81 SIMPATH-REDUCE INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program takes the output of SIMPATH (on stdin) and converts it to a ZDD (on stdout).

The output is in the same format as might be output by BDD15, except that the branches are in bottom-up
order rather than top-down.

The input begins with lines that specify the names of the vertices and arcs. A copy of those lines is written
to the file /tmp/simpath-names.

Then come the lines we want to reduce, which might begin like this:

#1:
2:3,4
#2:

3:5,6
4:7,0

meaning that node 2 of the unreduced dag has branches to nodes 3 and 4, etc. Nodes 0 and 1 are the sinks.

#define memsize (1 < 25)
#define varsize 1000

#include <stdio.h>
#include <stdlib.h>

int lo[memsize], hi[memsize];

int firstnode[varsize];

int head;

int nodesout;

char buf[100];

int nbuf, lbuf , hbuf;

FILE xtempfile;

main ()

{
register int j k,p,q,7,s,t;
(Store all the input in lo and hi 2);
(Reduce and output 3);
forintf (stderr, "%d_branch nodes output.\n", nodesout);

}

https://cs.stanford.edu/~knuth/programs.html

2

2.

INTRO SIMPATH-REDUCE

(Store all the input in lo and hi 2) =
tempfile = fopen("/tmp/simpath-names", "w");
if (—tempfile) {
forintf (stderr, "I can’t open,/tmp/simpath-names for writing!\n");
exit (—1);
}
while (1) {
if (—fgets(buf,100, stdin)) {
fprintf (stderr, "The_input_line ended junexpectedly!\n");
exit(—2);

if (buf[0] = ’#’) break;
forintf (tempfile, buf);
¥

fclose (tempfile);
for (t=1,s=2; ; t+) { /* t is arc number, s is node number */
if (t4+ 1> varsize) {
forintf (stderr, "Memory overflow (varsize=%d) ' \n", varsize);
exit(—3);
}

firstnode[t] = s;

if (sscanf (buf + 1,"%d", &nbuf) # 1V nbuf £1t) {
forintf (stderr, "Bad,input,line for arc %d: %s",t, buf);
exit (—4);

}

for (;; s++) {
if (s > memsize) {
forintf (stderr, "Memory_overflow,(memsize=%d) ! \n", memsize);
exit (—5);

if (—fgets(buf, 100, stdin)) goto done_reading;

if (buf[0] = ’#’) break;

if (sscanf (buf, "%x:%x,%hx", &nbuf , &lbuf , &hbuf) # 3V nbuf #) {
forintf (stderr, "Bad_input, line for node %x: %s", s, buf);
exit (—6);

¥

lo[s] = lbuf, hi[s] = hbuf;

}

done_reading: fprintf (stderr, "%d arcs,and, %d branch nodes successfully read.\n",t,s — 2);

firstnode[t + 1] = s;

This code is used in section 1.

§2

83 SIMPATH-REDUCE INTRO 3

3. Here I use an algorithm something like that of Sieling and Wegener, and something like the ones I used
in BDD9 and CONNECTED and other programs. But I’ve changed it again, for fun and variety.

All nodes below the current level have already been output. If node p on such a level has been reduced
away in favor of node ¢, we've set lo[p] = ¢. But if that node has been output, we set lo[p] < 0. We also
keep hi[p] > 0 in such nodes, except temporarily when using hi[p] as a pointer to a stack.

We go through all nodes on the current level and link together the ones with a common hi field p. The
most recent such node is ¢ = —hi[p]; the next most recent is hi[qg], if that is positive; then hi[hi[g]] and so
on. But if hi[g] < 0, it specifies another p value, in a list of lists.

{Reduce and output 3) =

lo[0] =lo[1] = —1; /* sinks are implicitly present */
for (;t;t—) {
head = 0;
for (k = firstnodelt]; k < firstnode[t + 1]; k++) {
q = lo[k];
if (lo[g] > 0) lo[k] = lo]q]; /* replace lo[k] by its clone */
q = hilk];

if (lo[g] > 0) hilk] =q=lo[q]; /x likewise hilk] */
if (¢) (Put k onto the list for ¢ 4);

}

{ Go through the list of lists 5);

}

This code is used in section 1.

4. (Put k onto the list for ¢ 4) =

{
if (hi[g] > 0) hi[k] = —head, head = ¢; /* start a new list */
else hilk] = —hi[q]; /* point to previous in list */
hilg] = —Fk;

}

This code is used in section 3.

5. We go through each list twice, once to output instructions and once to clean up our tracks.

(Go through the list of lists 5) =
for (p = head; p; p=—q) {
for (¢ = —hi[p]; ¢ > 0; ¢=hiq]) {
r = lo[q;
if (lo[r] <0) {
printf ("hx:uChA?hx:%x)\n", q,t, T, p);

nodesout ++;
lo[r] = q,lolq] = —r — 1;
} else lo[q] = lo]r]; /* make g point to its previously output clone */

}

for (q = —hilp], hilp] = 0; ¢ > 0; r = q,q = hi[r]) {
r = lo[q[;
if (r<0) lo[-r—1]=—1;

This code is used in section 3.

4 INDEX SIMPATH-REDUCE §6

6. Index.

buf: 1, 2.
done_reading: 2.
exit: 2.

felose: 2.

foets: 2.
firstnode: 1, 2, 3.
fopen: 2.
forintf: 1, 2.
hbuf: 1,
head: 1, 3, 4, 5.
hi: 1, 2, 3, 4, 5.
VE
k:
lbuf: 1, 2.
lo: 1, 2, 3, 5.
main: 1.
memsize: 1
nbuf: 1, 2.
nodesout: 1, 5.
p: 1.

printf: 5.

q:
7
s:
sscanf: 2.
stderr: 1, 2.
stdin: 1, 2.
stdout: 1.

t. 1.
tempfile: 1, 2.
varsize: 1, 2.

w o

= I=

2.

)

[= = =

SIMPATH-REDUCE NAMES OF THE SECTIONS 5

{ Go through the list of lists 5) Used in section 3.
(Put k onto the list for ¢ 4) Used in section 3.
{Reduce and output 3) Used in section 1.

(Store all the input in lo and hi 2) Used in section 1.

SIMPATH-REDUCE

Section Page

	Intro
	Index
	Names of the sections
	Go through the list of lists
	Put k onto the list for q
	Reduce and output
	Store all the input in lo and hi

