
§1 SLIDING INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program solves a fairly general kind of sliding block puzzle. Indeed, it emphasizes
generality over speed, although it does try to implement breadth-first search on large graphs in a reasonably
efficient way. (I plan to write a program based on more advanced techniques later, with this one available
for doublechecking the results.) I apologize for not taking time to prepare a fancy user interface; all you’ll
find here is a shortest-path-to-solution-of-a-sliding-block-puzzle engine.

2. The puzzle can have up to 15 different kinds of pieces, named in hexadecimal from 1 to f. These pieces
are specified in the standard input file, one line per piece, by giving a rectangular pattern of 0s and 1s, where
0 means ‘empty’ and 1 means ‘occupied’. Rows of the pattern are separated by slashes as in the examples
below.

The first line of standard input is special: It should contain the overall board size in the form ‘rows x

columns ’, followed by any desired commentary (usually the name of the puzzle). This first line is followed
by piece definitions of the form ‘piecename = pattern ’.

Two more lines of input should follow the piece definitions, one for the starting configuration and one for
the stopping configuration. (I may extend this later to allow several ways to stop.) Each configuration is
specified in a shorthand form by telling how to fill in the board, repeatedly naming the piece that occupies
the topmost and leftmost yet-unspecified cell, or 0 if that cell is empty, or x if that cell is permanently
blocked. Trailing zeros may be omitted.

For example, here’s how we could specify a strange (but easy to solve) 5× 5 puzzle that has four pieces of
three kinds:

5 x 5 (a silly example)

1 = 111/01

2 = 101/111

3 = 1

1xx200000000033

000xx00033001002

The same puzzle can be illustrated more conventionally as follows:

Starting position

1 1 1

2 1 2 0 0

2 2 2 0 0

0 0 0 0 0

3 3 0 0 0

Stopping position

0 0 0

0 0 0 3 3

0 0 1 1 1

0 0 2 1 2

0 0 2 2 2

The two ‘3’ pieces are indistinguishable from each other. If I had wanted to distinguish them, I would have
introduced another piece name, for example by saying ‘4 = 1’.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION SLIDING §3

3. Six different styles of sliding-block moves are supported by this program, and the user should specify
the desired style on the command line.

Style 0. Move a single piece one step left, right, up, or down. The newly occupied cells must previously
have been empty.

Style 1. Move a single piece one or more steps left, right, up, or down. (This is a sequence of style-0 moves,
all applied to the same piece in the same direction, counted as a single move.)

Style 2. Move a single piece one or more steps. (This is a sequence of style-0 moves, all applied to the same
piece but not necessarily in the same direction.)

Style 3. Move a subset of pieces one step left, right, up, or down. (This is like style 0, but several pieces
may move as if they were a single “superpiece.”)

Style 4. Move a subset of pieces one or more steps left, right, up, or down. (This is the superpiece analog
of style 1.)

Style 5. Move a subset of pieces one or more steps. (The superpiece analog of style 2.)

The subsets of pieces moved in styles 3, 4, and 5 need not be connected to each other. Indeed, an astute
reader will have noticed that our input conventions allow individual pieces to have disconnected components.

The silly puzzle specified above can, for example, be solved in respectively (20, 10, 4, 10, 4, 2) moves of
styles (0, 1, 2, 3, 4, 5). Notice that a small change to that puzzle would make certain positions impossible
without superpiece moves; thus, superpiece moves are not simply luxuries, they might be necessary when
solving certain puzzles.

4. OK, here now is the general outline of the program. There are no surprises yet, except perhaps for the
fact that we prepare to make a longjmp .

#define verbose Verbose /∗ avoid a possible 64-bit-pointer glitch in libgb ∗/
#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

#include "gb_flip.h" /∗ GraphBase random number generator ∗/
typedef unsigned int uint;
jmp buf success point ;
int style ;
int verbose ;

〈Global variables 6 〉
〈Subroutines 10 〉
main (int argc , char ∗argv [])
{

register int j, k, t;
volatile int d;

〈Process the command line 5 〉;
〈Read the puzzle specification; abort if it isn’t right 13 〉;
〈 Initialize 24 〉;
〈Solve the puzzle 34 〉;

hurray : 〈Print the solution 39 〉;
}

§5 SLIDING INTRODUCTION 3

5. If the style parameter is followed by another parameter on the command line, the second parameter
causes verbose output if it is positive, or suppresses the solution details if it is negative.

〈Process the command line 5 〉 ≡
if (¬(argc ≥ 2 ∧ sscanf (argv [1], "%d",&style) ≡ 1 ∧

(argc ≡ 2 ∨ sscanf (argv [2], "%d",&verbose) ≡ 1))) {
fprintf (stderr , "Usage: %s style [verbose]\n", argv [0]);
exit (−1);
}
if (style < 0 ∨ style > 5) {

fprintf (stderr , "Sorry, the style should be between 0 and 5, not %d!\n", style);
exit (−2);
}

This code is used in section 4.

4 REPRESENTING THE BOARD SLIDING §6

6. Representing the board. An r× c board will be represented as an array of rc+ 2c+ r+ 1 entries.
The upper left corner corresponds to position c+ 1 in this array; moving up, down, left, or right corresponds
to adding −(c+ 1), (c+ 1), −1, or 1 to the current board position. Boundary marks appear in the first c+ 1
and last c+ 1 positions, and in positions c+ k(c+ 1) for 1 ≤ k < r; these prohibit the pieces from sliding off
the edges of the board.

The following code uses the fact that rc+ 2c+ r+ 1 is at most 3m+ 2 when rc ≤ m; the maximum occurs
when r = 1 and c = m.

#define bdry 999999 /∗ boundary mark ∗/
#define obst 999998 /∗ permanent obstruction ∗/
#define maxsize 256 /∗ maximum r × c; should be a multiple of 8 ∗/
#define boardsize (maxsize ∗ 3 + 2)

〈Global variables 6 〉 ≡
int board [boardsize]; /∗ main board for analyzing configurations ∗/
int aboard [boardsize]; /∗ auxiliary board ∗/
int rows ; /∗ the number of rows in the board ∗/
int cols ; /∗ the number of columns in the board ∗/
int colsp ; /∗ cols + 1 ∗/
int ul , lr ; /∗ location of upper left and lower right corners in the board ∗/
int delta [4] = {1,−1}; /∗ offsets in board for moving right, left, down, up ∗/

See also sections 8, 11, 18, 21, 25, 27, 49, and 53.

This code is used in section 4.

§7 SLIDING REPRESENTING THE BOARD 5

7. Every type of piece is specified by a list of board offsets from the piece’s topmost/leftmost cell, terminated
by zero. For example, the offsets for the piece named 1 in the silly example are (1, 2, 7, 0) because there are
five columns. If there had been six columns, the same piece would have had offsets (1, 2, 8, 0).

The following code is executed when a new piece is being defined.

#define boardover ()
{

fprintf (stderr , "Sorry, I can’t handle that large a board;\n");
fprintf (stderr , " please recompile me with more maxsize.\n");
exit (−3);
}

〈Compute the offsets for a piece 7 〉 ≡
{

register char ∗p;
for (t = −1, j = k = 0, p = &buf [4]; ; p++)

switch (∗p) {
case ’1’: if (t < 0) t = k; else off [curo ++] = k − t;

if (curo ≥ maxsize) boardover ();
case ’0’: j++, k++; break;
case ’/’: k += colsp − j, j = 0; break;
case ’\n’: goto offsets done ;
default: fprintf (stderr , "Bad character ‘%c’ in definition of piece %c!\n", ∗p, buf [0]);

exit (−4);
}

offsets done : if (t < 0) {
fprintf (stderr , "Piece %c is empty!\n", buf [0]); exit (−5);

}
off [curo ++] = 0;
if (curo ≥ maxsize) boardover ();
}

This code is used in section 15.

8. #define bufsize 1024 /∗ maximum length of input lines ∗/
〈Global variables 6 〉 +≡

int off [maxsize]; /∗ offset lists for pieces ∗/
int offstart [16]; /∗ starting points in the off table ∗/
int curo ; /∗ the number of offsets stored so far ∗/
char buf [bufsize]; /∗ input buffer ∗/

6 REPRESENTING THE BOARD SLIDING §9

9. A board position is specified by putting block numbers in each occupied cell. The number of blocks on
the board might exceed the number of piece types, since different blocks can have the same type; we assign
numbers arbitrarily to the blocks.

For example, the board array might look like this in the “silly” starting position:

bdry bdry bdry bdry bdry bdry
4 4 4 obst obst bdry
3 4 3 0 0 bdry
3 3 3 0 0 bdry
0 0 0 0 0 bdry
2 1 0 0 0 bdry

bdry bdry bdry bdry bdry

Any permutation of the numbers {1, 2, 3, 4} would be equally valid.

10. Here is a subroutine that fills the board from a specification in the input buffer. It returns −1 if too
many cells are specified, or −2 if an illegal character is found. Otherwise it returns the number of conflicts
found, namely the number of cells that were erroneously filled more than once.

〈Subroutines 10 〉 ≡
int fill board (int board [], int piece [], int place [])
{

register int j, c, k, t;
register char ∗p;
for (j = 0; j < ul ; j++) board [j] = bdry ;
for (j = ul ; j ≤ lr ; j++) board [j] = −1;
for (j = ul + cols ; j ≤ lr ; j += colsp) board [j] = bdry ;
for (; j ≤ lr + colsp ; j++) board [j] = bdry ;
for (p = &buf [0], j = ul , bcount = c = 0; ∗p 6= ’\n’; p++) {

while (board [j] ≥ 0)
if (++j > lr) return −1;

if (∗p ≡ ’0’) board [j] = t = 0;
else if (∗p ≥ ’1’ ∧ ∗p ≤ ’9’) t = ∗p− ’0’;
else if (∗p ≥ ’a’ ∧ ∗p ≤ ’f’) t = ∗p− (’a’ − 10);
else if (∗p ≡ ’x’) t = 0, board [j] = obst ;
else return −2;
if (t) {

bcount ++;
piece [bcount] = t;
place [bcount] = j;
board [j] = bcount ;
for (k = offstart [t]; off [k]; k++)

if (j + off [k] < ul ∨ j + off [k] > lr ∨ board [j + off [k]] ≥ 0) c++;
else board [j + off [k]] = bcount ;

}
j++;

}
for (; j ≤ lr ; j++)

if (board [j] < 0) board [j] = 0;
return c;

}
See also sections 12, 20, 22, 23, 26, 28, 43, 50, and 55.

This code is used in section 4.

§11 SLIDING REPRESENTING THE BOARD 7

11. 〈Global variables 6 〉 +≡
int bcount ; /∗ the number of blocks on the board ∗/
int piece [maxsize], apiece [maxsize]; /∗ the piece names of each block ∗/
int place [maxsize], aplace [maxsize]; /∗ the topmost/leftmost positions of each block ∗/

12. The next subroutine prints a given board on standard output, in a somewhat readable format that
shows connections between adjacent cells of each block. The starting position specified by the “silly” input
would, for example, be rendered thus:

1-1-1
|

2 1 2 0 0
| |
2-2-2 0 0

0 0 0 0 0

3 3 0 0 0

#define cell (j, k) board [ul + (j) ∗ colsp + k]

〈Subroutines 10 〉 +≡
void print board (int board [], int piece [])
{

register int j, k;

for (j = 0; j < rows ; j++) {
for (k = 0; k < cols ; k++)

printf (" %c", cell (j, k) ≡ cell (j − 1, k) ∧ cell (j, k) ∧ cell (j, k) < obst ? ’|’ : ’ ’);
printf ("\n");
for (k = 0; k < cols ; k++)

if (cell (j, k) < 0) printf (" ?");
else if (cell (j, k) < obst)

printf ("%c%x", cell (j, k) ≡ cell (j, k − 1) ∧ cell (j, k) ∧ cell (j, k) < obst ? ’−’ : ’ ’,
piece [cell (j, k)]);

else printf (" ");
printf ("\n");

}
}

13. Armed with those routines and subroutines, we’re ready to process the entire input file.

〈Read the puzzle specification; abort if it isn’t right 13 〉 ≡
〈Read the board size 14 〉;
〈Read the piece specs 15 〉;
〈Read the starting configuration into board 16 〉;
〈Read the stopping configuration into aboard 17 〉;

This code is used in section 4.

8 REPRESENTING THE BOARD SLIDING §14

14. 〈Read the board size 14 〉 ≡
fgets (buf , bufsize , stdin);
if (sscanf (buf , "%d x %d",&rows ,&cols) 6= 2 ∨ rows ≤ 0 ∨ cols ≤ 0) {

fprintf (stderr , "Bad specification of rows x cols!\n");
exit (−6);
}
if (rows ∗ cols > maxsize) boardover ();
colsp = cols + 1;
delta [2] = colsp , delta [3] = −colsp ;
ul = colsp ;
lr = (rows + 1) ∗ colsp − 2;

This code is used in section 13.

15. 〈Read the piece specs 15 〉 ≡
for (j = 1; j < 16; j++) offstart [j] = −1;
while (1) {

if (¬fgets (buf , bufsize , stdin)) {
buf [0] = ’\n’; break;

}
if (buf [0] ≡ ’\n’) continue;
if (buf [1] 6= ’ ’ ∨ buf [2] 6= ’=’ ∨ buf [3] 6= ’ ’) break;
if (buf [0] ≥ ’1’ ∧ buf [0] ≤ ’9’) t = buf [0]− ’0’;
else if (buf [0] ≥ ’a’ ∧ buf [0] ≤ ’f’) t = buf [0]− (’a’ − 10);
else {

printf ("Bad piece name (%c)!\n", buf [0]);
exit (−7);

}
if (offstart [t] ≥ 0) printf ("Warning: Redefinition of piece %c is being ignored.\n", buf [0]);
else {

offstart [t] = curo ;
〈Compute the offsets for a piece 7 〉;

}
}

This code is used in section 13.

16. 〈Read the starting configuration into board 16 〉 ≡
t = fill board (board , piece , place);
printf ("Starting configuration:\n");
print board (board , piece);
if (t) {

if (t > 0)
if (t ≡ 1) fprintf (stderr , "Oops, you filled a cell twice!\n");
else fprintf (stderr , "Oops, you overfilled %d cells!\n", t);

else fprintf (stderr , "Oops, %s!\n", t ≡ −1 ? "your board wasn’t big enough" :
"the configuration contains an illegal character");

exit (−8);
}
if (bcount ≡ 0) {

fprintf (stderr , "The puzzle doesn’t have any pieces!\n");
exit (−9);
}

This code is used in section 13.

§17 SLIDING REPRESENTING THE BOARD 9

17. 〈Read the stopping configuration into aboard 17 〉 ≡
fgets (buf , bufsize , stdin);
t = fill board (aboard , apiece , aplace);
printf ("\nStopping configuration:\n");
print board (aboard , apiece);
if (t) {

if (t > 0)
if (t ≡ 1) fprintf (stderr , "Oops, you filled a cell twice!\n");
else fprintf (stderr , "Oops, you overfilled %d cells!\n", t);

else fprintf (stderr , "Oops, %s!\n", t ≡ −1 ? "your board wasn’t big enough" :
"the configuration contains an illegal character");

exit (−10);
}
for (j = 0; j < 16; j++) balance [j] = 0;
for (j = ul ; j ≤ lr ; j++) {

if ((board [j] < obst) 6= (aboard [j] < obst)) {
fprintf (stderr , "The dead cells (x’s) are in different places!\n");
exit (−11);

}
if (board [j] < obst) balance [piece [board [j]]]++, balance [apiece [aboard [j]]]−−;
}
for (j = 0; j < 16; j++)

if (balance [j]) {
fprintf (stderr , "Wrong number of pieces in the stopping configuration!\n");
exit (−12);

}
This code is used in section 13.

18. 〈Global variables 6 〉 +≡
int balance [16]; /∗ counters used to ensure that no pieces are lost ∗/

10 BREADTH-FIRST SEARCH SLIDING §19

19. Breadth-first search. Now we’re ready for the heart of the calculation, which is conceptually very
simple: If we have found all configurations reachable in fewer than d moves, those reachable in d moves are
obtained by making one more move from each of those that are reachable in d− 1. In other words, we want
to proceed essentially as follows.

c1 = starting position;
m0 = 1; k = 2;
for (d = 1; ; d++) {
md = k;
for (j = md−1; j < md; j++)

for (all positions p reachable in one move from cj)
if (p is new) ck = p, k++;

if (md ≡ k) break;
}

The main problem is to test efficiently whether a given position p is new. For this purpose we can use the
fact that moves from configurations at distance d − 1 always go to configurations at distance d − 2, d − 1,
or d; therefore we can safely forget all configurations cj for j < md−2 when making the test. This principle
significantly reduces the memory requirements.

One convenient way to test newness and to discard stale data rapidly is to use hash chains, ignoring all
entries at the end of a chain when their index j becomes less than a given cutoff. In other words, we compute
a hash address for each configuration, and we store each configuration with a pointer to the previous one
that had the same hash code. Whenever we come to a pointer that is less than md−2, we can stop looking
further in a chain.

20. A configuration is represented internally as a sequence of nybbles that list successive piece names, just
as in the shorthand form used for starting and stopping configurations in the input but omitting the x’s.
For example, the “silly” starting configuration is the hexadecimal number 1200000000033, which is actually
stored as two 32-bit quantities #12000000 and #00033000.

Here’s a subroutine that packs a given board into its encoded form. It puts 32-bit codes into the config
array, and returns the number of such codes that were stored.

〈Subroutines 10 〉 +≡
int pack (int board [], int piece [])
{

register int i, j, k, p, s, t;

for (j = ul ; j ≤ lr ; j++) xboard [j] = 0;
for (i = s = 0, p = 28, j = ul , t = bcount ; t; j++)

if (board [j] < obst ∧ ¬xboard [j]) {
k = piece [board [j]];
if (k) {
t−−, s += k � p;
for (k = offstart [k]; off [k]; k++) xboard [j + off [k]] = 1;
}
if (¬p) config [i++] = s, s = 0, p = 28;
else p −= 4;

}
if (p 6= 28) config [i++] = s;
return i;
}

§21 SLIDING BREADTH-FIRST SEARCH 11

21. 〈Global variables 6 〉 +≡
char xboard [boardsize]; /∗ places filled ahead of time ∗/
uint config [maxsize/8]; /∗ a packed configuration ∗/

22. 〈Subroutines 10 〉 +≡
void print config (uint config [], int n)
{

register int j, t;

for (j = 0; j < n− 1; j++) printf ("%08x", config [j]);
for (t = config [n− 1], j = 8; (t& #f) ≡ 0; j−−) t�= 4;
printf ("%0*x", j, t); /∗ we omit the trailing zeros ∗/
}

23. Conversely, we can reconstruct a board from its packed representation.

〈Subroutines 10 〉 +≡
int unpack (int board [], int piece [], int place [],uint config [])
{

register int i, j, k, p, s, t;

for (j = ul ; j ≤ lr ; j++) xboard [j] = 0;
for (p = i = 0, j = ul , t = bcount ; t; j++)

if (board [j] < obst ∧ ¬xboard [j]) {
if (¬p) s = config [i++], p = 28;
else p −= 4;
k = (s� p) & #f;
if (k) {

board [j] = t, piece [t] = k, place [t] = j;
for (k = offstart [k]; off [k]; k++) xboard [j + off [k]] = 1, board [j + off [k]] = t;
t−−;
} else board [j] = 0;

}
for (; j ≤ lr ; j++)

if (board [j] < obst ∧ ¬xboard [j]) board [j] = 0;
return i;
}

24. We use “universal hashing” to compute hash codes, xoring random bits based on individual bytes.
These random bits appear in tables called uni .

〈 Initialize 24 〉 ≡
gb init rand (0);
for (j = 0; j < 4; j++)

for (k = 1; k < 256; k++) uni [j][k] = gb next rand ();

See also section 30.

This code is used in section 4.

12 BREADTH-FIRST SEARCH SLIDING §25

25. The number of hash chains, hashsize , should be a power of 2, and it deserves to be chosen somewhat
carefully. If it is too large, we’ll interfere with our machine’s cache memory; if it is too small, we’ll spend
too much time going through hash chains. At present I’ve decided to assume that hashsize is at most 216,
so that the uni table entries are short (16-bit) quantities.

The total number of configurations might be huge, so I allow 64 bits for the main hash table pointers.
(Programmers in future years will chuckle when they read this code, having blissfully forgotten the olden
days when people like me had to fuss over 32-bit numbers.)

#define hashsize (1� 13) /∗ should be a power of two, not more than 1� 16 ∗/
#define hashcode (x) (uni [0][x& #ff] + uni [1][(x� 8) & #ff] + uni [2][(x� 16) & #ff] + uni [3][x� 24])

〈Global variables 6 〉 +≡
short uni [4][256]; /∗ bits for universal hashing ∗/
uint hash [hashsize]; /∗ hash table pointers (low half) ∗/
uint hashh [hashsize]; /∗ hash table pointers (high half) ∗/

26. 〈Subroutines 10 〉 +≡
void print big (uint hi ,uint lo)
{

printf ("%.15g", ((double) hi) ∗ 4294967296.0 + (double) lo);
}
void print bigx (uint hi ,uint lo)
{

if (hi) printf ("%x%08x", hi , lo);
else printf ("%x", lo);
}

§27 SLIDING BREADTH-FIRST SEARCH 13

27. Of course I don’t expect to keep all configurations in memory simultaneously, except on simple
problems. Instead, I keep a table of memsize integers, containing variable-size packets that represent
individual configurations. An address into this table is conceptually a 64-bit number, but we actually
use the address mod memsize because stale data is discarded. The value of memsize is a power of 2 so that
this reduction is efficient.

The first word of a packet is a pointer to the previous packet having the same hash code. This pointer is
relative to the current packet, so that it needs to contain only 32 bits at most.

The second word of a packet p is a (relative) pointer to the configuration from which p was derived. This
word could be omitted in the interests of space, but it is handy if we want to see an actual solution to the
puzzle instead of merely knowing the optimum number of moves.

The remaining words of a packet are the packed encoding of a configuration. If the packet begins near the
end of the pos array, it actually extends past pos [memsize]; enough extra space has been provided there to
avoid any need for wrapping packets around the memsize boundary.

#define memsize (1� 25) /∗ space for the configurations we need to know about ∗/
#define maxmoves 1000 /∗ upper bound on path length ∗/
〈Global variables 6 〉 +≡

uint pos [memsize + maxsize/8 + 1]; /∗ currently known configurations ∗/
uint cutoff ; /∗ pointer below which we needn’t search (low half) ∗/
uint cutoffh ; /∗ pointer below which we needn’t search (high half) ∗/
uint curpos ; /∗ pointer to first unused configuration slot (low half) ∗/
uint curposh ; /∗ pointer to first unused configuration slot (high half) ∗/
uint source ; /∗ pointer to the configuration we’re moving from (low half) ∗/
uint sourceh ; /∗ pointer to the configuration we’re moving from (high half) ∗/
uint nextsource ,nextsourceh ; /∗ next values of source and sourceh ∗/
uint maxpos ; /∗ pointer to first unusable configuration slot (low half) ∗/
uint maxposh ; /∗ pointer to first unusable configuration slot (high half) ∗/
uint configs ; /∗ total number of configurations so far (low half) ∗/
uint configsh ; /∗ total number of configurations so far (high half) ∗/
uint oldconfigs ; /∗ value of configs when we began working at distance d ∗/
uint milestone [maxmoves]; /∗ value of curpos at various distances ∗/
uint milestoneh [maxmoves]; /∗ value of curposh at various distances ∗/
uint shortcut ; /∗ milestone [d]− cutoff ∗/
int goalhash ; /∗ hash code for the stopping position ∗/
uint goal [maxsize/8]; /∗ packed version of the stopping position ∗/
uint start [maxsize/8]; /∗ packed version of the starting position ∗/

14 BREADTH-FIRST SEARCH SLIDING §28

28. The hashin subroutine looks for a given board configuration in the master table, inserting it if it is
new. The value returned is 0 unless the trick parameter is nonzero. In the latter case, which is used for
moves of style 2 or style 5, special processing needs to be done; we’ll explain it later.

〈Subroutines 10 〉 +≡
int hashin (int trick)
{

register int h, j, k, n, bound ;

n = pack (board , piece);
for (h = hashcode (config [0]), j = 1; j < n; j++) h ⊕= hashcode (config [j]);
h &= hashsize − 1;
if (hashh [h] ≡ cutoffh) {

if (hash [h] < cutoff) goto newguy ;
} else if (hashh [h] < cutoffh) goto newguy ;
bound = hash [h]− cutoff ;
for (j = hash [h] & (memsize − 1); ; j = (j − pos [j]) & (memsize − 1)) {

for (k = 0; k < n; k++)
if (config [k] 6= pos [j + 2 + k]) goto nope ;

if (trick) 〈Handle the tricky case and return 44 〉;
return 0;

nope : bound −= pos [j];
if (bound < 0) break;

}
newguy : 〈 Insert config into the pos table 31 〉;

if (h ≡ goalhash) 〈Test if config equals the goal 29 〉;
return trick ;
}

29. If the current configuration achieves the goal, hashin happily terminates the search process, and sends
control immediately to the external label called ‘hurray ’.

〈Test if config equals the goal 29 〉 ≡
{

for (k = 0; k < n; k++)
if (config [k] 6= goal [k]) goto not yet ;

longjmp(success point , 1);
not yet : ;
}

This code is used in section 28.

30. 〈 Initialize 24 〉 +≡
if (setjmp(success point)) goto hurray ; /∗ get ready for longjmp ∗/

§31 SLIDING BREADTH-FIRST SEARCH 15

31. 〈 Insert config into the pos table 31 〉 ≡
j = curpos & (memsize − 1);
pos [j] = curpos − hash [h];
if (pos [j] > memsize ∨ curposh > hashh [h] + (pos [j] > curpos)) pos [j] = memsize ;

/∗ relative link that exceeds all cutoffs ∗/
pos [j + 1] = curpos − source ; /∗ relative link to previous position ∗/
for (k = 0; k < n; k++) pos [j + 2 + k] = config [k];
hash [h] = curpos , hashh [h] = curposh ;
〈Update configs 32 〉;
〈Update curpos 33 〉;

This code is used in section 28.

32. When we encounter a new configuration, we print it if it’s the first to be found at the current distance,
or if verbose is set.

〈Update configs 32 〉 ≡
if (configs ≡ oldconfigs ∨ verbose > 0) {

print config (config , n);
if (verbose > 0) {

printf (" (");
print big (configsh , configs);
printf ("=#");
print bigx (curposh , curpos);
printf (", from #");
print bigx (sourceh , source);
printf (")\n");

}
}
configs ++;
if (configs ≡ 0) configsh ++;

This code is used in section 31.

33. 〈Update curpos 33 〉 ≡
curpos += n+ 2;
if (curpos < n+ 2) curposh ++;
if ((curpos & (memsize − 1)) < n+ 2) curpos &= −memsize ;
if (curposh ≡ maxposh) {

if (curpos ≤ maxpos) goto okay ;
} else if (curposh < maxposh) goto okay ;
fprintf (stderr , "Sorry, my memsize isn’t big enough for this puzzle.\n");
exit (−13);

okay :

This code is used in section 31.

16 BREADTH-FIRST SEARCH SLIDING §34

34. So now we know how to deal with configurations, and we’re ready to carry out our overall search plan.

〈Solve the puzzle 34 〉 ≡
printf ("\n(using moves of style %d)\n", style);
〈Remember the starting configuration 36 〉;

restart : 〈Remember the stopping configuration 35 〉;
〈Put the starting configuration into pos 37 〉;
for (d = 1; d < maxmoves ; d++) {

printf ("*** Distance %d:\n", d);
milestone [d] = curpos ,milestoneh [d] = curposh ;
oldconfigs = configs ;
〈Generate all positions at distance d 38 〉;
if (configs ≡ oldconfigs) exit (0); /∗ no solution ∗/
if (verbose ≤ 0) printf (" and %d more.\n", configs − oldconfigs − 1);
}
printf ("No solution found yet (maxmoves=%d)!\n",maxmoves);
exit (0);

This code is used in section 4.

35. 〈Remember the stopping configuration 35 〉 ≡
t = pack (aboard , apiece);
for (k = goalhash = 0; k < t; k++) goal [k] = config [k], goalhash ⊕= hashcode (config [k]);
goalhash &= hashsize − 1;

This code is used in section 34.

36. We might need to return to the starting position when reconstructing a solution.

〈Remember the starting configuration 36 〉 ≡
t = pack (board , piece);
for (k = 0; k < t; k++) start [k] = config [k];

This code is used in section 34.

37. 〈Put the starting configuration into pos 37 〉 ≡
curpos = cutoff = milestone [0] = 1, curposh = cutoffh = milestoneh [0] = 0;
source = sourceh = configs = configsh = oldconfigs = d = 0;
maxposh = 1;
printf ("*** Distance 0:\n");
hashin (0);
if (verbose ≤ 0) printf (".\n");

This code is used in section 34.

38. 〈Generate all positions at distance d 38 〉 ≡
if (d > 1) cutoff = milestone [d− 2], cutoffh = milestoneh [d− 2];
shortcut = curpos − cutoff ;
maxpos = cutoff + memsize ,maxposh = cutoffh + (maxpos < memsize);
for (source = milestone [d−1], sourceh = milestoneh [d−1]; source 6= milestone [d]∨sourceh 6= milestoneh [d];

source = nextsource , sourceh = nextsourceh) {
j = unpack (board , piece , place ,&pos [(source & (memsize − 1)) + 2]) + 2;
nextsource = source + j,nextsourceh = sourceh + (nextsource < j);
if ((nextsource & (memsize − 1)) < j) nextsource &= −memsize ;
〈Hash in every move from board 42 〉;
}

This code is used in section 34.

§39 SLIDING THE ANSWER 17

39. The answer. We’ve found a solution in d moves.

〈Print the solution 39 〉 ≡
if (d ≡ 0) {

printf ("\nYou’re joking: That puzzle is solved in zero moves!\n");
exit (0);
}
printf ("... Solution!\n");
if (verbose < 0) exit (0);
〈Print all of the key moves that survive in pos ; exit if done 40 〉;
〈Apologize for lack of memory and go back to square one with reduced problem 41 〉;

This code is used in section 4.

40. Going backward, we can reconstruct the winning line, as long as the data appears in the top memsize
positions of our configuration list.

〈Print all of the key moves that survive in pos ; exit if done 40 〉 ≡
if (curposh ∨ curpos > memsize) {

maxpos = curpos −memsize ;
maxposh = curposh − (maxpos > curpos);
} else maxpos = maxposh = 0;
for (j = 0; j ≤ lr + colsp ; j++) aboard [j] = board [j];
while (sourceh > maxposh ∨ (sourceh ≡ maxposh ∧ source ≥ maxpos)) {
d−−;
if (d ≡ 0) exit (0);
printf ("\n%d:\n", d);
k = source & (memsize − 1);
unpack (aboard , apiece , aplace ,&pos [k + 2]);
print board (aboard , apiece);
if (source < pos [k + 1]) sourceh−−;
source = source − pos [k + 1];
}

This code is used in section 39.

41. 〈Apologize for lack of memory and go back to square one with reduced problem 41 〉 ≡
printf ("(Unfortunately I’ve forgotten how to get to level %d,\n", d);
printf (" so I’ll have to reconstruct that part. Please bear with me.)\n");
for (j = 0; j < hashsize ; j++) hash [j] = hashh [j] = 0;
unpack (board , piece , place , start);
goto restart ;

This code is used in section 39.

18 MOVING SLIDING §42

42. Moving. The last thing we need to do is actually slide the blocks. It seems simple, but the task can
be tricky when we get into moves of high-order styles.

〈Hash in every move from board 42 〉 ≡
if (style < 3)

for (j = 0; j < 4; j++)
for (k = 1; k ≤ bcount ; k++) move (k, delta [j], delta [j]);

else 〈Try all supermoves 57 〉;
This code is used in section 38.

43. In the move subroutine, parameter k is a block number, parameter del is a displacement, and parameter
delo is such that we’ve recently considered a board with displacement del − delo .

〈Subroutines 10 〉 +≡
void move (int k, int del , int delo)
{

register int j, s, t;

s = place [k], t = piece [k];
for (j = offstart [t]; ; j++) { /∗ we remove the piece ∗/

board [s+ off [j]] = 0;
if (¬off [j]) break;

}
for (j = offstart [t]; ; j++) { /∗ we test if it fits in new position ∗/

if (board [s+ del + off [j]]) goto illegal ;
if (¬off [j]) break;

}
for (j = offstart [t]; ; j++) { /∗ if so, we move it ∗/

board [s+ del + off [j]] = k;
if (¬off [j]) break;

}
if (hashin (style ≡ 2) ∨ style ≡ 1) 〈Unmove the piece and recurse 45 〉
else {

for (j = offstart [t]; ; j++) { /∗ remove the shifted piece ∗/
board [s+ del + off [j]] = 0;
if (¬off [j]) break;

}
illegal :

for (j = offstart [t]; ; j++) { /∗ replace the unshifted piece ∗/
board [s+ off [j]] = k;
if (¬off [j]) break;

}
}
}

§44 SLIDING MOVING 19

44. Style 1 is straightforward: We keep moving in direction delo until we bump into an obstacle. But
style 2 is more subtle, because we need to explore all reachable possibilities. I thank Gary McDonald for
pointing out a serious blunder in my first attempt to find all of the style-2 moves.

The basic idea we use, to find all configurations that are reachable by moving a single piece any number
of times, is the well-known technique of depth-first search. But there’s a twist, because such a sequence of
moves might go through configurations that already exist in the hash table; we can’t simply stop searching
when we encounter an old configuration. For example, consider the starting board 0102, from which we can
reach 0120 or 0012 or 1002 in a single move. A second move, from 0120, leads to 1020. And then when
we’re considering possible second moves from 1002, we dare not stop at the “already seen” 1020, lest we fail
to discover the move to 1200.

We can, however, argue that every valid style-2 move at distance d can be reached by a path that begins
at distance d−1 and stays entirely at distance d after the first step. (The shortest path to that move clearly
has this property.)

Suppose we’re exploring the style-2 moves at distance d that are successors of configuration α at distance
d−1. If we encounter some configuration β that has already been seen, there are two cases: The predecessor
of β might be α, or it might be some other configuration, α′. In the former case, we needn’t explore any
further past β, because the depth-first search procedure will already have been there and done that. (Only
one piece has moved, when changing from α to β, so it must be the same as the piece we’re currently trying
to move.) On the other hand if α 6= α′, the example above shows that we need to look past β into potentially
unknown territory, or we might miss some legal moves from α. In this second case we need a way to avoid
encountering β again and again, endlessly.

To resolve this dilemma without adding additional “mark bits” to the data structure, we will rename the
predecessor of β, by changing it from α′ to α. This change is legitimate, since β is reachable in one move
from both α′ and α, which both are at distance d − 1. Then if we encounter β again, we won’t have to
reconsider it; infinite looping will be impossible.

This strategy tells us how to implement the unfinished “tricky” part of the hashin routine. When the
following code is encountered, we’ve just found a known configuration β that begins at j in the pos array.

〈Handle the tricky case and return 44 〉 ≡
{

if (bound < shortcut) return 0; /∗ return if β not at distance d ∗/
n = (j − source) & (memsize − 1); /∗ find the distance from β to α ∗/
if (pos [j + 1] ≡ n) return 0; /∗ return if α preceded β ∗/
pos [j + 1] = n; /∗ otherwise make α precede β ∗/
return 1; /∗ and continue the depth-first search ∗/
}

This code is used in section 28.

20 MOVING SLIDING §45

45. Local variables s and t need not be preserved across the recursive call in this part of the move routine.
(I don’t expect a typical compiler to recognize that fact; but maybe I underestimate the current state of
compiler technology.)

〈Unmove the piece and recurse 45 〉 ≡
{

for (j = offstart [t]; ; j++) { /∗ remove the shifted piece ∗/
board [s+ del + off [j]] = 0;
if (¬off [j]) break;

}
for (j = offstart [t]; ; j++) { /∗ replace the unshifted piece ∗/

board [s+ off [j]] = k;
if (¬off [j]) break;

}
if (style ≡ 1) move (k, del + delo , delo);
else

for (j = 0; j < 4; j++)
if (delta [j] 6= −delo) move (k, del + delta [j], delta [j]);

}
This code is used in section 43.

§46 SLIDING SUPERMOVING 21

46. Supermoving. The remaining job is the most interesting one: How should we deal with the
possibility of sliding several blocks simultaneously?

A puzzle with m blocks has 2m − 1 potential superpieces, and one can easily construct examples in which
that upper limit is achieved. Fortunately, however, reasonable puzzles have only a reasonable number of
superpiece moves; our job is to avoid examining unnecessary cases. The following algorithm is sort of a cute
way to do that.

First, we prepare for future calculations by making aboard an edited copy of board . In the process, we
change bdry and obst items to zero, considering the zeros now to be a special kind of “stuck” block, and
we link together all cells belonging to each block. This linking will be more efficient than the offset-oriented
method used before.

〈Copy and link the board 46 〉 ≡
for (j = 0; j ≤ bcount ; j++) head [j] = −1;
for (j = 0; j ≤ lr + colsp ; j++) {
k = board [j];
if (k) {

if (k ≥ obst) k = 0;
aboard [j] = k;
link [j] = head [k];
head [k] = j;

} else aboard [j] = −1;
}

This code is used in section 57.

47. Elementary graph theory helps now.
Consider the digraph whose vertices are blocks, with arcs u→ v whenever u would bump into v when block

u is shifted by a given amount. The superpieces are ideals of this graph, namely they have the property that
if u is in the superpiece and u→ v then v is also in the superpiece. Indeed, every ideal that is nonempty and
does not contain the stuck block is a superpiece, and conversely. So the problem that faces us is equivalent
to generating all such ideals in a given digraph.

The complement of an ideal is an ideal of the dual digraph (the digraph in which arcs are reversed).
And the digraph for sliding left is the dual of the digraph for sliding right. So the problem of generating
all superpieces for left/right slides is equivalent to generating all ideals of the digraph that corresponds to
moving from k − 1 to k. If such an ideal doesn’t contain the stuck block, it defines a superpiece for sliding
right; otherwise its complement defines a superpiece for sliding left.

We can construct that digraph by running through the links just made: After the following code has
been executed, the arcs leading from u will be to aboard [l], aboard [l′], aboard [l′′], etc., where l = out [u],
l′ = olink [l], l′′ = olink [l′], etc.; the arcs leading into u will be similar, with in and ilink instead of out and
olink .

〈Construct the digraph for del = 1 47 〉 ≡
for (j = 0; j ≤ bcount ; j++) out [j] = in [j] = −1;
for (j = 0; j ≤ bcount ; j++)

for (k = head [j]; k ≥ ul ; k = link [k]) { /∗ aboard [k] = j ∗/
t = aboard [k − 1];
if (t 6= j ∧ t ≥ 0 ∧ (out [t] < 0 ∨ aboard [out [t]] 6= j)) {

olink [k] = out [t], out [t] = k;
ilink [k − 1] = in [j], in [j] = k − 1;

}
}

This code is used in section 57.

22 SUPERMOVING SLIDING §48

48. And the problem of generating all superpieces for up/down slides is equivalent to generating all ideals
of a very similar digraph.

〈Construct the digraph for del = colsp 48 〉 ≡
for (j = 0; j ≤ bcount ; j++) out [j] = in [j] = −1;
for (j = 0; j ≤ bcount ; j++)

for (k = head [j]; k ≥ ul ; k = link [k]) { /∗ aboard [k] = j ∗/
t = aboard [k − colsp];
if (t 6= j ∧ t ≥ 0 ∧ (out [t] < 0 ∨ aboard [out [t]] 6= j)) {

olink [k] = out [t], out [t] = k;
ilink [k − colsp] = in [j], in [j] = k − colsp ;

}
}

This code is used in section 57.

49. 〈Global variables 6 〉 +≡
int head [maxsize + 1], out [maxsize + 1], in [maxsize + 1]; /∗ list heads ∗/
int link [boardsize], olink [boardsize], ilink [boardsize]; /∗ links ∗/

§50 SLIDING SUPERMOVING 23

50. The following subroutine for ideals of a digraph maintains a permutation of the vertices in an array
perm , with the inverse permutation in iperm . Elements inx [l] through inx [l+ 1]− 1 of this array are known
to be simultaneously either in or out of the ideal, according as decision [l] = 1 or decision [l] = 0, based on
the decision made on level l of a backtrack tree.

The basic invariant relation is that we could obtain an ideal by either excluding or including all elements
of index ≥ inx [l] in perm . This property holds when l = 0 because inx [0] = 0. To raise the level, we decide
first to exclude vertex perm [inx [l]]; this also excludes all vertices that lead to it, and we rearrange perm in
order to bring those elements into their proper place. Afterwards, we decide to include vertex perm [inx [l]];
this also includes all vertices that lead from it, in a similar way.

Vertex 0 corresponds to an artificial piece that is “stuck,” as explained above. If this vertex is excluded
from the ideal, we create a list of all board positions for vertices that are included; this will define a superpiece
for shifts by del . But if the stuck vertex is included in the ideal, we create a list of all board positions for
vertices that are excluded; the list in that case will define a superpiece for shifts by −del . The list contains
lstart [l] entries at the beginning of level l.

〈Subroutines 10 〉 +≡
void supermove (int, int); /∗ see below ∗/
void ideals (int del)
{

register int j, k, l, p, u, v, t;

for (j = 0; j ≤ bcount ; j++) perm [j] = iperm [j] = j;
l = p = 0;

excl : decision [l] = 0, lstart [l] = p;
for (j = inx [l], t = j + 1; j < t; j++) 〈Put all vertices that lead to perm [j] into positions near j 51 〉;
if (t > bcount) {
〈Process an ideal 54 〉; goto incl ;

}
inx [++l] = t; goto excl ;

incl : decision [l] = 1, p = lstart [l];
for (j = inx [l], t = j+ 1; j < t; j++) 〈Put all vertices that lead from perm [j] into positions near j 52 〉;
if (t > bcount) {
〈Process an ideal 54 〉; goto backup ;

}
inx [++l] = t; goto excl ;

backup : if (l) {
l−−;
if (decision [l]) goto backup ;
goto incl ;

}
}

24 SUPERMOVING SLIDING §51

51. 〈Put all vertices that lead to perm [j] into positions near j 51 〉 ≡
{
v = perm [j];
for (k = in [v]; k ≥ 0; k = ilink [k]) {
u = aboard [k];
if (iperm [u] ≥ t) {

register int uu = perm [t], tt = iperm [u];

perm [t] = u, perm [tt] = uu , iperm [u] = t, iperm [uu] = tt ;
t++;

}
}
if (decision [0] ≡ 1)

for (v = head [v]; v ≥ 0; v = link [v]) super [p++] = v;
}

This code is used in section 50.

52. 〈Put all vertices that lead from perm [j] into positions near j 52 〉 ≡
{
u = perm [j];
for (k = out [u]; k ≥ 0; k = olink [k]) {
v = aboard [k];
if (iperm [v] ≥ t) {

register int vv = perm [t], tt = iperm [v];

perm [t] = v, perm [tt] = vv , iperm [v] = t, iperm [vv] = tt ;
t++;

}
}
if (decision [0] ≡ 0)

for (u = head [u]; u ≥ 0; u = link [u]) super [p++] = u;
}

This code is used in section 50.

53. 〈Global variables 6 〉 +≡
int perm [maxsize + 1], iperm [maxsize + 1]; /∗ basic permutation and its inverse ∗/
char decision [maxsize]; /∗ decisions ∗/
int inx [maxsize], lstart [maxsize]; /∗ backup values at decision points ∗/
int super [maxsize]; /∗ offsets for the current superpiece ∗/

54. 〈Process an ideal 54 〉 ≡
if (p) {

super [p] = 0; /∗ sentinel at end of the superpiece ∗/
if (decision [0] ≡ 0) supermove (del , del);
else supermove (−del ,−del);
}

This code is used in section 50.

§55 SLIDING SUPERMOVING 25

55. The supermove routine is like move , but it uses the superpiece defined in super instead of using block k.

〈Subroutines 10 〉 +≡
void supermove (int del , int delo)
{

register int j, s, t;

for (j = 0; super [j]; j++) { /∗ we remove the superpiece ∗/
board [super [j]] = 0;

}
for (j = 0; super [j]; j++) { /∗ we test if it fits in new position ∗/

if (board [del + super [j]]) goto illegal ;
}
for (j = 0; super [j]; j++) { /∗ if so, we move it ∗/

board [del + super [j]] = aboard [super [j]];
}
if (hashin (style ≡ 5) ∨ style ≡ 4) 〈Unmove the superpiece and recurse 56 〉
else {

for (j = 0; super [j]; j++) { /∗ remove the shifted superpiece ∗/
board [del + super [j]] = 0;

}
illegal :

for (j = 0; super [j]; j++) { /∗ replace the unshifted superpiece ∗/
board [super [j]] = aboard [super [j]];

}
}
}

56. After we’ve moved a superpiece once, the digraph changes and so do the ideals. But that’s OK; the
supermove routine checks that we aren’t blocked at any step of the way.

〈Unmove the superpiece and recurse 56 〉 ≡
{

for (j = 0; super [j]; j++) { /∗ remove the shifted superpiece ∗/
board [del + super [j]] = 0;

}
for (j = 0; super [j]; j++) { /∗ replace the unshifted superpiece ∗/

board [super [j]] = aboard [super [j]];
}
if (style ≡ 4) supermove (del + delo , delo);
else

for (j = 0; j < 4; j++)
if (delta [j] 6= −delo) supermove (del + delta [j], delta [j]);

}
This code is used in section 55.

26 SUPERMOVING SLIDING §57

57. The program now comes to a glorious conclusion as we put the remaining pieces of code together.

〈Try all supermoves 57 〉 ≡
{
〈Copy and link the board 46 〉;
〈Construct the digraph for del = colsp 48 〉;
ideals (colsp);
head [0] = lr + 1; /∗ I apologize for this tricky optimization ∗/
〈Construct the digraph for del = 1 47 〉;
ideals (1);
}

This code is used in section 42.

§58 SLIDING INDEX 27

58. Index.

aboard : 6, 17, 35, 40, 46, 47, 48, 51, 52, 55, 56.
apiece : 11, 17, 35, 40.
aplace : 11, 17, 40.
argc : 4, 5.
argv : 4, 5.
backup : 50.
balance : 17, 18.
bcount : 10, 11, 16, 20, 23, 42, 46, 47, 48, 50.
bdry : 6, 9, 10, 46.
board : 6, 9, 10, 12, 16, 17, 20, 23, 28, 36, 38,

40, 41, 43, 45, 46, 55, 56.
boardover : 7, 14.
boardsize : 6, 21, 49.
bound : 28, 44.
buf : 7, 8, 10, 14, 15, 17.
bufsize : 8, 14, 15, 17.
c: 10.
cell : 12.
cols : 6, 10, 12, 14.
colsp : 6, 7, 10, 12, 14, 40, 46, 48, 57.
config : 20, 21, 22, 23, 28, 29, 31, 32, 35, 36.
configs : 27, 32, 34, 37.
configsh : 27, 32, 37.
curo : 7, 8, 15.
curpos : 27, 31, 32, 33, 34, 37, 38, 40.
curposh : 27, 31, 32, 33, 34, 37, 40.
cutoff : 27, 28, 37, 38.
cutoffh : 27, 28, 37, 38.
d: 4.
decision : 50, 51, 52, 53, 54.
del : 43, 45, 50, 54, 55, 56.
delo : 43, 44, 45, 55, 56.
delta : 6, 14, 42, 45, 56.
excl : 50.
exit : 5, 7, 14, 15, 16, 17, 33, 34, 39, 40.
fgets : 14, 15, 17.
fill board : 10, 16, 17.
fprintf : 5, 7, 14, 16, 17, 33.
gb init rand : 24.
gb next rand : 24.
goal : 27, 29, 35.
goalhash : 27, 28, 35.
h: 28.
hash : 25, 28, 31, 41.
hashcode : 25, 28, 35.
hashh : 25, 28, 31, 41.
hashin : 28, 29, 37, 43, 44, 55.
hashsize : 25, 28, 35, 41.
head : 46, 47, 48, 49, 51, 52, 57.
hi : 26.
hurray : 4, 29, 30.

i: 20, 23.
ideals : 50, 57.
ilink : 47, 48, 49, 51.
illegal : 43, 55.
in : 47, 48, 49, 51.
incl : 50.
inx : 50, 53.
iperm : 50, 51, 52, 53.
j: 4, 10, 12, 20, 22, 23, 28, 43, 50, 55.
k: 4, 10, 12, 20, 23, 28, 43, 50.
l: 50.
link : 46, 47, 48, 49, 51, 52.
lo : 26.
longjmp : 4, 29, 30.
lr : 6, 10, 14, 17, 20, 23, 40, 46, 57.
lstart : 50, 53.
main : 4.
maxmoves : 27, 34.
maxpos : 27, 33, 38, 40.
maxposh : 27, 33, 37, 38, 40.
maxsize : 6, 7, 8, 11, 14, 21, 27, 49, 53.
memsize : 27, 28, 31, 33, 38, 40, 44.
milestone : 27, 34, 37, 38.
milestoneh : 27, 34, 37, 38.
move : 42, 43, 45, 55.
n: 22, 28.
newguy : 28.
nextsource : 27, 38.
nextsourceh : 27, 38.
nope : 28.
not yet : 29.
obst : 6, 9, 10, 12, 17, 20, 23, 46.
off : 7, 8, 10, 20, 23, 43, 45.
offsets done : 7.
offstart : 8, 10, 15, 20, 23, 43, 45.
okay : 33.
oldconfigs : 27, 32, 34, 37.
olink : 47, 48, 49, 52.
out : 47, 48, 49, 52.
p: 7, 10, 20, 23, 50.
pack : 20, 28, 35, 36.
perm : 50, 51, 52, 53.
piece : 10, 11, 12, 16, 17, 20, 23, 28, 36, 38, 41, 43.
place : 10, 11, 16, 23, 38, 41, 43.
pos : 27, 28, 31, 38, 40, 44.
print big : 26, 32.
print bigx : 26, 32.
print board : 12, 16, 17, 40.
print config : 22, 32.
printf : 12, 15, 16, 17, 22, 26, 32, 34, 37, 39, 40, 41.
restart : 34, 41.

28 INDEX SLIDING §58

rows : 6, 12, 14.
s: 20, 23, 43, 55.
setjmp : 30.
shortcut : 27, 38, 44.
source : 27, 31, 32, 37, 38, 40, 44.
sourceh : 27, 32, 37, 38, 40.
sscanf : 5, 14.
start : 27, 36, 41.
stderr : 5, 7, 14, 16, 17, 33.
stdin : 14, 15, 17.
style : 4, 5, 34, 42, 43, 45, 55, 56.
success point : 4, 29, 30.
super : 51, 52, 53, 54, 55, 56.
supermove : 50, 54, 55, 56.
t: 4, 10, 20, 22, 23, 43, 50, 55.
trick : 28.
tt : 51, 52.
u: 50.
uint: 4, 21, 22, 23, 25, 26, 27.
ul : 6, 10, 12, 14, 17, 20, 23, 47, 48.
uni : 24, 25.
unpack : 23, 38, 40, 41.
uu : 51.
v: 50.
Verbose : 4.
verbose : 4, 5, 32, 34, 37, 39.
vv : 52.
xboard : 20, 21, 23.

SLIDING NAMES OF THE SECTIONS 29

〈Apologize for lack of memory and go back to square one with reduced problem 41 〉 Used in section 39.

〈Compute the offsets for a piece 7 〉 Used in section 15.

〈Construct the digraph for del = 1 47 〉 Used in section 57.

〈Construct the digraph for del = colsp 48 〉 Used in section 57.

〈Copy and link the board 46 〉 Used in section 57.

〈Generate all positions at distance d 38 〉 Used in section 34.

〈Global variables 6, 8, 11, 18, 21, 25, 27, 49, 53 〉 Used in section 4.

〈Handle the tricky case and return 44 〉 Used in section 28.

〈Hash in every move from board 42 〉 Used in section 38.

〈 Initialize 24, 30 〉 Used in section 4.

〈 Insert config into the pos table 31 〉 Used in section 28.

〈Print all of the key moves that survive in pos ; exit if done 40 〉 Used in section 39.

〈Print the solution 39 〉 Used in section 4.

〈Process an ideal 54 〉 Used in section 50.

〈Process the command line 5 〉 Used in section 4.

〈Put all vertices that lead from perm [j] into positions near j 52 〉 Used in section 50.

〈Put all vertices that lead to perm [j] into positions near j 51 〉 Used in section 50.

〈Put the starting configuration into pos 37 〉 Used in section 34.

〈Read the board size 14 〉 Used in section 13.

〈Read the piece specs 15 〉 Used in section 13.

〈Read the puzzle specification; abort if it isn’t right 13 〉 Used in section 4.

〈Read the starting configuration into board 16 〉 Used in section 13.

〈Read the stopping configuration into aboard 17 〉 Used in section 13.

〈Remember the starting configuration 36 〉 Used in section 34.

〈Remember the stopping configuration 35 〉 Used in section 34.

〈Solve the puzzle 34 〉 Used in section 4.

〈Subroutines 10, 12, 20, 22, 23, 26, 28, 43, 50, 55 〉 Used in section 4.

〈Test if config equals the goal 29 〉 Used in section 28.

〈Try all supermoves 57 〉 Used in section 42.

〈Unmove the piece and recurse 45 〉 Used in section 43.

〈Unmove the superpiece and recurse 56 〉 Used in section 55.

〈Update configs 32 〉 Used in section 31.

〈Update curpos 33 〉 Used in section 31.

SLIDING

Section Page
Introduction . 1 1
Representing the board . 6 4
Breadth-first search . 19 10
The answer . 39 17
Moving . 42 18
Supermoving . 46 21
Index . 58 27

	Introduction
	Representing the board
	Breadth-first search
	The answer
	Moving
	Supermoving
	Index
	Names of the sections
	Apologize for lack of memory and go back to square one with reduced problem
	Compute the offsets for a piece
	Construct the digraph for del=1
	Construct the digraph for del=colsp
	Copy and link the board
	Generate all positions at distance d
	Global variables
	Handle the tricky case and return
	Hash in every move from board
	Initialize
	Insert config into the pos table
	Print all of the key moves that survive in pos; exit if done
	Print the solution
	Process an ideal
	Process the command line
	Put all vertices that lead from perm[j] into positions near j
	Put all vertices that lead to perm[j] into positions near j
	Put the starting configuration into pos
	Read the board size
	Read the piece specs
	Read the puzzle specification; abort if it isn't right
	Read the starting configuration into board
	Read the stopping configuration into aboard
	Remember the starting configuration
	Remember the stopping configuration
	Solve the puzzle
	Subroutines
	Test if config equals the goal
	Try all supermoves
	Unmove the piece and recurse
	Unmove the superpiece and recurse
	Update configs
	Update curpos

