adef

Aa Bb Ĉd D̂f adeg
Aa BC (Cd) Df ab eg

Aa BC (Cd) D̂g ab ef

Aa B̂e Cd Dg abdf

Aa B̂e Cd D̂f abdg

Aa B̂e Ĉc Df ab cg

Aa B̂e Ĉc D̂g ab cf
AB (Be) Cc Dg b c ef

AB (Be) Cc D̂f b c eg

AB (Be) Ĉd Df bdeg

AB (Be) Ĉd D̂g bdef

ÂD Be Cd (Dg) bdf g

ÂD Be Ĉc (Dg) b cf g

ÂD Bb Cc (Dg) c ef g

ÂD Bb Ĉd (Dg) def g

ÂD B̂C (Cd)(Dg) b ef g

Thus, we first change D⃗ des from f to g and passivate D; then we change C⃗ des from c to d and passivate C.
After four steps we change B⃗ des from b to C, making C easy; and so on.

25. So-called “focus pointers” can be used to implement steps (1) and (3) very efficiently, as discussed in
Algorithm 7.2.1.1L. We set p⃗ focus = p except when p is an uneasy node such that the nearest uneasy node
to its right is active. We also imagine that an artificial uneasy active node appears to the right of curnode ,
which is the rightmost branch node of the entire tree in preorder. Then the simple operations

p = r⃗ focus , r⃗ focus = r

implement (1) and (3), when r is the rightmost uneasy node—in spite of the fact that step (2) changes some
nodes from easy to uneasy and vice versa(!).
Furthermore, we can passivate node p in step (4) by the simple operations

p⃗ focus = l⃗ focus , l⃗ focus = l

when l is the rightmost uneasy node to the left of p. We imagine that topnode , which lies to the left of
everything in preorder, is always uneasy and active; therefore l always exists. Step (1) stops if p = topnode ,
since we have then generated all the spanning trees.

⟨Additional fields of a node 13 ⟩ +≡
struct node struct ∗focus ; /∗ the magical Gray-oriented focus pointer ∗/



10 OVERVIEW OF THE ALGORITHM SPSPAN §26

26. We can easily incorporate the new fields into our initialization routine. It will turn out that the
algorithm doesn’t really have to look at leaf or parent pointers, so no mems are charged for the cost of
computing them.

⟨Further initialization of a leaf node 26 ⟩ ≡
p⃗ leaf = p, p⃗ parent = par ;

This code is used in section 15.

27. ⟨Further initialization of a branch node 27 ⟩ ≡
p⃗ leaf = p⃗ des⃗ leaf , p⃗ parent = par ;
o, p⃗ focus = p;

This code is used in section 15.

28. ⟨Print additional fields of a branch node 28 ⟩ ≡
printf ("␣leaf=%c", leafname (p⃗ leaf ));
if (p⃗ focus ̸= p) printf ("␣focus=%c", branchname (p⃗ focus ));

This code is used in section 17.



§29 SPSPAN DOING IT 11

29. Doing it. Let’s go ahead now and implement the algorithm just sketched.

⟨Do the algorithm 29 ⟩ ≡
topnode⃗ focus = topnode ;
while (1) {
register node ∗p, ∗q, ∗l, ∗r;
for (r = curnode ; easy (r); r−−) ; /∗ find the rightmost uneasy node ∗/
oo , p = r⃗ focus , r⃗ focus = r; /∗ steps (1) and (3) ∗/
if (p ≡ topnode ) break;
⟨Change p⃗ des and visit a new spanning tree 31 ⟩;
if (o, p⃗ des ≡ p⃗ done ) ⟨Passivate p 30 ⟩;

}
This code is used in section 1.

30. All uneasy nodes to the right of p are now active, and l is the former p⃗ des .

⟨Passivate p 30 ⟩ ≡
{
o, p⃗ done = l;
for (l = p− 1; easy (l); l−−) ; /∗ find the first uneasy node to the left ∗/
ooo , p⃗ focus = l⃗ focus , l⃗ focus = l;

}
This code is used in section 29.

31. If the user has asked for verbose output, we print only the edge that has entered the spanning tree
and the edge that has left.

⟨Change p⃗ des and visit a new spanning tree 31 ⟩ ≡
oo , l = p⃗ des , r = l⃗ rsib ;
o, k = p⃗ val ; /∗ k = l⃗ val ̸= r⃗ val ∗/
for (q = l; ; o, q = q⃗ des ) {
o, q⃗ val = k ⊕ 1;
if (isleaf (q)) break;

}
if (verbose ) printf ("␣%c%c", k ? ’−’ : ’+’, leafname (q));
for (q = r; ; o, q = q⃗ des ) {
o, q⃗ val = k;
if (isleaf (q)) break;

}
if (verbose ) printf ("%c%c\n", k ? ’+’ : ’−’, leafname (q));
o, p⃗ des = r, trees ++; /∗ “visiting” ∗/
for (q = p; q⃗ des ≡ r; r = q, q = q⃗ parent ) q⃗ leaf = r⃗ leaf ;

/∗ that loop was optional, so it costs no mems ∗/
if (extraverbose ) {
printedges (root );
printf (";␣now␣%c−>leaf=%c\n", branchname (r), leafname (r⃗ leaf ));

}
This code is used in section 29.



12 A LOOPLESS VERSION SPSPAN §32

32. A loopless version. The algorithm implemented here contains four loops. Two of them skip over
easy nodes when finding r and l in the list of branches; two of them go down from branches to leaves when
changing the val fields.
The amortized cost of those loops is constant per new spanning tree. But it can be instructive to search

for an algorithm that is entirely loopless, in the sense that the number of operations per new tree is bounded
(once the algorithm has initialized itself in linear time).
Loopless algorithms tend to run slower than their loopy counterparts, especially in cases like the present

where the additional overhead needed to avoid looping appears to be substantial. So the search for a loopless
implementation is strictly academic. Yet it still was fascinating enough to keep me working on it for three
days during my recent vacation.
I believe I see how to do it. But I don’t have time to carry through the details, so I’ve decided just to

sketch them here. Maybe somebody else will be inspired to work them out and to compare the loopless
mem-counts with those of the present implementation.
The first two loops can be avoided by changing the tree dynamically, so that the designated child is always

the leftmost. In such cases it’s easy to see that no two easy nodes can be consecutive in preorder. My planned
implementation swaps the rightmost child into the leftmost position when p⃗ des is supposed to change. This
swapping causes two adjacent substrings of the preordered node list to change places. The node list should
be doubly linked; to do the swap, we need a new field p⃗ scope that points to the rightmost branch that is
descended from p in the current list.
The other two loops can be avoided if we update the val fields lazily, starting at the bottom. But then

the pointer p⃗ leaf becomes crucial, not optional, because the leaf nodes are encountered first, and because
we need to know both p⃗ leaf and p⃗ rchild⃗ leaf when reporting the edges that enter and leave the spanning
tree.
Of course the introduction of two required fields p⃗ scope and p⃗ leaf means that we must maintain them,

and that seems to require additional loops that were not needed in the present implementation. Fortunately
we don’t have to update them instantly; they only have to be valid when p is the critical node in step (2) of
the algorithm.
My solution is to introduce two additional fields for “registration.” Consider a sequence of nodes p1, p2,

. . . , pk where pj+1 is the rightmost child of pj for 1 ≤ j < k, and where p1 and pk are active but the others
are either easy or passive. The easy ones among p2, . . . , pk−1 are not consecutive; the uneasy ones most
recently went passive in order, from left to right. When p = pk is the critical node, we’re going to rearrange
the tree below p; and if p is then going to become passive, we have reached our last chance to update the
scope link of p1.

Node p can find p1 using focus pointers, because p1 is the rightmost active node to its left. But we need
to verify that there really is a path from p1 to pk as described, because we mustn’t screw up the scope links
of random nodes. Let p be the critical node, and let q be the first active node to its left. Go up one or two
levels from p via parent pointers until reaching an uneasy node, say u; but stop if this upward motion is
not from the rightmost branch-child to a parent. Otherwise, if q = u, great; we update q⃗ scope and we’re
done. Or if q = u⃗ registry , where registry is a new field to be discussed further, again we update q⃗ scope .
Otherwise we conclude that q is not the top of the food chain to p.
When the critical node p becomes passive, after a case where q⃗ scope has been updated, we set p⃗ registry =

q, and u⃗ registry = Λ in the case that q = u⃗ registry . This handshaking passes the required information
down the tree, and doesn’t leave spurious non-null registry values that could lead to false diagnoses.
A similar method works to maintain the leaf pointers, which are similar but based on leftmost instead of

rightmost children. Instead of p⃗ registry , I should have spoken of p⃗ scope registry and p⃗ leaf registry .
(Whew.)



§33 SPSPAN INDEX 13

33. Index.

abort : 2, 5.
argc : 1.
argv : 1, 2.
branchname : 16, 17, 28, 31.
build : 8, 9.
c: 16.
call : 1, 14, 15.
curleaf : 7, 8, 9.
curnode : 7, 8, 9, 25, 29.
des : 13, 15, 17, 21, 22, 23, 24, 27, 29, 30, 31, 32.
done : 23, 29, 30.
easy : 21, 29, 30.
exit : 1, 2.
extraverbose : 1, 20, 31.
focus : 25, 27, 28, 29, 30.
fprintf : 1, 2.
indent : 18.
init tree : 14, 15, 24.
isleaf : 8, 15, 16, 17, 18, 19, 31.
j: 1, 9.
k: 1, 18.
l: 9, 29.
lc : 9, 11, 12.
lchild : 6, 9, 10, 12, 15, 17, 18, 19.
leaf : 22, 26, 27, 28, 31, 32.
leaf registry : 32.
leafname : 16, 17, 19, 28, 31.
llink : 3, 5, 9.
main : 1.
maxn : 3, 7, 8, 16.
mems : 1.
mess : 2.
node: 6, 7, 9, 15, 16, 17, 18, 19, 29.
node struct: 6, 13, 22, 25.
nodelist : 7, 8, 16.
nodename : 16, 17.
o: 1.
oo : 1, 15, 29, 31.
ooo : 1, 15, 30.
oooo : 1.
p: 2, 9, 15, 17, 18, 19, 29.
par : 9, 15, 26, 27.
parent : 22, 26, 27, 31, 32.
printbranch : 17.
printedges : 19, 20, 31.
printf : 1, 17, 18, 19, 20, 28, 31.
printleaf : 17.
printnode : 17, 18.
printtree : 18, 20.
q: 15, 18, 19, 29.
r: 9, 29.

rc : 9, 11, 12.
rchild : 6, 9, 10, 11, 12, 17, 23, 32.
registry : 32.
rlink : 3, 5, 9.
root : 7, 8, 13, 14, 16, 20, 31.
rsib : 6, 8, 9, 10, 11, 12, 15, 17, 18, 19, 22, 23, 31.
scope : 32.
scope registry : 32.
stack : 3, 4, 5, 8.
stackitem : 9.
stderr : 1, 2.
t: 9.
topnode : 7, 8, 14, 25, 29.
trees : 1, 14, 31.
typ : 6, 8, 9, 13, 14, 15, 21, 22.
val : 13, 14, 15, 17, 19, 21, 22, 24, 31, 32.
verbose : 1, 14, 31.
xx : 16.



14 NAMES OF THE SECTIONS SPSPAN

⟨Additional fields of a node 13, 22, 25 ⟩ Used in section 6.

⟨Change p⃗ des and visit a new spanning tree 31 ⟩ Used in section 29.

⟨Create a new branch 5 ⟩ Used in section 2.

⟨Create a new leaf 4 ⟩ Used in section 2.

⟨Create the main tree 8 ⟩ Used in section 2.

⟨Do the algorithm 29 ⟩ Used in section 1.

⟨Further initialization of a branch node 27 ⟩ Used in section 15.

⟨Further initialization of a leaf node 26 ⟩ Used in section 15.

⟨Global variables 3, 7 ⟩ Used in section 1.

⟨ Incorporate both children into node p 12 ⟩ Used in section 11.

⟨ Incorporate left child into node p 11 ⟩ Used in section 9.

⟨ Incorporate right child into node p 10 ⟩ Used in section 9.

⟨Parse the formula argv [1] and set up the tree structure 2 ⟩ Used in section 1.

⟨Passivate p 30 ⟩ Used in section 29.

⟨Prepare the first spanning tree 14 ⟩ Used in section 1.

⟨Print additional fields of a branch node 28 ⟩ Used in section 17.

⟨Print the first tree 20 ⟩ Used in section 14.

⟨ Subroutines 9, 15, 16, 17, 18, 19 ⟩ Used in section 1.

⟨Type definitions 6 ⟩ Used in section 1.



SPSPAN

Section Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Parsing and preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Diagnostic routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6
Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8
Doing it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 11
A loopless version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 12
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 13


