
§1 SPIDERS INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. The purpose of this program is to implement a pretty algorithm that has a very
pleasant theory. But I apologize at the outset that the algorithm seems to be rather subtle, and I have
not been able to think of any way to explain it to dummies. Readers who like discrete mathematics and
computer science are encouraged to persevere nonetheless.
An overview of the relevant theory appears in a paper called “Deconstructing coroutines,” by D. E. Knuth

and F. Ruskey, but this program tries to be self-contained. Earlier versions of the ideas were embedded in
now-obsolete programs called KODA-RUSKEY and LI-RUSKEY, written in June, 2001.

#include <stdio.h>

⟨Global variables 4 ⟩
⟨ Subroutines 13 ⟩
int main (int argc , char ∗argv [])
{
⟨Local variables 5 ⟩;
⟨Parse the command line 3 ⟩;
⟨ Initialize the data structures 7 ⟩;
⟨Generate the answers 24 ⟩;
return 0;
}

2. Given a digraph that is totally acyclic, in the sense that it has no cycles when we ignore the arc directions,
we want to find all ways to label its vertices with 0s and 1s in such a way that x→ y implies bit [x] ≤ bit [y].
Moreover, we want to list all such labelings as a Gray path, changing only one bit at a time. The algorithm
below does this, with an extra proviso: Given a designated “root” vertex v, bit [v] begins at 0 and changes
exactly once.
For brevity, a totally acyclic digraph is called a tad, and a connected tad is called a spider.
The simple three-vertex spider with x → y ← z has only five such labelings, and they form a Gray path

in essentially only one way, namely (000, 010, 011, 111, 110). This example shows that we cannot require
the Gray path to end at a convenient prespecified labeling like 11 . . . 1; and the dual graph, obtained by
reversing all the arrows and complementing all the bits, shows that we can’t require the path to start at
00 . . . 0. [Generalizations of this example, in which the vertices are {x1, x2, . . . , xn} and each arc is either
xk−1 → xk or xk−1 ← xk, have solutions related to continued fractions. Interested readers will enjoy working
out the details.]
It is convenient to describe a tad by using a variant of right-Polish notation, where a dot means “put a

new node on the stack” and where a + or − sign means “draw an arc x ← y (+) or x → y (−) and remove
y from the stack,” if x and y are the top stack elements. For example, a digraph with four vertices and no
arcs is represented by ‘....’; the digraph 1 → 2 ← 3 is ‘...+−’, and 2 → 1 ← 3 is ‘..+.+’, numbering the
dots from left to right. This numbering corresponds to preorder of the forest that is obtained if we ignore
arc directions.
The Polish notation implicitly specifies a hierarchical order, if the + and − operations make y a child of x.

Using this tree structure, each node of the digraph defines a subtree, and that subtree is a spider. The Gray
path we construct is obtained by judiciously combining the Gray paths obtained from the spiders.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION SPIDERS §3

3. In the following program, the parent of node k is par [k], and the arc between k and its parent goes
toward par [k] if sign [k] = 1, toward k if sign [k] = 0. The spider corresponding to k consists of nodes k
through scope [k], inclusive. The Gray path corresponding to this spider will be called Gk.

While we build the data structures, we might as well compute also rchild [k] and lsib [k], the rightmost
child and left sibling of node k. Then we have a triply linked tree.

#define maxn 100 /∗ limit on number of vertices ∗/
#define abort (f, d, n) { fprintf (stderr , f , d); exit (−n); }
⟨Parse the command line 3 ⟩ ≡
{
register char ∗c;
if (argc < 2 ∨ argc > 3 ∨ (argc ≡ 3 ∧ sscanf (argv [2], "%d",&verbose) ̸= 1))
abort ("Usage:␣%s␣graphspecification␣[verbosity]\n", argv [0], 1);

for (c = argv [1], j = n = 0; ∗c; c++)
switch (∗c) {
case ’.’: if (n ≡ maxn − 1) abort ("Sorry,␣I␣can␣only␣handle␣%d␣vertices!\n",maxn − 1, 2);
stack [j++] = ++n; break;

case ’+’: case ’−’: if (j < 2) abort ("Parsing␣error:␣‘%s’␣should␣start␣with␣‘.’!\n", c, 3);
j−−, k = stack [j], l = stack [j − 1];
sign [k] = (∗c ≡ ’+’ ? 1 : 0);
par [k] = l, lsib [k] = rchild [l], rchild [l] = k;
scope [k] = n;
break;

default: abort ("Parsing␣error:␣‘%s’␣should␣start␣with␣‘.’␣or␣‘+’␣or␣‘−’!\n", c, 4);
}

scope [0] = n, sign [0] = 1, rchild [0] = stack [−−j];
for (k = n; j ≥ 0; j−−) {

l = stack [j], scope [l] = k, k = l − 1;
if (j > 0) lsib [l] = stack [j − 1];

}
}

This code is used in section 1.

4. ⟨Global variables 4 ⟩ ≡
int par [maxn]; /∗ the parent of k ∗/
int sign [maxn]; /∗ 0 if par [k]→ k, 1 if par [k]← k ∗/
int scope [maxn]; /∗ rightmost element of the spider k ∗/
int stack [maxn]; /∗ vertices whose scope is not yet set ∗/
int rchild [maxn], lsib [maxn]; /∗ tree links for traversal ∗/
int verbose ; /∗ controls the amount of output ∗/

See also sections 9, 12, 18, 25, and 32.

This code is used in section 1.

5. ⟨Local variables 5 ⟩ ≡
register int j, k, l = 0; /∗ heavily-used miscellaneous indices ∗/
int n; /∗ size of the input graph ∗/

This code is used in section 1.

§6 SPIDERS INTRODUCTION 3

6. Consider the example spider

1

2

3

4

5

6

7

8

9

in which all arcs are directed upward; it could be written+−.−−..+−..−+ in Polish notation. Vertex 1
is the root. A nonroot vertex k is called positive if par [k]→ k and negative if par [k]← k; thus {2, 3, 5, 6, 9}
are positive in this example, and {4, 7, 8} are negative.
We write j →∗ k if there is a directed path from j to k. Removing all vertices j such that j →∗ k

disconnects spider k into a number of pieces having positive roots; in our example, removing {1, 8} leaves
three components rooted at {2, 6, 9}. We call these roots the set of positive vertices near k, and denote that
set by Uk. Similarly, the negative vertices near k are obtained when we remove all j such that k →∗ j; the
set of resulting roots, denoted by Vk, is {4, 7, 8} in our example.
Why are the sets Uk and Vk so important? Because the labelings of the kth spider for which bit [k] = 0

are precisely those that we obtain by setting bit [j] = 0 for all j →∗ k and then labeling each spider u for
u ∈ Uk. Similarly, all labelings for which bit [k] = 1 are obtained by setting bit [j] = 1 for all k →∗ j and
labeling each spider v for v ∈ Vk.
Thus if nk denotes the number of labelings of spider k, we have nk =

∏
u∈Uk

nu +
∏

v∈Vk
nv.

Every positive child of k appears in Uk, and every negative child appears in Vk. These are called the
principal elements of Uk and Vk. Every nonprincipal member of Uk is a member of Uv for some unique
principal vertex v ∈ Vk. Similarly, every nonprincipal member of Vk is a member of Vu for some unique
principal vertex u ∈ Uk. For example, 9 is a nonprincipal member of U1 and it also belongs to U8; 4 is a
nonprincipal member of V1 and it also belongs to V2.
If k is a root of the given digraph, we say that k’s parent is 0. This dummy vertex 0 is assumed to have

arcs to all such k, and it follows that U0 is the collection of those root vertices; the total number of labelings
is therefore

∏
u∈U0

nu. According to this convention, the root vertices are considered to be positive. We also
regard 0 as negative.
For example, the sample spider above has the following characteristics:

k sign [k] scope [k] par [k] rchild [k] lsib [k] Uk Vk nk

0 1 9 0 1 {1} {4, 7, 8}
1 0 9 0 8 0 {2, 6, 9} {4, 7, 8} 48 + 12 = 60
2 0 5 1 5 0 {3, 5} {4} 6 + 2 = 8
3 0 4 2 4 0 ∅ {4} 1 + 2 = 3
4 1 4 3 0 0 ∅ ∅ 1 + 1 = 2
5 0 5 2 0 3 ∅ ∅ 1 + 1 = 2
6 0 7 1 7 2 ∅ {7} 1 + 2 = 3
7 1 7 6 0 0 ∅ ∅ 1 + 1 = 2
8 1 9 1 9 6 {9} ∅ 2 + 1 = 3
9 0 9 8 0 0 ∅ ∅ 1 + 1 = 2

4 INTRODUCTION SPIDERS §7

7. We don’t want to compute the sets U1, . . . , Un explicitly, because the total number of elements
|U1| + · · · + |Un| can be Ω(n2) in cases like .n/2(.+)n/2+n/2−1. But luckily for us, there is a nice way
to represent all of those sets implicitly, computing the representation in linear time.
Suppose u is a positive vertex, not a root, so that u ← v1 where v1 is u’s parent and v1 ̸= 0. If v1 is

negative, let v2 be the parent of v1, and continue until reaching a positive vertex vj . We call vj the positive
progenitor of v1; it is also the positive progenitor of v2, . . . , vj−1, and itself. By definition, u ∈ Uk if and
only if k ∈ {v1, . . . , vj}. It follows that Uk = Uk′ ∩

[
k . . scope [k]

]
when k′ is the positive progenitor of k.

We can therefore represent all the sets Uk by linking their elements together explicitly whenever k is a
positive vertex; such sets Uk are disjoint. Then if we compute umax [k] for every vertex k, namely the index
of the largest element of Uk, the set Uk will consist of umax [k], prev [umax [k]], prev [prev [umax [k]]], etc.,
proceeding until reaching an element less than k.
One pass through the forest in preorder suffices to compute the prev values. A second pass in reverse

postorder suffices to compute each umax , because postorder traverses nodes in order of their scopes.
A similar idea works, of course, for V1, . . . , Vn, using negative progenitors.

⟨ Initialize the data structures 7 ⟩ ≡
for (j = 1; j ≤ n; j++) {
k = par [j];
if (sign [j] ≡ 0) {
ppro [j] = j,npro [j] = npro [k];
if (k) prev [j] = umax [ppro [k]], umax [ppro [k]] = j;
else prev [j] = lsib [j]; /∗ special case when j is a root ∗/

} else {
npro [j] = j, ppro [j] = ppro [k];
prev [j] = vmax [npro [k]], vmax [npro [k]] = j;

}
}
⟨Fill in all umax and vmax links, traversing in reverse postorder 8 ⟩;

See also sections 10, 11, and 16.

This code is used in section 1.

§8 SPIDERS INTRODUCTION 5

8. Tree traversal is great fun, when it works.

⟨Fill in all umax and vmax links, traversing in reverse postorder 8 ⟩ ≡
lsib [0] = −1; /∗ sentinel ∗/
ptr [0] = vmax [0];
umax [0] = rchild [0];
for (j = rchild [0]; ;) {
if (sign [j] ≡ 0) {
ptr [j] = umax [j]; /∗ this pointer will run through Uj ∗/
k = npro [j], l = ptr [k];
while (l > scope [j]) l = prev [l];
ptr [k] = l;
if (l > j) vmax [j] = l;

} else {
ptr [j] = vmax [j]; /∗ this pointer will run through Vj ∗/
k = ppro [j], l = ptr [k];
while (l > scope [j]) l = prev [l];
ptr [k] = l;
if (l > j) umax [j] = l;

}
if (rchild [j]) j = rchild [j]; /∗ now we move to the next node ∗/
else {
while (¬lsib [j]) j = par [j];
j = lsib [j];
if (j < 0) break;

}
}

This code is used in section 7.

9. The sample spider leads, for example, to the following values:

k ppro [k] npro [k] prev [k] umax [k] vmax [k]

0 0 0 0 1 8
1 1 0 0 9 8
2 2 0 0 5 4
3 3 0 0 0 4
4 3 4 0 0 0
5 5 0 3 0 0
6 6 0 2 0 7
7 6 7 4 0 0
8 1 8 7 9 0
9 9 8 6 0 0

⟨Global variables 4 ⟩ +≡
int ppro [maxn],npro [maxn]; /∗ progenitors ∗/
int prev [maxn]; /∗ previous element in the same progenitorial list ∗/
int ptr [maxn]; /∗ current element in such a list ∗/
int umax [maxn], vmax [maxn]; /∗ rightmost elements in Uk, Vk ∗/

6 INTRODUCTION SPIDERS §10

10. Aha! We can begin to see how to get the desired Gray path. The well-known reflected Gray code
for mixed-radix number systems tells us how to obtain a path Pk of length

∏
u∈Uk

nu for the labelings of
spider k with bit [k] = 0, as well as a path Qk of length

∏
v∈Vk

nv for the labelings with bit [k] = 1. All we
have to do is figure out a way to end Pk with a labeling that differs only in bit [k] from the starting point
of Qk; then we can let Gk be ‘Pk, Qk’. And indeed, such a labeling is fairly obvious: It consists of the last
labeling of spider u for each positive child u of k, and the first labeling of spider v for each negative child v.

If j ∈ Uk, the reflected code in Pk involves traversing Gj a total of

δjk =
∏
u<j
u∈Uk

nu

times, in alternating directions. Similarly, if j ∈ Vk, the path Gj is traversed

δjk =
∏
v<j
v∈Vk

nv

times in Qk. We need to know whether these numbers are even or odd, in order to figure out how Pk should
begin and Qk should end, because we know how Pk ends and Qk begins.
The numbers δjk can get as large as 2n, and we don’t want to mess with n-bit arithmetic if we don’t have to.

The trick is to compute two more tables, ueven [k] and veven [k], which point to the smallest elements u ∈ Uk

and v ∈ Vk such that nu and nv are even. (If no such elements exist, ueven [k] and/or veven [k] are set to
maxn , representing ∞.) These tables give us the information we need about δjk.

We set ueven [0] artificially to∞. This has the effect of keeping each component of the digraph independent.
While we’re computing the ueven and veven tables, we might as well also compute umin and vmin , a

counterpart of umax and vmax that will prove useful later.

⟨ Initialize the data structures 7 ⟩ +≡
for (k = 0; k ≤ n; k++) ueven [k] = veven [k] = umin [k] = vmin [k] = maxn ;
for (j = n; j > 0; j−−) {
k = ppro [j];
if (umin [k] ≤ scope [j]) umin [j] = umin [k];
if (ueven [k] ≤ scope [j]) ueven [j] = ueven [k];
k = npro [j];
if (vmin [k] ≤ scope [j]) vmin [j] = vmin [k];
if (veven [k] ≤ scope [j]) veven [j] = veven [k];
l = (ueven [j] < maxn)⊕ (veven [j] < maxn); /∗ l = nj mod 2 ∗/
k = par [j];
if (sign [j] ≡ 0) {
umin [ppro [k]] = j;
if (l ≡ 0) ueven [ppro [k]] = j;

} else {
vmin [npro [k]] = j;
if (l ≡ 0) veven [npro [k]] = j;

}
}
ueven [0] = maxn ;

§11 SPIDERS INTRODUCTION 7

11. Another thing we’ll need to know is umaxbit [k], the value of bit [umax [k]] when bit [k] changes from 0
to 1. And of course the dual value vmaxbit [k] will be equally important.

⟨ Initialize the data structures 7 ⟩ +≡
for (k = n; k > 0; k−−) {
l = par [k];
if (k ≡ umax [l]) umaxbit [l] = 1;
else {
j = umax [k];
if (j ∧ umax [l] ≡ j) {
if (ueven [k] < j) umaxbit [l] = umaxbit [k]; /∗ δjk is even ∗/
else umaxbit [l] = 1⊕ umaxbit [k];

}
}
if (k ≡ vmax [l]) vmaxbit [l] = 0;
else {
j = vmax [k];
if (j ∧ vmax [l] ≡ j) {
if (veven [k] < j) vmaxbit [l] = vmaxbit [k]; /∗ δjk is even ∗/
else vmaxbit [l] = 1⊕ vmaxbit [k];

}
}
}

12. For the record, our example spider has the following additional characteristics (including some that
we’ll introduce later):

k bstart [k] umin [k] ueven [k] umaxbit [k] umaxscope [k] vmin [k] veven [k] vmaxbit [k] vmaxscope [k]

0 1 ∞ 4 4
1 1 2 2 0 9 4 4 0 9
2 2 3 5 1 5 4 4 1 4
3 3 ∞ ∞ 0 3 4 4 0 4
4 4 ∞ ∞ 0 4 ∞ ∞ 0 4
5 5 ∞ ∞ 0 5 ∞ ∞ 0 5
6 6 ∞ ∞ 0 6 7 7 0 7
7 7 ∞ ∞ 0 7 ∞ ∞ 0 7
8 8 9 9 1 9 ∞ ∞ 0 8
9 9 ∞ ∞ 0 9 ∞ ∞ 0 9

⟨Global variables 4 ⟩ +≡
int umin [maxn], vmin [maxn]; /∗ the smallest guys in Uk, Vk ∗/
int ueven [maxn], veven [maxn]; /∗ the smallest even guys in Uk, Vk ∗/
int umaxbit [maxn], vmaxbit [maxn]; /∗ significant transition bits ∗/
int bit [maxn]; /∗ the current labeling ∗/

8 INTRODUCTION SPIDERS §13

13. A somewhat subtle point arises here, and it provides an important simplification: Suppose j is a
negative child of k, and ueven [k] ≥ j. Then the initial bits of spider j in the sequence for spider k are the
same as the transition bits of spider j. The reason is that δij + δik is even for all i ∈ Uj .

Using this principle, we can write recursive procedures so that setfirst (0) computes the very first setting
the bit table, in O(n) steps. (This bound on the running time comes from the fact that each procedure sets
the bits of a subspider using a number of steps bounded by a constant times the number of bits being set.
Formally, if Tn ≤ a + (b + Tn1) + · · · + (b + Tnt) where n1 + · · · + nt = n − 1, then it follows by induction
that Tn ≤ (a+ b)n− b.)
The first labeling of our example spider uses the first labeling of subspider 2, the last labeling of subspider 6,

and the first labeling of subspider 8, so it is bit [1] . . . bit [9] = 000001100.
Recursion is lots of fun too. Why do I sometimes prefer traversal?

⟨ Subroutines 13 ⟩ ≡
void setlast (register int k); /∗ see below ∗/
void setmid (register int k, int b); /∗ ditto ∗/
void setfirst (register int k)
{
register int j;

bit [k] = 0;
for (j = rchild [k]; j; j = lsib [j])

if (sign [j] ≡ 0) {
if (ueven [k] ≥ j) setfirst (j); /∗ δjk is odd ∗/
else setlast (j);

} else if (ueven [k] ≥ j) setmid (j, 0); /∗ by the subtle point ∗/
else setfirst (j); /∗ δik is even for all i ∈ Uj ∗/

}
void setlast (register int k)
{
register int j;

bit [k] = 1;
for (j = rchild [k]; j; j = lsib [j])

if (sign [j] ≡ 1) {
if (veven [k] ≥ j) setlast (j); /∗ δjk is odd ∗/
else setfirst (j);

} else if (veven [k] ≥ j) setmid (j, 1); /∗ by the subtle point ∗/
else setlast (j); /∗ δik is even for all i ∈ Vj ∗/

}
void setmid (register int k, int b)
{
register int j;

bit [k] = b;
for (j = rchild [k]; j; j = lsib [j])
if (sign [j] ≡ 0) setlast (j); else setfirst (j);

}
See also section 19.

This code is used in section 1.

§14 SPIDERS THE ACTIVE LIST 9

14. The active list. Reflected Gray code is nicely generated by a process based on a list of elements
that are alternately active and passive. (See, for example, Algorithm 7.2.1.1L in The Art of Computer
Programming.) A slight generalization of that notion works admirably for the problem faced here: We
maintain a so-called active list L, whose elements are alternately awake and asleep. Elements are occasionally
inserted into L and/or deleted from L according to the following protocol:

1) Find the largest node k ∈ L that is awake, and wake up all elements of L that exceed k.
2) If bit [k] = 0, set bit [k] ← 1 and L ← (L \ U ′

k) ∪ V ′
k; otherwise set bit [k] ← 0 and L ← (L \ V ′

k) ∪ U ′
k.

Here U ′
k and V ′

k denote the principal elements of Uk and Vk, namely the positive and negative children
of k.

3) Put k to sleep.

The process stops when all elements of L are asleep in step 1. In such a case, waking them up and repeating
the process will run through the bit labelings again, but in reverse order.
The elements of L are the positive vertices k for which bit [par [k]] = 0 and the negative vertices k for

which bit [par [k]] = 1. For example, the initial active list for the example spider is L = {1, 2, 3, 5, 6, 7, 9}. All
elements are awake at the beginning.
We can conveniently represent L as a list of elements k, with subscripts to indicate the current setting of

bit [k]. Then k0 is always followed in the list by sublists for the spiders of Uk, and k1 is always followed by
sublists for the spiders of Vk. With these conventions, the initial active list is

10 20 30 50 61 71 90 .

Since 90 is awake, we complement bit [9], and L becomes

10 20 30 50 61 71 91 .

The bar over 9 indicates that this node is now asleep.
The next step complements bit [7] and wakes up 9; thus the first few steps take place as follows:

10 20 30 50 61 71 90 · · · complement bit [9]
10 20 30 50 61 71 91 · · · complement bit [7]
10 20 30 50 61 70 91 · · · complement bit [9]
10 20 30 50 61 70 90 · · · complement bit [6]
10 20 30 50 60 90 · · · complement bit [9]
10 20 30 50 60 91 · · · complement bit [5]
10 20 30 51 60 91 · · · complement bit [9]
10 20 30 51 60 90 · · · complement bit [6]
10 20 30 51 61 70 90

Notice that 7 disappears from L when bit [6] becomes 0, but it comes back again when bit [6] reverts to 1.
Soon bit [3] will change to 1, and 40 will enter the fray.
The most dramatic change will occur after the first n2n6n9 = 48 labelings, when bit [1] changes:

10 21 40 61 71 90 · · · complement bit [1]
11 40 71 80 90 · · · complement bit [9]
11 40 71 80 91 · · · complement bit [8]
11 40 71 81 · · · complement bit [7]... · · · complement bit [8]
11 41 71 80 91 · · · complement bit [9]
11 41 71 80 90

And finally the whole list is asleep; all 60 labelings have been generated.

10 THE ACTIVE LIST SPIDERS §15

15. Using the active list protocol, the average amount of work per bit change is only O(1) when amortized
over the entire computation, even if we do a sequential search for k in step (1) and recopy all elements greater
than k in step (2). Our implementation goes beyond the notion of amortization, however; after O(n) steps of
initialization, the program below does at most a bounded number of operations between bit changes. Thus
it is actually loopless, in the sense defined by Gideon Ehrlich [Journal of the ACM 20 (1973), 500–513].

The extra contortions that we need to go through in order to achieve looplessness are usually ill-advised,
because they actually cause the total execution time to be longer than it would be with a more straightforward
algorithm. But hey, looplessness carries an academic cachet. So we might as well treat this task as a
challenging exercise that might help us to sharpen our algorithmic wits.
(There may actually be a loopless algorithm for this problem that does not slow down the total execution

time. For example, the loopless implementation in the program LI-RUSKEY is quite fast, but it sometimes
needs Ω(n2) steps for initialization and Ω(n2) space for tables. The existence of such a fast implementation
suggests that totally acyclic digraphs might well have additional properties that yield improvements over
the approach taken here; readers are encouraged to find a better way.)
The first step we shall take toward a loopless algorithm is to introduce “focus pointers,” as in Ehrlich’s

Algorithm 7.2.1.1L. Usually focus [k] = k, except when k is asleep and the successor of k is awake. In the
latter case, focus [k] is the largest j < k such that j is awake.
The active list will be doubly linked, with k preceded by left [k] and followed by right [k]. We make the list

circular by letting left [0] be its rightmost element and right [0] the leftmost. Then, for example, focus [left [0]]
will be the element k needed in step (1) of the protocol. We can wake up all elements to k’s right by setting
focus [left [0]] = left [0], and we can put k to sleep by setting focus [k] = focus [left [k]], focus [left [k]] = left [k].

16. Now let’s focus on the implementation of step (2), which is the heart of the computation.
A positive child j of k is called “simple” if Vj is empty; a negative child is called simple if Uj is empty.

Same-sign siblings always enter or leave the active list as a unit. Therefore if j and j′ have the same sign
and if j = lsib [j′] is simple, we will have right [j] = j′ and left [j′] = j whenever they are inserted or deleted.
These links can be established as part of the initialization. On the other hand when j cannot be combined
with its right neighbor, we compute bstart [j], the leftmost sibling that forms a block with j. (Possibly
bstart [j] = j.)
The following preprocessing steps establish the initial values of bstart , left , and right . They also compute

two further quantities that sometimes turn out to be indispensable: umaxscope [k] is the largest node that is
forced to be in the active list at a transition point when bit [k] = 0, and vmaxscope [k] is the corresponding
quantity when bit [k] = 1.

⟨ Initialize the data structures 7 ⟩ +≡
for (k = n; k; k−−) {
j = lsib [k];
if (j) left [k] = j, right [j] = k;
else ⟨Compute the bstart links for k’s family 17 ⟩;
j = umax [k];
if (¬j) umaxscope [k] = k;
else umaxscope [k] = (umaxbit [k] ≡ 1 ? (vmax [j] ? vmax [j] : j) : umaxscope [j]);
j = vmax [k];
if (¬j) vmaxscope [k] = k;
else vmaxscope [k] = (vmaxbit [k] ≡ 0 ? (umax [j] ? umax [j] : j) : vmaxscope [j]);
}

§17 SPIDERS THE ACTIVE LIST 11

17. ⟨Compute the bstart links for k’s family 17 ⟩ ≡
for (j = l = k; j; j = right [j]) {
if (right [j] ∧ sign [j] ≡ sign [right [j]] ∧

((sign [j] ≡ 0 ∧ ¬vmax [j]) ∨ (sign [j] ≡ 1 ∧ ¬umax [j]))) continue;
bstart [j] = l, l = right [j];
}

This code is used in section 16.

18. ⟨Global variables 4 ⟩ +≡
int left [maxn], right [maxn]; /∗ neighbors in the active list ∗/
int bstart [maxn]; /∗ start of a block ∗/
int umaxscope [maxn], vmaxscope [maxn]; /∗ extreme nodes when bit [k] changes ∗/
int flag [maxn]; /∗ nonzero when an insertion or deletion is needed ∗/
int focus [maxn]; /∗ pointers that encode wakefulness ∗/

19. When bit [k] changes from 0 to 1, we want to delete k’s positive blocks of children from the active list
and insert the negative ones. The rightmost block is addressed by rchild [k], and we get to the others by
following bstart and lsib links. Our algorithm is supposed to be loopless, so we can’t do all this updating
at once. Therefore we do only the rightmost step, and we plant a warning in the data structure so that
subsequent steps will be performed before the missing information is needed. All nodes are awake while
waiting to be inserted or deleted, so the focus pointers are unaffected by these delayed actions.
The fixup subroutine is the basic mechanism by which nodes enter or leave the active list. This subroutine

not only inserts or deletes a block of children, it also inserts a flag so that the previous block will be fixed in
due time.

⟨ Subroutines 13 ⟩ +≡
void fixup(register int k, register int l)
{
register int i, j;

flag [l] = 0;
if (k > 0) ⟨ Insert block k before l and return 20 ⟩
⟨Delete block k before l 21 ⟩;
}

12 THE ACTIVE LIST SPIDERS §20

20. Once the process has gotten started, left [j] and right [k] will already have the correct values, unchanged
from the time block k was previously deleted. But we don’t make use of this fact, because we don’t want to
worry about presetting left [j] and right [k] when the action list is initialized.

⟨ Insert block k before l and return 20 ⟩ ≡
{
j = bstart [k], i = lsib [j];
left [j] = left [l], right [left [l]] = j;
left [l] = k, right [k] = l;
if (i) {
if (sign [k] ≡ 1) {
if (sign [i] ≡ 0) {
if (vmin [i] < maxn) j = vmin [i];
i = −i; /∗ the next fix will be a deletion ∗/
} else j = umin [i];

} else {
if (sign [i] ≡ 1) {
if (umin [i] < maxn) j = umin [i];
i = −i; /∗ the next fix will be a deletion ∗/
} else j = vmin [i];

}
flag [j] = i;

}
return;
}

This code is used in section 19.

21. A block being deleted might be preceded by a simple block of the other sign that wants to be inserted.
In that case we insert the latter in place of the former.

⟨Delete block k before l 21 ⟩ ≡
k = −k, j = bstart [k], i = lsib [j];
if (left [l] ̸= k) printf ("Oops,␣fixup(%d,%d)␣is␣confused!\n",−k, l); /∗ can’t happen ∗/
if (i ∧ sign [i] ̸= sign [k]) {
if ((sign [i] ≡ 0 ∧ vmax [i] ≡ 0) ∨ (sign [i] ≡ 1 ∧ umax [i] ≡ 0))
⟨Replace block k by block i and return 22 ⟩;

}
left [l] = left [j], right [left [j]] = l;
if (i) {
if (sign [k] ≡ 0) {
if (sign [i] ≡ 1) j = umin [i];
else j = vmin [i], i = −i; /∗ the next fix will be another deletion ∗/

} else {
if (sign [i] ≡ 0) j = vmin [i];
else j = umin [i], i = −i; /∗ the next fix will be another deletion ∗/

}
flag [j] = i;
}

This code is used in section 19.

§22 SPIDERS THE ACTIVE LIST 13

22. ⟨Replace block k by block i and return 22 ⟩ ≡
{
left [l] = i, right [i] = l;
k = bstart [i], left [k] = left [j], right [left [k]] = k;
i = lsib [k];
if (i) {
if (sign [k] ≡ 0) {
if (sign [i] ≡ 1) {
if (umin [i] < maxn) k = umin [i];
i = −i; /∗ the next fix will be another deletion ∗/
} else k = vmin [i];

} else {
if (sign [i] ≡ 0) {
if (vmin [i] < maxn) k = vmin [i];
i = −i; /∗ the next fix will be another deletion ∗/
} else k = umin [i];

}
flag [k] = i;

}
return;
}

This code is used in section 21.

23. How does the active list get there in the first place? We compute it from the bit table, as follows.

⟨Launch the active list 23 ⟩ ≡
setfirst (0); /∗ compute the initial setting of bit [1] . . . bit [n] ∗/
for (l = k = 0; k ≤ n; k++) {
focus [k] = k;
if (sign [k] ≡ bit [par [k]]) right [l] = k, left [k] = l, l = k;
}
right [l] = 0, left [0] = l; /∗ link in the rightmost node of the active list ∗/

This code is used in section 24.

14 DOING IT SPIDERS §24

24. Doing it. The time has come to construct the loopless implementation in practice, as we have been
doing so far in theory.
Of course the printout in each step does involve a loop. This printout is suppressed if verbose < 0.

⟨Generate the answers 24 ⟩ ≡
⟨Launch the active list 23 ⟩;
if (verbose > 1) ⟨Print out the results of initialization 33 ⟩;
while (1) {
count ++;
if (verbose ≥ 0) ⟨Print out all the current bits 30 ⟩;
⟨ Set k to the rightmost nonsleeping node of the active list 26 ⟩;
if (k) {
if (flag [k]) fixup(flag [k], k);
if (bit [k] ≡ 0) ⟨Move forward, setting bit [k] = 1 28 ⟩
else ⟨Move backward, setting bit [k] = 0 29 ⟩;

} else if (been there and done that) break;
else {
printf ("...%d␣so␣far;␣now␣we␣generate␣in␣reverse:\n", count);
been there and done that = 1;
continue;

}
⟨Put k to sleep 27 ⟩;
}
printf ("Altogether␣%d/2␣labelings.\n", count);

This code is used in section 1.

25. ⟨Global variables 4 ⟩ +≡
int count ; /∗ the number of labelings found so far ∗/
int been there and done that ; /∗ have we reached all-asleep state before? ∗/

26. ⟨ Set k to the rightmost nonsleeping node of the active list 26 ⟩ ≡
j = left [0], k = focus [j], focus [j] = j;

This code is used in section 24.

27. At this point we know that all nodes greater than k are awake and that flag [k] = 0.

⟨Put k to sleep 27 ⟩ ≡
j = left [k], focus [k] = focus [j], focus [j] = j;

This code is used in section 24.

§28 SPIDERS DOING IT 15

28. ⟨Move forward, setting bit [k] = 1 28 ⟩ ≡
{
bit [k] = 1, j = rchild [k];
if (j) {
if (sign [j] ≡ 0) { /∗ we want to delete j = umax [k] ∗/
l = vmin [j];
if (l < maxn) fixup(−j, l);
else fixup(−j, right [j]); /∗ j ends a simple block ∗/

} else { /∗ we want to insert j = vmax [k] ∗/
l = umin [j];
if (l < maxn) fixup(j, l);
else fixup(j, right [umaxscope [k]]); /∗ j ends a simple block ∗/

}
}
}

This code is used in section 24.

29. ⟨Move backward, setting bit [k] = 0 29 ⟩ ≡
{
bit [k] = 0, j = rchild [k];
if (j) {
if (sign [j] ≡ 1) { /∗ we want to delete j = vmax [k] ∗/
l = umin [j];
if (l < maxn) fixup(−j, l);
else fixup(−j, right [j]); /∗ j ends a simple block ∗/

} else { /∗ we want to insert j = umax [k] ∗/
l = vmin [j];
if (l < maxn) fixup(j, l);
else fixup(j, right [vmaxscope [k]]); /∗ j ends a simple block ∗/
}

}
}

This code is used in section 24.

30. ⟨Print out all the current bits 30 ⟩ ≡
{
for (k = 1; k ≤ n; k++) putchar (’0’ + bit [k]);
if (verbose > 0) ⟨Print the active list in symbolic form 31 ⟩;
putchar (’\n’);

}
This code is used in section 24.

16 DOING IT SPIDERS §31

31. Here I recompute what the active list should be, and compare it to the current links. Discrepancies
are noted only if no flagged nodes follow.
Sleeping nodes are enclosed in parentheses; an exclamation point is printed before a node that is flagged.

⟨Print the active list in symbolic form 31 ⟩ ≡
{
for (k = left [0]; ; k−−) {

for (j = k, k = focus [k]; j > k; j−−) {
asleep [j] = 1;
if (flag [j]) printf ("\nOops,␣flag[%d]␣is␣wrong!\n", j);

}
if (k ≡ 0) break;
asleep [k] = 0;

}
for (k = 1, j = 0; k ≤ left [0]; k++)
if (sign [k] ≡ bit [par [k]]) {
if (asleep [k]) printf ("␣(%d)", k);
else if (flag [k]) printf ("␣!%d", k);
else printf ("␣%d", k);
if ((k ̸= right [j] ∨ left [k] ̸= j) ∧ k > l) printf ("[oops]");
j = k;

}
}

This code is used in section 30.

32. ⟨Global variables 4 ⟩ +≡
int asleep [maxn]; /∗ sleeping (or inactive) nodes ∗/

33. Finally, we print even more stuff when the user calls for an exceptional level of absolute verbosity.

⟨Print out the results of initialization 33 ⟩ ≡
{
for (k = 0; k ≤ n; k++) {

printf ("%d(%c):␣scope=%d,␣par=%d,␣rchild=%d,␣lsib=%d,", k, sign [k] ? ’−’ : ’+’, scope [k],
par [k], rchild [k], lsib [k]);

printf ("␣ppro=%d,␣npro=%d,␣prev=%d,␣bstart=%d\n", ppro [k],npro [k], prev [k], bstart [k]);
printf ("␣umin=%d,␣ueven=%d,␣umax=%d,␣umaxbit=%d,␣umaxscope=%d\n", umin [k], ueven [k],

umax [k], umaxbit [k], umaxscope [k]);
printf ("␣vmin=%d,␣veven=%d,␣vmax=%d,␣vmaxbit=%d,␣vmaxscope=%d\n", vmin [k], veven [k],

vmax [k], vmaxbit [k], vmaxscope [k]);
}

}
This code is used in section 24.

§34 SPIDERS INDEX 17

34. Index.

abort : 3.
argc : 1, 3.
argv : 1, 3.
asleep : 31, 32.
b: 13.
been there and done that : 24, 25.
bit : 11, 12, 13, 14, 16, 18, 19, 23, 24, 28, 29, 30, 31.
bstart : 12, 16, 17, 18, 19, 20, 21, 22, 33.
c: 3.
count : 24, 25.
exit : 3.
fixup : 19, 24, 28, 29.
flag : 18, 19, 20, 21, 22, 24, 27, 31.
focus : 15, 18, 23, 26, 27, 31.
fprintf : 3.
i: 19.
j: 5, 13, 19.
k: 5, 13, 19.
l: 5, 19.
left : 15, 16, 18, 20, 21, 22, 23, 26, 27, 31.
lsib : 3, 4, 6, 7, 8, 13, 16, 19, 20, 21, 22, 33.
main : 1.
maxn : 3, 4, 9, 10, 12, 18, 20, 22, 28, 29, 32.
n: 5.
npro : 7, 8, 9, 10, 33.
par : 3, 4, 6, 7, 8, 10, 11, 14, 23, 31, 33.
ppro : 7, 8, 9, 10, 33.
prev : 7, 8, 9, 33.
printf : 21, 24, 31, 33.
ptr : 8, 9.
putchar : 30.
rchild : 3, 4, 6, 8, 13, 19, 28, 29, 33.
right : 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 31.
scope : 3, 4, 6, 7, 8, 10, 33.
setfirst : 13, 23.
setlast : 13.
setmid : 13.
sign : 3, 4, 6, 7, 8, 10, 13, 17, 20, 21, 22, 23,

28, 29, 31, 33.
sscanf : 3.
stack : 3, 4.
stderr : 3.
ueven : 10, 11, 12, 13, 33.
umax : 7, 8, 9, 10, 11, 16, 17, 21, 28, 29, 33.
umaxbit : 11, 12, 16, 33.
umaxscope : 12, 16, 18, 28, 33.
umin : 10, 12, 20, 21, 22, 28, 29, 33.
verbose : 3, 4, 24, 30.
veven : 10, 11, 12, 13, 33.
vmax : 7, 8, 9, 10, 11, 16, 17, 21, 28, 29, 33.
vmaxbit : 11, 12, 16, 33.

vmaxscope : 12, 16, 18, 29, 33.
vmin : 10, 12, 20, 21, 22, 28, 29, 33.

18 NAMES OF THE SECTIONS SPIDERS

⟨Compute the bstart links for k’s family 17 ⟩ Used in section 16.

⟨Delete block k before l 21 ⟩ Used in section 19.

⟨Fill in all umax and vmax links, traversing in reverse postorder 8 ⟩ Used in section 7.

⟨Generate the answers 24 ⟩ Used in section 1.

⟨Global variables 4, 9, 12, 18, 25, 32 ⟩ Used in section 1.

⟨ Initialize the data structures 7, 10, 11, 16 ⟩ Used in section 1.

⟨ Insert block k before l and return 20 ⟩ Used in section 19.

⟨Launch the active list 23 ⟩ Used in section 24.

⟨Local variables 5 ⟩ Used in section 1.

⟨Move backward, setting bit [k] = 0 29 ⟩ Used in section 24.

⟨Move forward, setting bit [k] = 1 28 ⟩ Used in section 24.

⟨Parse the command line 3 ⟩ Used in section 1.

⟨Print out all the current bits 30 ⟩ Used in section 24.

⟨Print out the results of initialization 33 ⟩ Used in section 24.

⟨Print the active list in symbolic form 31 ⟩ Used in section 30.

⟨Put k to sleep 27 ⟩ Used in section 24.

⟨Replace block k by block i and return 22 ⟩ Used in section 21.

⟨ Set k to the rightmost nonsleeping node of the active list 26 ⟩ Used in section 24.

⟨ Subroutines 13, 19 ⟩ Used in section 1.

SPIDERS

Section Page
Introduction . 1 1
The active list . 14 9
Doing it . 24 14
Index . 34 17

