
§1 SKEW-TERNARY-CALC INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program does calculations with skew ternary trees, and exhibits the correspond-
ing nonseparable planar graphs. It implements some simple algorithms that I discovered in November, 2013,
based on ideas of Alberto Del Lungo, Francesco Del Ristoro, and Jean-Guy Penaud [Theoretical Computer
Science 233 (2000), 201–215]. I wrote it in order to learn more about the seemingly magical properties of
this amazing correspondence.
I apologize for having no time to provide a better user interface, or to give more extensive commentary.

Ideally an interactive system should be written, with excellent graphics to display and manipulate the trees
and graphs in an intuitive fashion; color should be used to exhibit at least some of the fascinating patterns
that are present, etc. I’m hoping that some reader will be motivated to write such an “app,” because it will
certainly be a fabulously instructive toy.
I will at least try to define and explain the basics in this document. A ternary tree is either empty, or it

consists of a root node and three ternary trees called the left, middle, and right subtrees of the root. The roots
of those subtrees are called the left, middle, and right children of the root node. (This definition is strictly
analogous to the familiar definition of binary trees, in Section 2.3 of my book Fundamental Algorithms.)

Furthermore we extend the ternary tree by placing “buds” in the positions of empty subtrees. And we
also introduce a bud at the top, attached to the root node. In this way every node, including the root, is
attached to exactly four other nodes or buds; and every bud is attached to exactly one other node or bud.
We will give labels to each node and to each bud, in order to exhibit fine details of the structure.
An extended ternary tree with n nodes always has 2n + 2 buds. (Notice that this result, which is easily

proved by induction on n, holds in particular when the ternary tree is empty. In that case, n = 0 and there
simply are two buds joined to each other.)
The embedding of such a tree in the plane leads to a family of 2n + 2 extended ternary trees that are

“cyclically equivalent,” as illustrated below. There’s one such tree for each bud, obtained by placing that bud
at the top and letting everything else “hang down” from it in. Each of these trees has a different root bud,
but not necessarily a different root, because different buds can lead to distinct trees with the same root node.
The 2n+ 2 buds can always be paired up into n+ 1 groups of two. Indeed, we can find the mate of any

bud by proceeding on a unique path away from that bud, always taking the middle branch whenever there
are three choices for the next step, and continuing until another bud is encountered.
Every node and every bud is assigned a rank in the following natural way: The root node and root bud have

rank zero; and the left, middle, and right children of a rank r node have ranks r−1, r, and r+1, respectively.
A skew ternary tree is a ternary tree for which all nodes have nonnegative rank.
For example, the skew ternary tree shown here has 6 nodes and 7 pairs of buds. Ranks are shown in red.

Notice that there’s one bud of rank −1 for every node of rank 0.

0

1

2
0

3
2

3 4
5

4

1

6
5

6

A

B

C

D

E F

−1

−1

−1

0

0

0

0
1

1

1

12
2

3

0

0

01

1

2

A

B

C

D

E

F

0
1

2

0

3

2

3
4

5

4

1

6

5

6
−1

−1

−1

0

0

0

0

1 1

1

1

2

2

3

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION SKEW-TERNARY-CALC §2

2. Fact: Every family of 2n+2 cyclically equivalent ternary trees includes exactly four skew ternary trees.
Moreover, this theorem—which is the main reason for the existence of this program—has an astonishingly

simple proof. The idea is to consider the n− 1 edges that go between nodes of the ternary, and to treat each
edge U−−− V as a pair of arcs U−−→ V and V−−→ U. That gives us 2n − 2 arcs. And there’s a natural way to
match those arcs to 2n− 2 of the 2n+ 2 buds, by means of 2n− 2 noncrossing filaments as illustrated here:

A

B

C

D

E

F

0
1

2

0

3

2

3
4

5

4

1

6

5

6
−1

−1

−1

0

0

0

0

1 1

1

1

2

2

3

0

0

1

1

0

2

More precisely, imagine an ant, named Alice, who crawls around the periphery of the tree. Alice starts in
state −2, just to the right of bud number 0. She increases her state by 1 whenever she passes a bud; and she
decreases her state by 1 whenever she passes an arc. Then she will be in state −2+(2n+2)− (2n− 2) = +2
when she returns to its starting point:

−2 −2

−1 −1

0 0

+1 +1

+2 +2

0 1 A
B 2 0 B

C 3 2 3 C
B

B
A

A
D

D
E 4 5 4 E

D 1 D
F 6 5 6 F

D
D
A

And if she keeps on crawling, she will repeat the same pattern, but with her state increased by 4.
The key fact is that Alice is in state k whenever she reaches a bud of rank k—except for the starting bud,

when she’s in state ±2. Thus the unmatched buds correspond to the skew ternary trees; in this example the
trees whose roots hang down from buds 0, 4, 5, and 6 will have no nodes of negative rank. Conversely, a
ternary tree that begins at a matched bud will have at least one buds of rank < −1, so it will have at least
one node of rank < 0.

QED.

(A reader who understands this proof will also be able to show that every family of 4n + 2 cyclically
equivalent quinary trees includes exactly six skew quinary trees. And so on.)

§3 SKEW-TERNARY-CALC INTRODUCTION 3

3. The four skew ternary trees of a cyclic family turn out to have remarkable properties. Let’s look at the
state transitions that Alice would encounter by starting at each of the four unmatched buds:

−2 −2

−1 −1

0 0

+1 +1

+2 +2

0 1 A
B 2 0 B

C 3 2 3 C
B

B
A

A
D

D
E 4 5 4 E

D 1 D
F 6 5 6 F

D
D
A

−2 −2

−1 −1

0 0

+1 +1

+2 +2

4 5 4 E
D 1 D

F 6 5 6 F
D

D
A 0 1 A

B 2 0 B
C 3 2 3 C

B
B
A

A
D

D
E

−2 −2

−1 −1

0 0

+1 +1

+2 +2

5 4 E
D 1 D

F 6 5 6 F
D

D
A 0 1 A

B 2 0 B
C 3 2 3 C

B
B
A

A
D

D
E 4

−2 −2

−1 −1

0 0

+1 +1

+2 +2

6 5 6 F
D

D
A 0 1 A

B 2 0 B
C 3 2 3 C

B
B
A

A
D

D
E 4 5 4 E

D 1 D
F

The corresponding skew ternary trees, which we might as well show without their buds, are

T =

A

B

C

D

E F

; T+ = A

B

C

D

E

F ; T++ = A

B

C

D

E

F ; T+++ = A

B

C

D

E

F

.

Notice the notation used here, based on a well-defined operator T 7→ T+ that takes one skew ternary tree
to another. Since T++++ = T , we also abbreviate T+++ as T−; and T++ can also be called T−−.

4. One of the first goals of this program will be to compute the “conjugates” T+, T++, and T+++ = T−,
given a skew ternary tree T . That tree is specified on the command line, as a sequence of four-character argu-
ments abcd: The first character, a, names a node; the next three characters name that node’s children, using
‘−’ for an empty child. For example, the tree T above could be specified by the six command-line arguments

A−BD B−−C C−−− DE−F E−−− F−−−

in some order. There should be one argument for each node. The program parses the arguments and checks
to make sure that they actually do define a skew ternary tree.

4 INTRODUCTION SKEW-TERNARY-CALC §5

5. OK, we now know the definition of skew ternary trees, and it’s time to begin coding. Here’s the structure
of the program as a whole:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

〈Type definitions 7 〉
〈Global variables 8 〉
〈Assertion failure subroutine 66 〉
〈 Subroutines 11 〉
main (int argc , char ∗argv [])
{
register int c, i, j, k, p;

〈Process the command line 6 〉;
〈Find and print the three conjugates of T 16 〉;
〈Find and print the corresponding planar maps 49 〉;

}

6. We don’t deal with the empty tree; there must be at least one node.

〈Process the command line 6 〉 ≡
if (argc ≡ 1) {
fprintf (stderr , "Usage:␣%s␣node_1␣node_2␣...␣node_n\n", argv [0]);
exit (−1);

}
〈Parse the arguments; report a problem and exit if they don’t define a skew tree 9 〉;

This code is used in section 5.

§7 SKEW-TERNARY-CALC PARSING 5

7. Parsing. First things first: We gotta get the tree into memory in a convenient form. The basic data
structure has left , middle , right , and parent fields in each node, and a few other things we’ll need as we go
along. Buds are represented by negative integers; other links are to a node’s 8-bit character code.
(At most 64 different visible character codes are used in this implementation, namely ’*’ and the 63 from

’@’ to ’~’.)

#define sentinel 999
#define maxcodes 64

〈Type definitions 7 〉 ≡
typedef struct node struct {
int left ; /∗ the left child ∗/
int middle ; /∗ the middle child ∗/
int right ; /∗ the right child ∗/
int parent ; /∗ the parent ∗/
int rank ; /∗ set to sentinel at input time; later is the actual rank ∗/

} node;

typedef struct bud struct {
int parent ; /∗ the parent ∗/
int rank ; /∗ the actual rank ∗/
int stepno ; /∗ step number in the state chart (see below) ∗/

} bud;

See also section 14.

This code is used in section 5.

8. 〈Global variables 8 〉 ≡
node inputnode [256]; /∗ actually only nodes ’@’ thru ’~’ are used ∗/
bud inputbud [512]; /∗ data for bud number k is stored in inputbud [−k] ∗/
int buds ; /∗ this many buds have been created so far ∗/
int n; /∗ the number of nodes in the tree ∗/

See also sections 15, 30, and 41.

This code is used in section 5.

6 PARSING SKEW-TERNARY-CALC §9

9. The initial setup is straightforward, although a bit tedious.

#define abort0 (message , code)
{ fprintf (stderr , "%s!\n",message);
exit (code); }

#define abort1 (message , j, code)
{ fprintf (stderr , "Bad␣arg␣(%s):␣%s!\n", argv [j],message);
exit (code); }

#define abort2 (message , j, c, code)
{ fprintf (stderr , "Bad␣arg␣(%s):␣Node␣’%c’␣%s!\n", argv [j], c,message);
exit (code); }

〈Parse the arguments; report a problem and exit if they don’t define a skew tree 9 〉 ≡
for (j = 1; j < argc ; j++) {
if (strlen (argv [j]) 6= 4) abort1 ("Must␣be␣four␣characters␣long", j,−10);
c = argv [j][0];
if (c < ’@’ ∨ c > ’~’) abort2 ("is␣not␣permitted", j, c,−15);
if (inputnode [c].rank) abort2 ("has␣already␣been␣defined", j, c,−11);
inputnode [c].rank = sentinel ;
p = argv [j][1];
if (p 6= ’−’) {
if (p < ’@’ ∨ p > ’~’) abort2 ("is␣not␣permitted", j, p,−16);
if (inputnode [p].parent) abort2 ("already␣has␣a␣parent", j, p,−12);
inputnode [c].left = p, inputnode [p].parent = c;

}
p = argv [j][2];
if (p 6= ’−’) {
if (p < ’@’ ∨ p > ’~’) abort2 ("is␣not␣permitted", j, p,−17);
if (inputnode [p].parent) abort2 ("already␣has␣a␣parent", j, p,−13);
inputnode [c].middle = p, inputnode [p].parent = c;

}
p = argv [j][3];
if (p 6= ’−’) {
if (p < ’@’ ∨ p > ’~’) abort2 ("is␣not␣permitted", j, p,−18);
if (inputnode [p].parent) abort2 ("already␣has␣a␣parent", j, p,−14);
inputnode [c].right = p, inputnode [p].parent = c;

}
}
n = argc − 1;
〈 Introduce the buds and compute the ranks 10 〉;

This code is used in section 6.

§10 SKEW-TERNARY-CALC PARSING 7

10. We need to locate the root, which should be the unique input node that has no parent. Then we’ll
attach bud −1 to it.
Buds −2k − 1 and −2k − 2 are mates; hence the mate of bud x is bud x⊕ 1.

#define root inputbud [1].parent

〈 Introduce the buds and compute the ranks 10 〉 ≡
for (j = ’@’; j ≤ ’~’; j++) {
if (inputnode [j].rank ∧ ¬inputnode [j].parent) {
if (root) {
fprintf (stderr , "Nodes␣’%c’␣and␣’%c’␣cannot␣both␣be␣roots!\n", root , j);
exit (−20);

}
root = j;

}
if (inputnode [j].parent ∧ ¬inputnode [j].rank) {
fprintf (stderr , "No␣data␣was␣supplied␣for␣node␣‘%c’!\n", j);
exit (−21);

}
}
if (¬root) abort0 ("There’s␣no␣root",−21);
inputbud [1].rank = −2; /∗ bud number 1 is the “root bud,” above the root node ∗/
setmate (root); /∗ locate and define its mate ∗/
fillbuds (root , 0);
〈Check that we’ve filled out the whole tree 13 〉;

This code is used in section 9.

8 PARSING SKEW-TERNARY-CALC §11

11. The setmate subroutine allocates two new buds. Its parameter names the node where we discovered
the existence of such buds.
In most cases, the mate is reached by going upward through middle links, then crossing from left to right

(or vice versa) and going downward through middle links.

〈 Subroutines 11 〉 ≡
void setmate (int p)
{
register int q, d;

buds += 2, q = 1− buds ;
if (inputbud [buds − 1].parent) {

if (buds > 2) confusion ("bud␣parent␣already␣set");
goto downward mid ;

}
inputbud [buds − 1].parent = p;

upward : if (inputnode [p].middle ≡ q) {
q = p, p = inputnode [p].parent ;
goto upward ;

}
if (inputnode [p].left ≡ q) {

q = p, p = inputnode [p].right , d = 1;
goto downward ;

}
if (inputnode [p].right ≡ q) {
q = p, p = inputnode [p].left , d = −1;
goto downward ;

}
confusion ("supposed␣parent␣node␣not␣apparent");

downward mid : q = p, p = inputnode [p].middle , d = 0;
downward : if (p < 0) abort0 ("Mate␣mixup",−25);
if (p > 0) goto downward mid ;
if (d > 0) inputnode [q].right = −buds ;
else if (d < 0) inputnode [q].left = −buds ;
else inputnode [q].middle = −buds ;
inputbud [buds].parent = q;

}
See also sections 12, 17, 18, 19, 21, 24, 32, 33, 42, and 55.

This code is used in section 5.

§12 SKEW-TERNARY-CALC PARSING 9

12. The main work of filling buds and setting ranks is done by a straightforward recursive procedure
fillbuds , which traverses the ternary tree in preorder.

〈 Subroutines 11 〉 +≡
void fillbuds (int p, int r)
{
if (r < 0) {

fprintf (stderr , "Not␣properly␣skewed:␣rank(%c)=−1!\n", p);
exit (−30);

}
inputnode [p].rank = r;
if (inputnode [p].left > 0) fillbuds (inputnode [p].left , r − 1);
else {
if (inputnode [p].left ≡ 0) inputnode [p].left = −buds − 1, setmate (p);
inputbud [−inputnode [p].left].rank = r − 1;

}
if (inputnode [p].middle > 0) fillbuds (inputnode [p].middle , r);
else {
if (inputnode [p].middle ≡ 0) inputnode [p].middle = −buds − 1, setmate (p);
inputbud [−inputnode [p].middle].rank = r;

}
if (inputnode [p].right > 0) fillbuds (inputnode [p].right , r + 1);
else {
if (inputnode [p].right ≡ 0) inputnode [p].right = −buds − 1, setmate (p);
inputbud [−inputnode [p].right].rank = r + 1;

}
}

13. We’ve prepared a skewed ternary tree by filling in all the missing fields. But if the input is, say, ‘A−−−
B−B−’, the tree we’ve prepared won’t contain all of the given nodes, because of a cycle. Thus we must make
sure that the number of buds found is 2n+ 2.

〈Check that we’ve filled out the whole tree 13 〉 ≡
if (buds 6= n+ n+ 2) abort0 ("The␣input␣contains␣a␣cycle",−66);

This code is used in section 10.

10 THE STATE CHART SKEW-TERNARY-CALC §14

14. The state chart. Now that we’ve got the tree in memory, we can emulate Alice’s moves. This
program gathers more information than is absolutely needed, just in case the extra data will help me psych
out some structural properties.

〈Type definitions 7 〉 +≡
typedef struct step struct {
int rank ; /∗ rank on entry ∗/
int first ; /∗ bud being passed, or arc’s initial node ∗/
int second ; /∗ arc’s final node (in the second case) ∗/
int match ; /∗ bud being matched (in the second case) ∗/

} step;

15. 〈Global variables 8 〉 +≡
step chart [4 ∗maxcodes]; /∗ the state chart, of length 4n ∗/
int steps ; /∗ the current number of entries in chart ∗/
int stack [256]; /∗ buds currently unmatched ∗/
int stacked ; /∗ the number of such buds ∗/

16. 〈Find and print the three conjugates of T 16 〉 ≡
〈Create the state chart 20 〉;
〈Print the tree with all buds shown 23 〉;
〈Print the conjugates from the state chart 22 〉;

This code is used in section 5.

17. The state chart is created from a recursive routine createsteps , analogous to fillbuds .

〈 Subroutines 11 〉 +≡
void branch (int, int); /∗ see below ∗/
void budstep(int); /∗ see below ∗/
void createsteps (int p)
{
register int q;

q = inputnode [p].left ;
if (q > 0) branch (p, q);
else budstep(−q);
q = inputnode [p].middle ;
if (q > 0) branch (p, q);
else budstep(−q);
q = inputnode [p].right ;
if (q > 0) branch (p, q);
else budstep(−q);

}

18. #define offset 2 /∗ difference between stacked and the current rank ∗/
〈 Subroutines 11 〉 +≡
void budstep(int b)
{ /∗ chart gains a bud ∗/
chart [steps].first = b, chart [steps].rank = stacked − offset ;
if (chart [steps].rank 6= inputbud [b].rank) confusion ("rank␣offense␣b");
inputbud [b].stepno = steps ;
steps ++, stack [stacked ++] = b;

}

§19 SKEW-TERNARY-CALC THE STATE CHART 11

19. 〈 Subroutines 11 〉 +≡
void branch (int p, int q)
{ /∗ chart passes from one arc to its dual ∗/
chart [steps].first = p, chart [steps].second = q, chart [steps].rank = stacked − offset ;
if (chart [steps].rank 6= inputnode [q].rank) confusion ("rank␣offense␣q");
chart [steps].match = stack [−−stacked];
steps ++;
createsteps (q);
chart [steps].first = q, chart [steps].second = p, chart [steps].rank = stacked − offset ;
if (chart [steps].rank 6= inputnode [q].rank + 2) confusion ("rank␣offense␣p");
chart [steps].match = stack [−−stacked];
steps ++;

}

20. 〈Create the state chart 20 〉 ≡
chart [0].rank = −2, chart [0].first = 1, steps = 1;
stack [0] = 1, stacked = offset − 1;
createsteps (root);
if (stacked 6= 2 + offset) confusion ("mismatched");
if (steps 6= 4 ∗ n) confusion ("total␣steps");

This code is used in section 16.

21. Conversely, given the state chart, there’s a simple recursive routine that prints a tree beginning after
an unmatched bud.
Interestingly, the nodes of the tree are reported in postorder although they are encountered in preorder.

〈 Subroutines 11 〉 +≡
void printfam (int p)
{
register int q;
int l,m, r;

if (steps ≡ 4 ∗ n) steps = 0;
q = chart [steps ++].second ;
if (q ≡ 0) l = ’−’;
else l = q, printfam (q), steps ++;
if (steps ≡ 4 ∗ n) steps = 0;
q = chart [steps ++].second ;
if (q ≡ 0) m = ’−’;
else m = q, printfam (q), steps ++;
if (steps ≡ 4 ∗ n) steps = 0;
q = chart [steps ++].second ;
if (q ≡ 0) r = ’−’;
else r = q, printfam (q), steps ++;
printf ("␣%c%c%c%c", p, l,m, r);

}

12 THE STATE CHART SKEW-TERNARY-CALC §22

22. The algorithm here is very cute, so I let the reader have the fun of deciphering it.

〈Print the conjugates from the state chart 22 〉 ≡
chart [4 ∗ n].second = sentinel , chart [4 ∗ n].first = root ;
for (j = 1; j < 4; j++) {
for (i = 0; i < j; i++) printf ("+");
printf (":");
for (k = steps = inputbud [stack [j + offset − 2]].stepno + 1; chart [k].second ≡ 0; k++) ;
printfam (chart [k].first);
printf ("\n");
if (chart [steps].first 6= stack [j + offset − 2]) confusion ("bad␣end␣of␣cycle");

}
This code is used in section 16.

23. 〈Print the tree with all buds shown 23 〉 ≡
print tree (root);
printf ("\n");

This code is used in section 16.

24. 〈 Subroutines 11 〉 +≡
void print tree (int p)
{ /∗ prints node p’s subtree in preorder ∗/
register int i;

for (i = 0; i < inputnode [p].rank + 8; i++) printf (".");
printf ("␣%c:", p);
if (inputnode [p].left < 0) printf ("%3d",−inputnode [p].left);
else printf ("␣␣%c", inputnode [p].left);
if (inputnode [p].middle < 0) printf ("%3d",−inputnode [p].middle);
else printf ("␣%c␣", inputnode [p].middle);
if (inputnode [p].right < 0) printf ("%3d\n",−inputnode [p].right);
else printf ("␣%c\n", inputnode [p].right);
if (inputnode [p].left > 0) print tree (inputnode [p].left);
if (inputnode [p].middle > 0) print tree (inputnode [p].middle);
if (inputnode [p].right > 0) print tree (inputnode [p].right);

}

§25 SKEW-TERNARY-CALC THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS 13

25. The quad-edge data structure for planar maps. Turning from trees to more complex graphs
drawn in the plane, we now implement some beautiful data structures that were introduced by Leo Guibas
and Jorge Stolfi in ACM Transactions on Graphics 4 (1985), 74–123.
The best way to understand their “quad-edge structure” is to consider a small example. The normal way

to draw a planar graph with, say, vertices {1, 2, 3, 4} and edges {a, b, c, d, e, f} and faces {I, II, III, IV} is to
connect the vertices by lines for the edges, and to name the faces in the enclosed regions:

12

3 4

I
II

III

IV

d

e
c

b a

f

(∗)

Inside a computer, however, the best way to represent the topology of this diagram is to construct a more
elaborate structure, which can be regarded as annotating the graph (∗) and embedding it in a richer graph:

12

3 4

I

II

III

IV abc

d

e

f

2

00

2

0
2

20

2

0

0 2

133 1

1

3

1

3

1
3

3

1

(∗∗)

Vertices (red) and faces (green) have been replaced by oriented cycles, which all travel counterclockwise, ex-
cept that the outermost cycle runs clockwise. (That cycle would run the other way if we drew it on the equator
of a sphere and looked at it from the south pole, while viewing the rest of the map from the north pole.)
The oriented cycles in (∗∗) have little connectors that we shall call “pips.” The cycle for a vertex v of

degree d has d pips, which indicate all of the edges adjacent to v, in counterclockwise order. Similarly, the
cycle for a face indicates all of the edges surrounding that face, as we march counterclockwise around it.
One advantage of a representation like (∗∗) is the fact that it nicely represents also the dual graph, in

which vertices become faces, faces become vertices, and edges “rotate” by 90◦. For example, the dual of (∗)
is the planar graph

12

3 4

I
II

III

IV

a
b

c

d

e

f

. (∗∗∗)

14 THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS SKEW-TERNARY-CALC §26

26. Notice that each of the edges {a, b, c, d, e, f} in (∗) appears as a vertex in (∗∗). Every such vertex has
degree 4, and it connects to four pips via lines numbered 0, 1, 2, and 3 in clockwise order. The pips on lines
0 and 2 always belong to vertex cycles; the pips on lines 1 and 3 always belong to face cycles. We could
change the numbers (0, 1, 2, 3) to (2, 3, 0, 1), respectively, at each edge-vertex, without changing the meaning
of this diagram; the actual numbering of these lines isn’t important. But their cyclic ordering is crucial, and
so is their evenness or oddness.
I should point out that two planar graphs are considered to be essentially the same if they are topologically

equivalent when drawn on the surface of a sphere. They should represent the same decomposition of the
sphere’s surface into regions delimited by the given edges, in the sense that we could transform one drawing
into the other, smoothly and without trickery. In particular, we could redraw (∗) in three equivalent ways
by choosing any of the other faces to be exterior:

12

3 4

I
II

III

IV

d

e
c

b a

f

12

3 4

I
II

III

IV

d

e
c

b a

f

12

3 4

II

III

IVI

d

e
c

b

a f

Each of these graphs corresponds precisely to the vertices, edges, faces, and pips of (∗∗); and so are three
variants of (∗∗)! Butleft-right reflection would give a different graph in this case, because (∗) has no symmetry.

§27 SKEW-TERNARY-CALC THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS 15

27. Suppose there are m edges. Diagram (∗∗) can also be regarded as a permutation of the 4m pips,
expressed in cycle form, namely

α = (a2d2c2b2)(d0e2)(c0e0f0)(a0b0f2)(a1f1e3d3)(c3d1e1)(b3c1f3)(a3b1).

These cycles correspond to vertices (1), (2), (3), (4) and faces (I), (II), (III), (IV); for instance, ‘(a0b0f2)’
describes the cycle a0−−→b0−−→f2−−→a0 for vertex 4 in (∗∗).

Guibas and Stolfi noted that the permutations α obtained from planar maps in this way have a very
important property called the backup axiom: If α takes ui+1 7→ vj , where u and v are edges of the planar
graph being represented and where their subscripts are treated modulo 4, then α also takes vj+1 7→ ui. For
example, a2 7→ d2 and d3 7→ a1 in α. Notice that a2 and d2 are vertex pips, but d3 and a1 are face pips.
The backup axiom can be formulated in terms of permutations, using the special “rotation” permutation

ρ = (a0a1a2a3)(b0b1b2b3)(c0c1c2c3)(d0d1d2d3)(e0e1e2e3)(f0f1f2f3);

namely, it is equivalent to saying that αραρ is the identity permutation. After moving from any pip by
applying α and then ρ, we can back up to our original state by applying α and ρ again. This principle under-
lies the efficiency of a quad-edge structure, because we can easily move in the clockwise or counterclockwise
direction around any vertex or around any face; we needn’t traverse the whole cycle to find our predecessor.
Continuing our example, we have

αρ = (a0b1)(a1f2)(a2d3)(a3b2)(b0f3)(b3c2)(c0e1)(c1f0)(c3d2)(d0e3)(d1e2)(e0f1).

In general αρ will always be a permutation of order 2, which takes every vertex pip into some face pip.
Therefore αρ consists entirely of two-cycles; it’s a matching between the 2m vertex pips and the 2m face pips.
Similarly, ρα always consists of two-cycles; in our case it’s

ρα = (a0f1)(a1d2)(a2b1)(a3b0)(b3f2)(b2c1)(c3e0)(c0f3)(c2d1)(d3e2)(d0e1)(e3f0).

We’ll have (uivj) in ρα if and only if (ui+1vj+1) is in αρ, because of the backup axiom. For example, ρα
contains (a1d2) which αρ contains (a2d3).
The regions outside the cycles in (∗∗) all have four sides. For example, there’s a region near the top

right whose corner pips in counterclockwise order are (d3, d2, a2, a1). The backup axiom explains this fact.
Moreover, it tells us that the pips at opposite corners, such as {d3, a2} and {d2, a1}, are the pips matched
by αρ and ρα.

16 THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS SKEW-TERNARY-CALC §28

28. Thus the quad-edge data structure for a planar graph with m edges essentially consists of 4m pointers,
which tell us how to move from one pip to another. These pointers form a permutation of the pips, where the
permutation takes vertex pips into vertex pips and face pips into face pips. It also satisfies the backup axiom.
Guibas and Stolfi also observed that every planar graph without isolated vertices can be constructed by

repeatedly performing a single primitive operation. This operation, called splice, exchanges two vertex pips
and two face pips. (Well, there’s also a primitive operation that initializes the entire data structure. To get
things rolling, we begin with a set of m edges that define m two-vertex components; thus we have 2m vertices
initially, each of degree 1. After the initialization, we can proceed to splice until we’ve got the graph we want.)
The best way to understand splicing is—guess what—to look at a small example. So let’s construct the

pip-permutation α above, and the planar graph above, by a sequence of splices.
We begin with the initial permutation

α0β0γ0δ0ε0φ0;

here α0 = (a0)(a2)(a1a3), β0 = (b0)(b2)(b1b3), . . . , and φ0 = (f0)(f2)(f1f3) each specify a two-vertex
graphs K2 disjoint from the others. The sub-permutation α0 corresponds to the two-vertex graph whose
edge is named a, and the other sub-permutations are similar.
Two edges a and b belong to the same component of a graph if and only if there’s a sequence (d1, d2, . . . , dr),

for some r, such that αρd1αρd2 . . . αρdr takes a0 7→ b0. If the graph has c components, we can best think
of it as a set of c connected graphs, each of which is drawn on the surface of a separate sphere; thus each
component has its own “exterior face.” According to a famous theorem of Euler, the number of vertices plus
the number of faces is always equal to the number of edges plus 2c.

A splice σ consists of applying two swap operations; in other words, σ has the form (uivj)(rksl). Here i
and j are even (hence ui and vj are vertex pips), while k and l are odd (hence rk and sl are face pips). If ui

and vj lie in different cycles of α, then they lie in the same cycle of ασ; in fact, they are obtained by pasting
the cycles together in a straightforward way:

(uix1 . . . xp)(vjy1 . . . yq)(uivj) = (uix1 . . . xpvjy1 . . . yq).

For example, if u and v are edges of different components, it’s clear that ui and vj must lie in different
cycles; and in that case the net effect is to paste two disconnected components of a graph together, with two
vertices coalescing into one.
If u and v are edges of the same component, but ui and vj aren’t in the same cycle, then we’re allowed

to splice them together only if ui+1 and vj+1 are pips of the same face. Otherwise we couldn’t merge the
vertices of ui and vj without making lines cross. (That’s a consequence of Euler’s theorem, mentioned above;
we’d be drawing the component on a torus, not a sphere.)
Going the other way, suppose ui and vj do lie in the same cycle of α. Then the splice operation splits the

graph into two parts, making two copies of the vertex whose pips included ui and vj ; one copy gets some of
the adjacent edges, the other copy gets the rest. Actually, however, we won’t need to do splices of this kind;
it’s possible to form any desired planar graph without isolated vertices merely by pasting vertices together,
decreasing the number of vertices with each splice.
Similar remarks apply to the cycles of face pips, depending on whether or not rk and sl belong to the

same cycle of α. A swap operation between elements of different cycles always merges the cycles; a swap
operation between elements of a single cycle always splits that cycle.
The value of (rksl) is completely determined by the value of (uivj) by the following important splice rule:

If α takes ui+1 7→ xp and vj+1 7→ yq, then rk = xp and sl = yq. This rule is necessary so that the backup
axiom is preserved; we can’t paste vertices together or split them apart unless we do an exactly consistent
thing with respect to the faces. And fortunately, the splice rule is also sufficient for maintaining the backup
condition.

§29 SKEW-TERNARY-CALC THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS 17

29. Armed with all this information, we’re ready at last to construct the example map (∗) from the initial
permutation α0β0γ0δ0ε0φ0 in a sensible way, without resorting to trial and error.

That map has both a and b attached to vertex 4, with pips a0 and b0 in the vertex ring for 4 in (∗∗). So
we can start by splicing α0 and β0 together; that means ui = a0 and vj = b0. The splice rule now tells us
that σ = (a0b0)(a3b3), because α0β0 takes a1 7→ a3 and β1 7→ b3. Thus we obtain

α1 = α0β0σ1 = α0β0(a0b0)(a3b3) = (a0b0)(a2)(b2)(a1b3b1a3).

This permutation represents a path of length 2, consisting of edges a and b joined by a common vertex whose
pips are a0 and b0. The other two vertices, which have degree 1 because they’re endpoints of the path, have
the respective pips a2 and b2. The reader is encouraged to draw the corresponding graph of vertices, edges,
faces, and pips, so that these ideas become crystal clear. (This graph will be analogous to (∗∗), but it will
be considerably simpler because there are only three vertices, two edges, and one face.)
Next let’s join those two vertices together; we’re allowed to do that, even though they belong to the same

component, because a3 and b3 belong to the same cycle. The result, with σ2 = (a2b2)(a1b1), is

α2 = α1σ2 = (a0b0)(a2b2)(a1b3)(a3b1),

representing a cycle of length 2 between the vertices (a0b0) and (a2b2). There are two faces, (a1b3) and
(a3b1), either of which can be considered to be the exterior face.
In a similar way we can build up a three-cycle from c, d, and e: Letting σ3 = (c2d2)(c1d1), σ4 =

(d0e2)(d3e1), and σ5 = (c0e0)(c3e3), we obtain

γ1 = γ0δ0σ3 = (c0)(c2d2)(d0)(c1c3d1d3);

γ2 = γ1ε0σ4 = (c0)(c2d2)(d0e2)(e0)(c1c3d1e1e3d3);

γ3 = γ2φσ5 = (c0e0)(c2d2)(d0e2)(c1e3d3)(c3d1e1).

Now we can hook f to vertex (c0e0), using σ6 = (c0f0)(e3f3):

γ4 = γ3σ6 = (c0e0f0)(c2d2)(d0e2)(f2)(c1f3f1e3d3)(c3d1e1).

The two remaining components can be joined together, merging vertices (a2b2) and (c2d2) appropriately
with σ7 = (b2d2)(a1c1):

α3 = α2γ4σ7 = (a2d2c2b2)(a0b0)(c0e0f0)(d0e2)(f2)(a1b3c1f3f1e3d3)(a3b1)(c3d1e1).

And the final coup de grâce hooks (f2) to (a0b0), with σ8 = (f2a0)(f1b3):

α4 = α3σ8 = (a0b0f2)(a2d2c2b2)(c0e0f0)(d0e2)(a1f1e3d3)(a3b1)(b3c1f3)(c3d1e1).

Yes, this is indeed the permutation of (∗∗). We have

α = α0β0γ0δ0ε0φ0 σ1σ2σ3σ4σ5σ6σ7σ8.

One of the main reasons I wrote this program was because I knew that a computer could do these calculations
almost instantly, without making silly mistakes.

18 THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS SKEW-TERNARY-CALC §30

30. So let’s write that code. Each pip is conveniently represented by its subscript plus four times the
ASCII code of the edge name. For example, a3 would be (’a’ � 2) + 3, which is 391 because ’a’ = 97.

We maintain both α and its inverse α− in memory, because both representations are useful. If p is a
pip with alpha [p] = q, then q = alphainv [p]. (There isn’t really a need for both representations, however,
because the backup axiom α− = ραρ always holds.)

#define pip(u, i) ((u) � 2) + (i)
#define pip edge (p) ((p) � 2)
#define pip sub(p) ((p) & #3)
#define rot (p) (((p) + 1)⊕ (((p)⊕ ((p) + 1)) &−4)) /∗ ρ ∗/
#define irot (p) (((p)− 1)⊕ (((p)⊕ ((p)− 1)) &−4)) /∗ ρ− ∗/
〈Global variables 8 〉 +≡
int alpha [4 ∗ 256]; /∗ the permutation of pips describing the current planar map ∗/
int alphainv [4 ∗ 256]; /∗ its inverse ∗/
int verts ; /∗ the current number of vertices ∗/

31. We’ll permute only the pips for a special root edge and for edges that correspond to nodes in the skew
ternary tree that was input. The latter nodes are identifiable because they have left children. (They also
have middle and root children. But we don’t really care about the children’s identities, only their existence.)
The root edge is called *.

〈Create the initial permutation 31 〉 ≡
for (k = ’*’, verts = 0; k ≤ ’~’; k++)
if (k ≡ ’*’ ∨ inputnode [k].left) {
alpha [pip(k, 0)] = alphainv [pip(k, 0)] = pip(k, 0);
alpha [pip(k, 1)] = alphainv [pip(k, 1)] = pip(k, 3);
alpha [pip(k, 2)] = alphainv [pip(k, 2)] = pip(k, 2);
alpha [pip(k, 3)] = alphainv [pip(k, 3)] = pip(k, 1);
verts += 2;

}
if (verts 6= 2 ∗ (n+ 1)) confusion ("initial␣vertex␣count");

This code is used in sections 49 and 62.

§32 SKEW-TERNARY-CALC THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS 19

32. The splice subroutine is given the addresses of two vertex pips that are supposed to be interchanged.
It figures out the two corresponding face pips, using the splice rule mentioned above.
We do not worry about the “legality” of a splice, in the sense of preserving planarity, because we’ll use

splice only to reduce the number of vertices. Any illegal usage would cause the final number of faces to be
incompatible with Euler’s criterion.
(Well, there’s an exception: In one place below I will splice two pips apart that are adjacent in their vertex

cycle. To compensate, I’ll increase verts by 2.)

〈 Subroutines 11 〉 +≡
void splice (int p, int q)
{
register int r, s;

if ((p& 1) + (q & 1)) confusion ("attempt␣to␣splice␣face␣pips");
r = alphainv [p], s = alphainv [q];
alphainv [p] = s, alphainv [q] = r;
alpha [s] = p, alpha [r] = q;
p = alpha [rot (p)], q = alpha [rot (q)]; /∗ now swap the appropriate faces ∗/
r = alphainv [p], s = alphainv [q];
alphainv [p] = s, alphainv [q] = r;
alpha [s] = p, alpha [r] = q;
verts−−;

}

33. Here’s a cute subroutine that displays all relevant information about the planar graph by printing α’s
cycles. First come the pips of the vertex cycles, then the pips of the face cycles, one line at a time.
The program also counts the number of vertices and faces, so that it can use Euler’s formula to report the

number of components (assuming planarity).

〈 Subroutines 11 〉 +≡
void print alpha (void)
{
register int c, f , p, q, r, t, v;

〈Print and count the vertex cycles 34 〉;
if (v 6= verts) confusion ("vertex␣count");
〈Print and count the face cycles 35 〉;
c = (v − (n+ 1) + f) � 1;
printf ("(Altogether␣%d␣vertices,␣%d␣edges,␣%d␣faces,␣%d␣component%s.)\n",

v, n+ 1, f , c, c ≡ 1 ? "" : "s");
}

20 THE QUAD-EDGE DATA STRUCTURE FOR PLANAR MAPS SKEW-TERNARY-CALC §34

34. The idea is to find a cycle leader (the least p whose cycle hasn’t already been printed), and to print
its cycle, until all cycles for even-numbered pips have been found.

〈Print and count the vertex cycles 34 〉 ≡
printf ("Vertices:\n");
v = 0, p = pip(’*’, 0), t = 2 ∗ (n+ 1);
while (1) {
for (; alpha [p] ≤ 0 ∧ t; p += 2) {

if (alpha [p] < 0) { /∗ we’ve temporarily negated it, see Algorithm 1.3.3I ∗/
alpha [p] = −alpha [p], t−−;

}
}
if (t ≡ 0) break; /∗ t unprocessed pips remain ∗/
for (q = p, r = alpha [q]; r > 0; q = r, r = alpha [q]) {

printf ("␣%c%d", pip edge (r), pip sub(r));
alpha [q] = −r;

}
printf ("\n");
v++;

}
This code is used in section 33.

35. Exactly the same idea works for odd-numbered pips, of course.

〈Print and count the face cycles 35 〉 ≡
printf ("Faces:\n");
f = 0, p = pip(’*’, 1), t = 2 ∗ (n+ 1);
while (1) {
for (; alpha [p] ≤ 0 ∧ t; p += 2) {

if (alpha [p] < 0) { /∗ we’ve temporarily negated it, see Algorithm 1.3.3I ∗/
alpha [p] = −alpha [p], t−−;

}
}
if (t ≡ 0) break; /∗ t unprocessed pips remain ∗/
for (q = p, r = alpha [q]; r > 0; q = r, r = alpha [q]) {

printf ("␣%c%d", pip edge (r), pip sub(r));
alpha [q] = −r;

}
printf ("\n");
f++;

}
This code is used in section 33.

§36 SKEW-TERNARY-CALC THE BUILDING BLOCKS OF PLANAR GRAPHS 21

36. The building blocks of planar graphs. Any connected multigraph is built up in a straightforward
treelike way from so-called blocks (aka biconnected components or nonseparable graphs), attached together
via so-called articulation points (aka cut vertices). We exclude the trivial cases where a block has fewer than
two vertices; in other words, we exclude the empty graph, the one-vertex graph K1, and the multigraph that
consists of a single self-loop.
A nontrivial biconnected planar graph is said to be rooted when we place an arrow on one of its edges,

converting that edge to a directed arc from u to v called the root edge. Vertex u is called the root; and we
draw the graph so that the root edge lies on the path that travels counterclockwise around the exterior face.
(In other words, the exterior face lies on your right, if you move from u to v.)
A rooted, nontrivial biconnected planar map (henceforth “RNBPM”) is an equivalence class of rooted, non-

trivial biconnected planar graphs, where two such graphs are said to be equivalent if they’re topologically
the same when drawn on a sphere as discussed earlier. Thus, each RNBPM can be characterized by its
α permutation, except for renaming of the edges and except for adding 2 (mod 4) to the subscripts of any
selected subset of the edges.
Suppose r is the root edge, and suppose the other edges of the exterior cycle are e1, e2, . . . , ep. We will

define things so that the root vertex cycle contains the pip r0, hence the exterior face cycle contains the
pip r3. We will also define pip numbers so that α takes r0 7→ e12, e

1
0 7→ e22, . . . , e

p
0 7→ r2, so that the exterior

face cycle is (ep3 . . . e
2
3e

1
3r3). Exception: If p = 0, that cycle is of course (r1r3).

37. The simplest RNBPM consists of just the root edge. Otherwise we can build up any RNBPM recur-
sively in a simple way: Removal of the root edge leaves a graph with m ≥ 1 blocks (hence m− 1 articulation
points); consequently each of those blocks becomes an RNBPM once we identify its root edge. We choose to
take the root as the first edge encountered on the exterior face of the full graph, in counterclockwise order.
We also take note of the first edge that is not exterior in the full graph, thereby making the block “doubly
rooted.” Then the original RNBPM is easily reconstructed from its doubly rooted blocks.
Once again we crave an example. Our previous graph (∗) will be an RNBPM if we choose any edge u as a

designated root edge, and if we consider the pip u3 to be on its exterior face. But that example is too simple
to reveal the general situation; so let’s consider something a bit more complex:

r

a1

a2 a3

b1c1c2c3

c4

c5 c6
c7

d1d2

d3

(†)

Herem = 4 and the exterior face has p = 7 other edges; its cycle is therefore (r3d
2
3d

1
3c

3
3c

2
3c

1
3b

1
3a

1
3). Furthermore

the interior face touching r is (r1a
3
3a

2
3b

1
1c

7
3c

6
3c

5
3c

4
3d

3
3). If we remove edge r, three articulation points spring up

that subdivide the remaining graph into four blocks, having exterior edges identified by the letters {a, b, c, d}.
Block b is just an isthmus, but the other blocks have been built up in turn from smaller constituents. Those
larger blocks have been shaded in this diagram, because they may contain complicated interior structure
that is invisible from the outside.
The four blocks can be regarded as RNBPMs, having the respective root edge pips a13, b

1
3, c

1
3, and d13.

And they’re also doubly rooted, because we specify nonroot exterior vertex pips a22, b
1
0, c

4
2, d

3
2 that tell us

how to hook them together. If α, β, γ, and δ are the permutations corresponding to those blocks, and if
ω = (r0)(r2)(r1r3) is the permutation for edge r, the permutation for the whole RNBPM is αβγδω σ1σ2σ3σ4σ5,
where

σ1 = (d32r2)(d
2
3r1), σ2 = (c42d

1
2)(c

3
3d

3
3), σ3 = (b10c

1
2)(b

1
3c

7
3), σ4 = (a22b

1
2)(a

1
3b

1
1), σ5 = (a12r0)(r3a

3
3)

are the appropriate splicings.

22 THE BUILDING BLOCKS OF PLANAR GRAPHS SKEW-TERNARY-CALC §38

38. Here, for handy reference, are the smallest RNBPMs and their canonical permutations:

r (r0)(r2)(r3r1)

r

a

(r0a2)(a0r2)(r3a3)(a1r1)

r

a

b (r0a2b0)(a0r2b2)(r3a3)(a1b1)(b3r1)

r

ab (r0a2)(a0b2)(b0r2)(r3b3a3)(a1b1r1)

r

a

b

c

(r0a2c2b0)(a0r2b2c0)(r3a3)(a1c3)(c1b1)(b3r1)

r

ab
c (r0a2c0)(a0b2)(b0r2c2)(r3b3a3)(a1b1c1)(c3r1)

r

a

cb (r0a2c0)(a0r2b2)(b0c2)(r3a3)(a1b1c1)(c3b3r1)

r

a

cb
(r0a2c0)(a0b2c2)(b0r2)(r3b3a3)(a1c1)(c3b1r1)

r

b

ac (r0a2)(a0b2c0)(b0r2c2)(r3b3a3)(b1c1)(a1c3r1)

r

a

b

c (r0a2)(a0b2)(b0c2)(c0r2)(r3c3b3a3)(r1a1b1c1)

§39 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMÉMENT À JACQUARD ET SCHAEFFER 23

39. Planar maps, conformément à Jacquard et Schaeffer. We return now to our main theme of
skew ternary trees.
At the very beginning I mentioned that Del Lungo et al found an intriguing correspondence between skew

ternary trees and RNBPMs. They found it after first having invented the idea of skew ternary trees, and con-
jecturing that the number of such trees with n nodes is precisely the number of RNBPMs with n nonroot edges.

Benjamin Jacquard and Gilles Schaeffer responded to that conjecture by finding an ingenious correspon-
dence that is quite different from the one discovered almost simultaneously by Del Lungo et al. [See Journal
of Combinatorial Theory A83 (1998), 1–20.] Naturally I wondered if the two correspondences are somehow
related, so I decided to implement both of them in this program.
According to their construction, an RNBPM such as (†) is represented by a skew ternary tree of the form

0

1

2

3

4
0

a1

b1

c1

d1

A′

B′

C ′

D′

,

where A′, B′, C ′, and D′ represent the doubly rooted RNBPMs of the m = 4 blocks that arise when edge r
is removed. Thus the chart corresponding to their representation will have the form

−2 −2

−1 −1

0 0

+1 +1

+2 +2

0 1 a1

b1 2 b1

c1 3 c1

d1 4 0

D∗

d1

c1

C∗

c1

b1

B∗

b1

a1

A∗ ,

where A∗, B∗, C∗, and D∗ represent the subtrees A′, B′, C ′, and D′ in some fashion.
In this particular example B′ is empty, because component b has only a single edge in (†); thus B∗ is

simply a “+1 step” for the bud 2. But the subtrees A′, C ′, and D′ are nonempty (and they might in fact
be extremely complicated).
The Jacquard–Schaeffer construction also has the property that the total number of rank 0 nodes is always

exactly p, the number of nonroot edges on the exterior face of the given RNBPM. Consequently the subtrees
D′ and C ′ will contain nodes d2, c3, and c2 of rank 0; but A′ won’t contain any such nodes.

24 PLANAR MAPS, CONFORMÉMENT À JACQUARD ET SCHAEFFER SKEW-TERNARY-CALC §40

40. To complete the construction, we need to explain how to represent a doubly rooted RNBPM. Consider,
for example, the skew ternary tree T that appeared in the introductory sections at the very beginning of
this program: The RNBPM corresponding to T can be used to build larger RNBPMs in three different ways,
because T has three nodes A, B, and E of rank 0.

It turns out that the “buds and charts” method discussed above provides a nice way to encode the second
root. The idea is to use one of the three cyclic variants that begin at a bud of rank −1 (namely at bud 1,
2, or 4). Those trees have respectively 2, 1, and 0 nodes of rank −1, and no nodes of rank −2; so they can
safely be used as the right subtree T ′ of a node that has rank 0.
For example, the three possibilities for T ∗ in this example have the following respective charts:

−2 −2

−1 −1

0 0

+1 +1

+2 +2

T
A

A
B 2 0 B

C 3 2 3 C
B

B
A

A
D

D
E 4 5 4 E

D 1 D
F 6 5 6 F

D
D
A 0 A

T

−2 −2

−1 −1

0 0

+1 +1

+2 +2

T
B 0 B

C 3 2 3 C
B

B
A

A
D

D
E 4 5 4 E

D 1 D
F 6 5 6 F

D
D
A 0 1 A

B
B
T

−2 −2

−1 −1

0 0

+1 +1

+2 +2

T
E 5 4 E

D 1 D
F 6 5 6 F

D
D
A 0 1 A

B 2 0 B
C 3 2 3 C

B
B
A

A
D

D
E

E
T

One way to form this is to start at the bud in question and continue creating the chart cyclically until that
bud occurs again. The we delete both appearances, and replace it by matching arcs from an assumed parent
node T to the new subtree root and back. (It follows that a subtree T ′ of n nodes has a chart T ∗ of length
4n+ 1, even when n = 0.)

Conversely, it’s easy to reconstruct T from any of these shifted variants T ∗, by undoing the process: First
we delete the matching arcs that enclose the whole; then we replace the bud that was deleted. Finally we
wind back the cycle until creating a bud with rank −2 for the first time. (That bud will be cloned from the
rightmost bud of rank +2.)
Incidentally, one can show by induction that the number of nodes of odd rank in the skew ternary tree

is equal to the number of faces in the corresponding RNBPM, minus 2, according to this construction. And
the number of nodes of even rank is the number of nonroot vertices.

41. Our principal goal is to take a given skew ternary tree and to construct the corresponding RNBPM,
but computing the quad-tree permutation of that planar map. The tree will be given in chart form. I won’t
be stingy with memory, so I’ll keep a stack of the various charts that arise during the recursion.
A tree with n nodes will produce an RNBPM with n edges in addition to the root edge.

〈Global variables 8 〉 +≡
step chartstack [maxcodes][4∗maxcodes]; /∗ (only the first and second fields of these entries are used) ∗/
step tmpchart [4 ∗maxcodes];
int stk [maxcodes ∗maxcodes]; /∗ stack of subtrees waiting to be processed ∗/
int curbud ; /∗ the bud whose tree is being mapped (see below) ∗/

§42 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMÉMENT À JACQUARD ET SCHAEFFER 25

42. The rnbpm js routine constructs the Jacquard–Schaeffer RNBPM for chartstack [s] with root edge r.
A third parameter, h, tells the current height of the auxiliary stack stk .

The value of stk [h] is also supposed to identify the root of the skew ternary tree whose chart is in
chartstack [s]. (The name of the root doesn’t appear in the chart when the tree has only one node, hence we
need this extra contextual information.)

〈 Subroutines 11 〉 +≡
void rnbpm js (int s, int r, int h)
{
register int i, j, k, l,m, p, q, t, tt , apip , steps ;

〈Determine the number m of initial rank 0 nodes, and stack them 43 〉;
apip = pip(r, 2); /∗ pip for attaching blocks ∗/
while (m) {

m−−, t = stk [h+m];
〈Copy the tree T underlying the next T ∗ to chartstack [s+ 1] 44 〉;
if (m ∧ l ≥ 0 ∧ (chartstack [s][steps].first 6= t ∨ chartstack [s][steps].second 6= stk [h+m− 1]))

confusion ("arc␣bracketing");
steps ++;
if (l < 0) 〈Handle the case of an empty tree 45 〉
else 〈Build the RNBPM for chartstack [s+ 1] 46 〉;
〈 Splice the new RNBPM to the previous fragment 47 〉;

}
〈 Splice everything into a cycle 48 〉;

}

43. 〈Determine the number m of initial rank 0 nodes, and stack them 43 〉 ≡
if (chartstack [s][0].second) confusion ("no␣root␣bud");
for (m = 1, steps = 1; ; m++) {
if (chartstack [s][steps ++].second) confusion ("non␣skew");
stk [h+m] = chartstack [s][steps ++].second ;
if (stk [h+m] ≡ 0) break;

}
This code is used in section 42.

26 PLANAR MAPS, CONFORMÉMENT À JACQUARD ET SCHAEFFER SKEW-TERNARY-CALC §44

44. At this point we’re poised to look at the steps of T ∗, where T is the subtree that corresponds to edge
t = stk [h + m]. If T ∗ is the trivial one-edge RNBPM, we set l = −1; otherwise we set l to the number of
nodes in T ∗ that have rank 0 (which is also the number of buds that have rank −1).
In the second case, the subchart T ∗ is easily identified because it begins with a downward step from t to

tt and ends with a downward step from tt to t. (These downward steps occur first from rank 1 down to
rank 0, then from rank 3 down to rank 2; so they are reminiscent of the German text for quoted text, which
begins with ” and ends with “ !) We delete those steps and shift the others cyclically backward, in order to
deduce T from T ∗ as explained above.

〈Copy the tree T underlying the next T ∗ to chartstack [s+ 1] 44 〉 ≡
if (chartstack [s][steps].second ≡ 0) l = −1;
else {
tt = chartstack [s][steps].second ;
if (chartstack [s][steps ++].first 6= t) confusion ("wrong␣parent");
tmpchart [0].first = tmpchart [0].second = 0; /∗ dummy bud ∗/
for (j = 1, q = l = 0; chartstack [s][steps].second 6= t; steps ++, j++) {

tmpchart [j] = chartstack [s][steps];
if (q ≡ 2) k = j; /∗ remember the location of the last bud with rank 2 ∗/
else if (q ≡ −1) l++; /∗ count the buds of rank −1 ∗/
if (tmpchart [j].second) q−−; else q++; /∗ q is the rank ∗/

}
if (chartstack [s][steps].first 6= tt) confusion ("right␣bracket");
for (i = k; i < j; i++) chartstack [s+ 1][i− k] = tmpchart [i];
for (i = 0; i < k; i++) chartstack [s+ 1][i+ j − k] = tmpchart [i];

}
steps ++;

This code is used in section 42.

45. The RNBPM for an empty tree is simply the unadorned root edge r. We’ve initialized that edge already
(although I could have initialized it here, instead).

〈Handle the case of an empty tree 45 〉 ≡
p = pip(t, 1);

This code is used in section 42.

46. There’s a better way to do this step, because we can identify the pip p directly while copying the chart.
But I didn’t have time to stop and figure it out.

〈Build the RNBPM for chartstack [s+ 1] 46 〉 ≡
{
stk [h +m] = (chartstack [s + 1][2].second ? chartstack [s + 1][2].first : chartstack [s + 1][3].second ?

chartstack [s+ 1][3].first : tt);
rnbpm js (s+ 1, t, h+m);
for (p = alphainv [pip(t, 3)]; l; l−−) p = alphainv [p];

}
This code is used in section 42.

47. 〈 Splice the new RNBPM to the previous fragment 47 〉 ≡
splice (irot (p), apip);
apip = pip(t, 2);

This code is used in section 42.

§48 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMÉMENT À JACQUARD ET SCHAEFFER 27

48. 〈 Splice everything into a cycle 48 〉 ≡
splice (pip(r, 0), apip);

This code is used in section 42.

49. Okay, rnbpm js is finished. Here’s how we apply it to each of the four skew ternary trees of interest.

〈Find and print the corresponding planar maps 49 〉 ≡
for (j = 0; j < 4; j++) {
printf ("−−−␣JS␣map␣for␣T");
for (i = 0; i < j; i++) printf ("+");
printf ("␣−−−\n");
〈Create the initial permutation 31 〉;
for (i = inputbud [stack [j + offset − 2]].stepno , k = 0; i < 4 ∗ n; i++, k++) chartstack [0][k] = chart [i];
for (i = 0; i < inputbud [stack [j + offset − 2]].stepno ; i++, k++) chartstack [0][k] = chart [i];
stk [0] = inputbud [stack [j + offset − 2]].parent ;
rnbpm js (0, ’*’, 0);
print alpha ();

}
See also section 62.

This code is used in section 5.

50. Unfortunately, I must report serious disappointment with this correspondence between RNBPMs and
skew ternary trees, because its “T ∗ method” of keeping l exterior nonroot edges of a sub-RNBPM in the
larger RNBPM actually keeps the last l such edges, not the edges that follow the root! Therefore the cor-
respondence between nodes and edges is extremely weird, and it doesn’t have any apparent significance for
understanding the graph structure.
For example, the tree that corresponds to (†) turns out to be quite crazy:

a1

a2

a3

b1

c1

c2

c3

c4

c5

c6

c7

d1

d2

d3

The nodes of rank zero are a1, b1, c1, d1, d3, c5, c6, c7! They’re equinumerous with the nonroot edges of (†),
but that’s almost the only good thing we can say about them.
The problem appears to be unfixable, because the rank 0 nodes in A∗ are widely separated from node a1.

28 PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL SKEW-TERNARY-CALC §51

51. Planar maps, conformemente a Del Lungo et al. The paper by Del Lungo, Del Ristoro, and
Penaud presented a completely different way to associate RNBPMs with skew ternary trees, based on a
completely different recursive decomposition. We shall call it the DDP correspondence.
Instead of building an RNBPM from m other doubly labeled RNBPMs, as in (†), the DDP correspondence

relies on an interesting binary operation ‘
c
▷◁’, which forms an RNBPM from just two others, S and T , where

S is doubly rooted but T is just singly rooted. The following picture illustrates this operation:

a1

a2

a3

b1b2

b3

b4

a1

a2

a3
b1

b2b3

b4

cc
▷◁ =

(‡)

Here S has three edges a1, a2, a3 on its exterior face, besides its root edge; and edge a2 is the second root
(distinguishable by the fact that the first root edge has no name). Similarly, T has four exterior edges b1,
b2, b3, b4, and it is singly rooted. If the root edge of T runs from vertex u to vertex v, and if S’s main
root points to vertex s while its second root points to vertex w, the operation attaches the two RNBPMs by
(i) making u and w coincide; (ii) erasing T ’s root edge, and (iii) introducing a new edge c from s to v.

The smallest cases of
c
▷◁ need special care: If T consists simply of its root edge, we simply add a new edge c

from s to w. If S consists simply of its root edge, we consider that it is doubly rooted with the second root
the reverse of the first. In the latter case the net effect is to take T and split its root into two pieces, the
second of which is c.
The green shading in (‡), as in (†), indicates that complicated structure might exist within the interiors of

S and T . Such structure is, however, irrelevant as we continue to build larger structures. Notice that when
S isn’t simply a root edge, one face of T gains one or more edges when T ’s root edge is removed; but T ’s
interior structure doesn’t “leak out.”

52. This construction is equivalent to making three splices in the the quad-edge permutations that corre-
spond to S and T . Let’s assume that S’s root edge is called r, so that its exterior face in this example is
the cycle (r3a

3
3a

2
3a

1
3). The auxiliary root edge is a2; hence w is the vertex cycle that contains a20. (If S were

simply the root edge r, its exterior face would be (r3r1), and w would be (r2).) We may also assume that
T ’s root edge is called c; hence its exterior face cycle is (c3b

4
3b

3
3b

2
3b

1
3), u = (c2 . . .), and v = (c0 . . .).

Step (i) of the operation corresponds to splicing with (c2a
3
2); this attaches S to T . Step (ii) then corre-

sponds to splicing with (c2x), where x = c2α is the first pip counterclockwise from c in the cycle for u = w.
This leaves edge c “dangling”:

(i)

a1

a2

a3

b1b2

b3

b4

c ; (ii)

a1

a2

a3

b1b2

b3

b4

c

Finally, a splice with (c2a
1
2) produces S

c
▷◁ T .

§53 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL 29

53. The canonical permutation representations are now different, because edge labels are assigned in a
different order. Here, again for handy reference, is the new list for all cases with at most three nonroot
edges—showing also the skew ternary trees that we are about to construct for them:

r (r0)(r2)(r3r1) ∅

r

a

(r0a2)(a0r2)(r3a3)(a1r1) A = ∅
A
▷◁ ∅

r

b

a (r0b2a2)(b0r2a0)(r3b3)(b1a3)(a1r1)
A

B
= A

B
▷◁ ∅

r

ab (r0a2)(a0b2)(b0r2)(r3b3a3)(a1b1r1)
A

B
= ∅

A
▷◁ B

r

c

a

b

(r0c2b2a2)(r2a0b0c0)(r3c3)(c1b3)(b1a3)(a1r1)

A

B

C

=
A

B

C
▷◁ ∅

r

bc
a (r0b2a2)(r2a0c0)(b0c2)(r3c3b3)(r1a1)(b1c1a3)

A

B

C

= A
B
▷◁ C

r

c

ab (r0c2a2)(r2b0c0)(a0b2)(r3c3)(r1a1b1)(c1b3a3)

A

B

C

=
A

B

C
▷◁ ∅

r

c

ab
(r0c2a2)(c0b2a0)(b0r2)(r3b3c3)(c1a3)(a1b1r1)

A

BC
=

A

B

C
▷◁ ∅

r

b

ac (r0a2)(a0b2c2)(r2c0b0)(r3b3a3)(b1c3)(a1c1r1)

A

B

C

= ∅
A
▷◁

C

B

r

a

b

c (r0a2)(a0b2)(b0c2)(c0r2)(r3c3b3a3)(r1a1b1c1)

A

B

C

= ∅
A
▷◁

B

C

30 PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL SKEW-TERNARY-CALC §54

54. The DDP correspondence between an RNBPM T and its skew ternary tree T̂ is designed to have two
key properties, both of which can be observed in the examples just shown: (1) The nodes of rank 0, from top
to bottom, correspond to the nonroot edges that touch the root vertex, in counterclockwise order. (2) The
buds of rank 0 that follow the last node of rank 0, in preorder, correspond to the nonroot edges of the
exterior cycle, in counterclockwise order.
And the recursive rule to define the correspondence is amazingly simple: The simplest RNBPM (which has

nothing but a root edge) corresponds to the empty tree (which has two buds, both of rank 0, only one of

which is actually considered to be meaningful in property (2)). Otherwise the tree corresponding to S
c
▷◁ T

is obtained by (i) finding Ŝ and T̂ ; (ii) computing T̂+ using the cyclic rotation operation on skew ternary

trees at the beginning of this program; (iii) replacing the rank 0 bud of Ŝ that corresponds to S’s second

root by a new node c whose right child is T̂+.
To invert this rule, notice that we can recover S, T , and c from the resulting skew ternary tree, because c

is the last node of rank 0 (in preorder); then if c’s right subtree is R, we have R = T̂+, hence T̂ = R−; and

Ŝ is obtained by removing c and R. From Ŝ and T̂ we know S and T , recursively. And the second root in S
corresponds to the parent node of c.

55. Here then is a subroutine that implements what was just said. The rnbpm ddp routine constructs the
RNBPM for chartstack [s] with root edge r. The chart is followed by a special step for which the second field
is sentinel and the first field is the name of the root.

〈 Subroutines 11 〉 +≡
void rnbpm ddp(int s, int r)
{
register int c, i, j, jj , k, p, q, rr , t, steps , parent ;

〈Find the last node, c, in preorder that has rank 0, and its parent p 56 〉;
〈Copy R− into chartstack [s+ 1], where R is the right subtree of c 57 〉;
〈Recursively build the RNBPM for T 58 〉;
〈Copy the rest of the tree into chartstack [s+ 1] 59 〉;
〈Recursively build the RNBPM for S 60 〉;
〈Hook everything together with three magic splices 61 〉;

}

56. The steps of the chart follow preorder.

〈Find the last node, c, in preorder that has rank 0, and its parent p 56 〉 ≡
if (chartstack [s][0].second) confusion ("no␣root␣bud");
for (steps = 1, q = −1; chartstack [s][steps].second 6= sentinel ; steps ++) {
if (q ≡ −1) j = steps ;
if (chartstack [s][steps].second ≡ 0) q++; else q−−;

}
if (q 6= 2) confusion ("bad␣rank␣at␣end");
c = chartstack [s][j − 1].second ;
if (c ≡ 0) { /∗ c is the root of the charted tree ∗/
if (j 6= 1) confusion ("parentless␣rank␣−1␣bud␣not␣at␣beginning");
c = chartstack [s][steps].first , p = 0;

} else p = chartstack [s][j − 1].first ;
if (chartstack [s][j + 1].second) confusion ("not␣the␣last␣zero");

This code is used in section 55.

§57 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL 31

57. If c’s right child is just a bud, the subtree R is empty and it corresponds to the empty tree. Otherwise
R is bracketed in the chart by arcs from c to its root node and back again, just as the subtree T ∗ was
bracketed in the procedure rnbpm js . In this case the copying task is simpler than it was before, because
we needn’t count zeros.

〈Copy R− into chartstack [s+ 1], where R is the right subtree of c 57 〉 ≡
jj = j − 1, steps = j + 2;
rr = chartstack [s][steps].second ;
if (rr) { /∗ rr is the root of a nonempty subtree R ∗/
if (chartstack [s][steps ++].first 6= c) confusion ("wrong␣parent");
tmpchart [0].first = tmpchart [0].second = 0; /∗ dummy bud ∗/
for (j = 1, q = 0; chartstack [s][steps].second 6= c; steps ++, j++) {
tmpchart [j] = chartstack [s][steps];
if (q ≡ 2) k = j; /∗ remember the location of the last bud with rank 2 ∗/
if (tmpchart [j].second) q−−; else q++; /∗ q is the rank ∗/

}
if (chartstack [s][steps].first 6= rr) confusion ("right␣bracket");
for (i = k; i < j; i++) chartstack [s+ 1][i− k] = tmpchart [i]; /∗ shift to R− ∗/
for (i = 0; i < k; i++) chartstack [s+ 1][i+ j − k] = tmpchart [i];
chartstack [s+ 1][j].second = sentinel ;
chartstack [s + 1][j].first = (chartstack [s + 1][2].second ? chartstack [s + 1][2].first :

chartstack [s+ 1][3].second ? chartstack [s+ 1][3].first : rr);
}
steps ++;

This code is used in section 55.

58. 〈Recursively build the RNBPM for T 58 〉 ≡
if (rr) rnbpm ddp(s+ 1, c);

This code is used in section 55.

59. If c is the root of the tree, then p is zero, subtree Ŝ is empty, and nothing needs to be done. Otherwise
the tree that corresponds to Ŝ is obtained by simply leaving out c and R. In the latter case, jj points to the
arc from p to c, and steps points to the arc from c back to p.

〈Copy the rest of the tree into chartstack [s+ 1] 59 〉 ≡
if (p) {
for (i = 0; i < jj ; i++) chartstack [s+ 1][i] = chartstack [s][i];
chartstack [s+ 1][i].first = chartstack [s+ 1][i].second = 0, i++; /∗ bud for c ∗/
for (steps ++; ; steps ++, i++) {

chartstack [s+ 1][i] = chartstack [s][steps];
if (chartstack [s+ 1][i].second ≡ sentinel) break;

}
}

This code is used in section 55.

60. 〈Recursively build the RNBPM for S 60 〉 ≡
if (p) rnbpm ddp(s+ 1, r);

This code is used in section 55.

32 PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL SKEW-TERNARY-CALC §61

61. Finally we obey the three-step splicing protocol for
c
▷◁ that was described above. Some tricky maneu-

vering is necessary in the degenerate cases.

〈Hook everything together with three magic splices 61 〉 ≡
if (rr ≡ 0) { /∗ T̂ is empty ∗/
if (p) splice (pip(c, 0), alpha [pip(p, 0)]);
else splice (pip(c, 0), pip(r, 2));

} else {
if (p) splice (pip(c, 2), alpha [pip(p, 0)]);
else splice (pip(c, 2), pip(r, 2));
splice (pip(c, 2), alpha [pip(c, 2)]);
verts += 2; /∗ because we spliced two pips from the same vertex ∗/

}
splice (pip(c, 2), irot (alphainv [pip(r, 3)]));

This code is used in section 55.

62. Okay, rnbpm ddp is finished. Here’s how we apply it to each of the four skew ternary trees of interest.

〈Find and print the corresponding planar maps 49 〉 +≡
for (j = 0; j < 4; j++) {
printf ("−−−␣DDP␣map␣for␣T");
for (i = 0; i < j; i++) printf ("+");
printf ("␣−−−\n");
〈Create the initial permutation 31 〉;
for (i = inputbud [stack [j + offset − 2]].stepno , k = 0; i < 4 ∗ n; i++, k++) chartstack [0][k] = chart [i];
for (i = 0; i < inputbud [stack [j + offset − 2]].stepno ; i++, k++) chartstack [0][k] = chart [i];
chartstack [0][k].first = inputbud [stack [j + offset − 2]].parent ;
chartstack [0][k].second = sentinel ;
rnbpm ddp(0, ’*’);
print alpha ();

}

63. Here, for instance, is the RNBPM that corresponds to the example skew ternary tree T at the very
beginning of this program, according to the DDP correspondence:

r

eb

c

d f
a

The α permutation is

(e2b2a2r0)(f0d0e0r2)(c0d2f2a0)(c2b0)(a1f1r1)(e3r3)(b1c1a3)(e1d3c3b3)(f3d1).

64. One can show that the number of nodes of even rank is the number of interior faces in the DDP
correspondence; the number of nodes of odd rank is the number of vertices, minus 2.
(The actual rank of each vertex node and each face node can in fact be “read off” from the RNBPM, if it

is examined in an appropriate depth-first search order, because of results mentioned below.)

§65 SKEW-TERNARY-CALC PLANAR MAPS, CONFORMEMENTE A DEL LUNGO ET AL 33

65. Indeed, this program led to a huge surprise, because much, much more is true. In every case that I
had examined by hand, in my first explorations of the DDP correspondence, I noticed that the four RNBPMs
obtained from T , T+, T++, and T+++ are dual graphs! I wrote this program in order to check that conjec-
ture on examples that were too large to study reliably by hand; and I found that the conjecture was always
verified, even when I looked at large random instances.
More precisely, if we call the four pip permutations α0, α1, α2, and α3, when the DDP correspondence

has been applied to four conjugate skew ternary trees, I found that αk was equal to α0ρ̂
k in every case that

I computed. Here ρ̂ is the permutation (r1r3)ρ(r1r3); it’s like ρ except that it decreases subscripts of r while
increasing the subscripts of all the other edges (modulo 4). For example, the alpha permutations for T+,
T++, and T+++ are the following “clones” of the alpha permutation for T given above:

(e1b1a1r1)(f3d3e3r3)(c3d1f1a3)(c1b3)(a0f0r2)(e2r0)(b0c0a2)(e0d2c2b2)(f2d0)

(e0b0a0r2)(f2d2e2r0)(c2d0f0a2)(c0b2)(a3f3r3)(e1r1)(b3c3a1)(e3d1c1b1)(f1d3)

(e3b3a3r3)(f1d1e1r1)(c1d3f3a1)(c3b1)(a2f2r0)(e0r2)(b2c2a0)(e2d0c0b0)(f0d2)

Evidence for that conjecture was overwhelming, so I asked several experts for help. And it turned out,
by extraordinary luck, that I had chosen exactly the right person to ask, namely Gilles Schaeffer. He told
me that, after writing the paper with Jacquard that was cited above, he continued to do research about
connections between trees and planar maps. The result was his Ph.D. dissertation, Conjugation d’arbres et
cartes combinatoires aléatores (l’Université Bordeaux I, 1998); and when I downloaded that thesis I found
it to be an amazingly rich compendium of deep new results, covering many topics in addition to RNBPMs
(most of which he chose not to publish elsewhere). In particular, on pages 65–67 he sketched a (2n+2)-to-4
correspondence between ternary trees and RNBPMs, which amounts to an independent discovery of the DDP
correspondence, although he did not explicitly mention any connection with skew ternary trees.
Schaeffer’s remarkable construction on those three pages explains everything: It can be used to show that

Alice can actually construct the corresponding planar graph “online” as she is walking around the tree!
Namely, we can add four downward steps to the state chart, and assign new labels to the steps, as follows

(illustrated for the skew ternary tree in the introduction):

−2 −2

−1 −1

0 0

+1 +1

+2 +2

a2 a3 b2 b3 b0 c3 c0 c1 c2 b1 a0 d3 e2 e3 e0 e1 d0 d1 f0 f1 f2 f3 d2 a1 r2 r3 r0 r1

An upward step is labeled xi, where i is the rank (modulo 4) at the beginning of the step and x is the name
of the node attached to this bud. A downward step is labeled yj , where j is the rank plus two (modulo 4)
at the beginning of the step and y is the name of the node to which we are descending. The final four steps
are labeled r2, r3, r0, and r1. Thus we’ve assigned 4n + 4 labels, one for each pip in the permutation; and
the pips have been matched up in pairs {xi, yj}. Every such pair has the meaning that α maps xi 7→ yj−1

and yj 7→ xi−1, where the subscripts are treated modulo 4.
The validity of this rule is readily proved by induction, because it is an extremely strong induction hypoth-

esis. And my conjecture about the way duality affects the permutations αk is an immediate consequence.

66. Hey, we’re finished—except for a final routine, which we fondly hope will never be invoked.

〈Assertion failure subroutine 66 〉 ≡
void confusion (char ∗id)
{ /∗ an assertion has failed ∗/
fprintf (stderr , "This␣can’t␣happen␣(%s)!\n", id);
exit (−666);

}
This code is used in section 5.

34 INDEX SKEW-TERNARY-CALC §67

67. Index.

abort0 : 9, 10, 11, 13.
abort1 : 9.
abort2 : 9.
alpha : 30, 31, 32, 34, 35, 61.
alphainv : 30, 31, 32, 46, 61.
apip : 42, 47, 48.
argc : 5, 6, 9.
argv : 5, 6, 9.
b: 18.
branch : 17, 19.
bud: 7, 8.
bud struct: 7.
buds : 8, 11, 12, 13.
budstep : 17, 18.
c: 5, 33, 55.
chart : 15, 18, 19, 20, 21, 22, 49, 62.
chartstack : 41, 42, 43, 44, 46, 49, 55, 56, 57, 59, 62.
code : 9.
confusion : 11, 18, 19, 20, 22, 31, 32, 33, 42,

43, 44, 56, 57, 66.
createsteps : 17, 19, 20.
curbud : 41.
d: 11.
downward : 11.
downward mid : 11.
exit : 6, 9, 10, 12, 66.
f : 33.
fillbuds : 10, 12, 17.
first : 14, 18, 19, 20, 22, 41, 42, 44, 46, 55,

56, 57, 59, 62.
fprintf : 6, 9, 10, 12, 66.
h: 42.
i: 5, 24, 42, 55.
id : 66.
inputbud : 8, 10, 11, 12, 18, 22, 49, 62.
inputnode : 8, 9, 10, 11, 12, 17, 19, 24, 31.
irot : 30, 47, 61.
j: 5, 42, 55.
jj : 55, 57, 59.
k: 5, 42, 55.
l: 21, 42.
left : 7, 9, 11, 12, 17, 24, 31.
m: 21, 42.
main : 5.
match : 14, 19.
maxcodes : 7, 15, 41.
message : 9.
middle : 7, 9, 11, 12, 17, 24.
n: 8.
node: 7, 8.
node struct: 7.

offset : 18, 19, 20, 22, 49, 62.
p: 5, 11, 12, 17, 19, 21, 24, 32, 33, 42, 55.
parent : 7, 9, 10, 11, 49, 55, 62.
pip : 30, 31, 34, 35, 42, 45, 46, 47, 48, 61.
pip edge : 30, 34, 35.
pip sub : 30, 34, 35.
print alpha : 33, 49, 62.
print tree : 23, 24.
printf : 21, 22, 23, 24, 33, 34, 35, 49, 62.
printfam : 21, 22.
q: 11, 17, 19, 21, 32, 33, 42, 55.
r: 12, 21, 32, 33, 42, 55.
rank : 7, 9, 10, 12, 14, 18, 19, 20, 24.
right : 7, 9, 11, 12, 17, 24.
rnbpm ddp : 55, 58, 60, 62.
rnbpm js : 42, 46, 49, 57.
root : 10, 20, 22, 23.
rot : 30, 32.
rr : 55, 57, 58, 61.
s: 32, 42, 55.
second : 14, 19, 21, 22, 41, 42, 43, 44, 46, 55,

56, 57, 59, 62.
sentinel : 7, 9, 22, 55, 56, 57, 59, 62.
setmate : 10, 11, 12.
splice : 32, 47, 48, 61.
stack : 15, 18, 19, 20, 22, 49, 62.
stacked : 15, 18, 19, 20.
stderr : 6, 9, 10, 12, 66.
step: 14, 15, 41.
step struct: 14.
stepno : 7, 18, 22, 49, 62.
steps : 15, 18, 19, 20, 21, 22, 42, 43, 44, 55,

56, 57, 59.
stk : 41, 42, 43, 44, 46, 49.
strlen : 9.
t: 33, 42, 55.
tmpchart : 41, 44, 57.
tt : 42, 44, 46.
upward : 11.
v: 33.
verts : 30, 31, 32, 33, 61.

SKEW-TERNARY-CALC NAMES OF THE SECTIONS 35

〈Assertion failure subroutine 66 〉 Used in section 5.

〈Build the RNBPM for chartstack [s+ 1] 46 〉 Used in section 42.

〈Check that we’ve filled out the whole tree 13 〉 Used in section 10.

〈Copy R− into chartstack [s+ 1], where R is the right subtree of c 57 〉 Used in section 55.

〈Copy the rest of the tree into chartstack [s+ 1] 59 〉 Used in section 55.

〈Copy the tree T underlying the next T ∗ to chartstack [s+ 1] 44 〉 Used in section 42.

〈Create the initial permutation 31 〉 Used in sections 49 and 62.

〈Create the state chart 20 〉 Used in section 16.

〈Determine the number m of initial rank 0 nodes, and stack them 43 〉 Used in section 42.

〈Find and print the corresponding planar maps 49, 62 〉 Used in section 5.

〈Find and print the three conjugates of T 16 〉 Used in section 5.

〈Find the last node, c, in preorder that has rank 0, and its parent p 56 〉 Used in section 55.

〈Global variables 8, 15, 30, 41 〉 Used in section 5.

〈Handle the case of an empty tree 45 〉 Used in section 42.

〈Hook everything together with three magic splices 61 〉 Used in section 55.

〈 Introduce the buds and compute the ranks 10 〉 Used in section 9.

〈Parse the arguments; report a problem and exit if they don’t define a skew tree 9 〉 Used in section 6.

〈Print and count the face cycles 35 〉 Used in section 33.

〈Print and count the vertex cycles 34 〉 Used in section 33.

〈Print the conjugates from the state chart 22 〉 Used in section 16.

〈Print the tree with all buds shown 23 〉 Used in section 16.

〈Process the command line 6 〉 Used in section 5.

〈Recursively build the RNBPM for S 60 〉 Used in section 55.

〈Recursively build the RNBPM for T 58 〉 Used in section 55.

〈 Splice everything into a cycle 48 〉 Used in section 42.

〈 Splice the new RNBPM to the previous fragment 47 〉 Used in section 42.

〈 Subroutines 11, 12, 17, 18, 19, 21, 24, 32, 33, 42, 55 〉 Used in section 5.

〈Type definitions 7, 14 〉 Used in section 5.

SKEW-TERNARY-CALC

Section Page
Introduction . 1 1
Parsing . 7 5
The state chart . 14 10
The quad-edge data structure for planar maps . 25 13
The building blocks of planar graphs . 36 21
Planar maps, conformément à Jacquard et Schaeffer . 39 23
Planar maps, conformemente a Del Lungo et al . 51 28
Index . 67 34

