
§1 SIMPATH-DIRECTED-CYCLES INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program inputs a directed graph. It outputs a not-necessarily-reduced binary
decision diagram for the family of all simple oriented cycles in that graph.

The format of the output is described in another program, SIMPATH-REDUCE. Let me just say here that
it is intended only for computational convenience, not for human readability.

I’ve tried to make this program simple, whenever I had to choose between simplicity and efficiency. But I
haven’t gone out of my way to be inefficient.

(Notes, 30 November 2015: My original version of this program, written in August 2008, was hacked
from SIMPATH. I don’t think I used it much at that time, if at all, because I made a change in February
2010 to make it compile without errors. Today I’m making two fundamental changes: (i) Each “frontier” in
SIMPATH was required to be an interval of vertices, according to the vertex numbering. Now the elements of
each frontier are listed explicitly; so I needn’t waste space by including elements that don’t really participate
in frontier activities. (ii) I do not renumber the vertices. The main advantage of these two changes is that
I can put a dummy vertex at the end, with arcs to and from every other vertex; then we get all the simple
paths instead of all the simple cycles, while the frontiers stay the same size except for the dummy element.
And we can modify this program to get all the oriented Hamiltonian paths as well.)

#define maxn 90 /∗ maximum number of vertices; at most 126 ∗/
#define maxm 2000 /∗ maximum number of arcs ∗/
#define logmemsize 27
#define memsize (1� logmemsize)
#define loghtsize 24
#define htsize (1� loghtsize)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_graph.h"

#include "gb_save.h"

char mem [memsize]; /∗ the big workspace ∗/
unsigned long long tail , boundary , head ; /∗ queue pointers ∗/
unsigned int htable [htsize]; /∗ hash table ∗/
unsigned int htid ; /∗ “time stamp” for hash entries ∗/
int htcount ; /∗ number of entries in the hash table ∗/
int wrap = 1; /∗ wraparound counter for hash table clearing ∗/
Vertex ∗vert [maxn + 1];
int f [maxn + 2],ff [maxn + 2]; /∗ elements of the current and the next frontier ∗/
int s, ss ; /∗ the sizes of f and ff ∗/
int curfront [maxn + 1],nextfront [maxn + 1]; /∗ inverse frontier map ∗/
int arcto [maxm]; /∗ destination number of each arc ∗/
int firstarc [maxn + 2]; /∗ where arcs from a vertex start in arcto ∗/
char mate [maxn + 3]; /∗ encoded state ∗/
int serial ,newserial ; /∗ state numbers ∗/
〈Subroutines 13 〉
main (int argc , char ∗argv [])
{

register int i, j, jj , jm , k, km , l, ll ,m, n, p, t, hash , sign ;
register Graph ∗g;
register Arc ∗a, ∗b;
register Vertex ∗u, ∗v;

〈 Input the graph 2 〉;
〈Reformat the arcs 3 〉;

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION SIMPATH-DIRECTED-CYCLES §1

〈Do the algorithm 5 〉;
}

2. 〈 Input the graph 2 〉 ≡
if (argc 6= 2) {

fprintf (stderr , "Usage: %s foo.gb\n", argv [0]);
exit (−1);
}
g = restore graph (argv [1]);
if (¬g) {

fprintf (stderr , "I can’t input the graph %s (panic code %ld)!\n", argv [1], panic code);
exit (−2);
}
n = g~n;
if (n > maxn) {

fprintf (stderr , "Sorry, that graph has %d vertices; ", n);
fprintf (stderr , "I can’t handle more than %d!\n",maxn);
exit (−3);
}
if (g~m > maxm) {

fprintf (stderr , "Sorry, that graph has %ld arcs; ", (g~m + 1)/2);
fprintf (stderr , "I can’t handle more than %d!\n",maxm);
exit (−3);
}

This code is used in section 1.

§3 SIMPATH-DIRECTED-CYCLES INTRODUCTION 3

3. The arcs will be either j → k or j ← k between vertex number j and vertex number k, when j < k
and those vertices are adjacent in the graph. We process them in order of increasing j; but for fixed j, the
values of k aren’t necessarily increasing.

The k values appear in the arcto array, with −k used for the arcs that emanate from k. The arcs for
fixed j occur in positions firstarc [j] through firstarc [j + 1]− 1 of that array.

After this step, we forget the GraphBase data structures and just work with our homegrown integer-only
representation.

〈Reformat the arcs 3 〉 ≡
〈Make the inverse-arc lists 4 〉;
for (m = 0, k = 1; k ≤ n; k++) {

firstarc [k] = m;
v = vert [k];
printf ("%d(%s)\n", k, v~name);
for (a = v~arcs ; a; a = a~next) {
u = a~ tip ;
if (u > v) {

arcto [m++] = u− g~vertices + 1;
if (a~ len ≡ 1) printf (" −> %ld(%s) #%d\n", u− g~vertices + 1, u~name ,m);
else printf (" −> %ld(%s,%ld) #%d\n", u− g~vertices + 1, u~name , a~ len ,m);

}
}
for (a = v~ invarcs ; a; a = a~next) {

u = a~ tip ;
if (u > v) {

arcto [m++] = −(u− g~vertices + 1);
if (a~ len ≡ 1) printf (" <− %ld(%s) #%d\n", u− g~vertices + 1, u~name ,m);
else printf (" <− %ld(%s,%ld) #%d\n", u− g~vertices + 1, u~name , a~ len ,m);

}
}
}
firstarc [k] = m;

This code is used in section 1.

4. To aid in the desired sorting, we first create an inverse-arc list for each vertex v, namely a list of vertices
that point to v.

#define invarcs y.A

〈Make the inverse-arc lists 4 〉 ≡
for (v = g~vertices ; v < g~vertices + n; v++) v~ invarcs = Λ;
for (v = g~vertices ; v < g~vertices + n; v++) {

vert [v − g~vertices + 1] = v;
for (a = v~arcs ; a; a = a~next) {

register Arc ∗b = gb virgin arc();

u = a~ tip ;
b~ tip = v;
b~ len = a~ len ;
b~next = u~ invarcs ;
u~ invarcs = b;

}
}

This code is used in section 3.

4 THE ALGORITHM SIMPATH-DIRECTED-CYCLES §5

5. The algorithm. Now comes the fun part. We systematically construct a binary decision diagram for
all simple paths by working top-down, considering the arcs in arcto , one by one.

When we’re dealing with arc i, we’ve already constructed a table of all possible states that might arise
when each of the previous arcs has been chosen-or-not, except for states that obviously cannot be part of a
simple path.

Arc i runs from vertex j to vertex k = arcto [i], or from k = −arcto [i] to j.
Let Fi = {v1, . . . , vs} be the frontier at arc i, namely the set of vertex numbers ≥ j that appear in arcs <

i.
The state before we decide whether or not to include arc i is represented by a table of values mate [t], for

t ∈ Fi ∪ {j, k}, with the following significance: If mate [t] = t, the previous arcs haven’t touched vertex t. If
mate [t] = u and u 6= t, the previous arcs have made a simple directed path from t to u. If mate [t] = −u,
the previous arcs have made a simple directed path from u to t. If mate [t] = 0, the previous arcs have
“saturated” vertex t; we can’t touch it again.

The mate information is all that we need to know about the behavior of previous arcs. And it’s easily
updated when we add the ith arc (or not). So each “state” is equivalent to a mate table, consisting of s
numbers, where s is the size of Fi.

The states are stored in a queue, indexed by 64-bit numbers tail , boundary , and head , where tail ≤
boundary ≤ head . Between tail and boundary are the pre-arc-i states that haven’t yet been processed;
between boundary and head are the post-arc-i states that will be considered later. The states before boundary
are sequences of s bytes each, and the states after boundary are sequences of ss bytes each, where ss is the
size of Fi+1.

(Exception: If s = 0, we use one byte to represent the state, although we ignore it when reading from the
queue later. In this way we know how many states are present.)

Bytes of the queue are stored in mem , which wraps around modulo memsize . We ensure that head − tail
never exceeds memsize .

〈Do the algorithm 5 〉 ≡
for (t = 1; t ≤ n; t++) mate [t] = t;
〈 Initialize the queue 6 〉;
for (i = 0; i < m; i++) {

printf ("#%d:\n", i + 1); /∗ announce that we’re beginning a new arc ∗/
fprintf (stderr , "Beginning arc %d (serial=%d,head−tail=%lld)\n", i + 1, serial , head − tail);
fflush (stderr);
〈Process arc i 7 〉;
}
printf ("%x:0,0\n", serial);

This code is used in section 1.

6. Each state for a particular arc gets a distinguishing number, where its ZDD instructions begin. Two
states are special: 0 means the losing state, when a simple path is impossible; 1 means the winning state,
when a simple path has been completed. The other states are 2 or more.

Initially i will be zero, and the queue is empty. We’ll want jj to be the the j vertex of arc i + 1, and ss
to be the size of Fi+1. Also serial is the identifying number for arc i + 1.

〈 Initialize the queue 6 〉 ≡
jj = 1, ss = 0;
while (firstarc [jj + 1] ≡ 0) jj ++; /∗ unnecessary unless vertex 1 is isolated ∗/
tail = head = 0;
serial = 2;

This code is used in section 5.

§7 SIMPATH-DIRECTED-CYCLES THE ALGORITHM 5

7. The output format on stdout simply shows the identifying numbers of a state and its two successors, in
hexadecimal.

#define trunc(addr) ((addr) & (memsize − 1))

〈Process arc i 7 〉 ≡
if (ss ≡ 0) head ++; /∗ put a dummy byte into the queue ∗/
boundary = head , htcount = 0, htid = (i + wrap)� logmemsize ;
if (htid ≡ 0) {

for (hash = 0; hash < htsize ; hash ++) htable [hash] = 0;
wrap ++, htid = 1� logmemsize ;
}
newserial = serial + (head − tail)/(ss ? ss : 1);
j = jj , sign = arcto [i], k = (sign > 0 ? sign : −sign), s = ss ;
for (p = 0; p < s; p++) f [p] = ff [p];
〈Compute jj and Fi+1 8 〉;
while (tail < boundary) {

printf ("%x:", serial);
serial ++;
〈Unpack a state, and move tail up 9 〉;
〈Print the successor if arc i is not chosen 11 〉;
printf (",");
〈Print the successor if arc i is chosen 10 〉;
printf ("\n");
}

This code is used in section 5.

8. Here we set nextfront [t] to i+ 1 whenever t ∈ Fi+1. And we also set curfront [t] to i+ 1 wheneer t ∈ Fi;
I use i + 1, not i, because the curfront array is initially zero.

〈Compute jj and Fi+1 8 〉 ≡
while (jj ≤ n ∧ firstarc [jj + 1] ≡ i + 1) jj ++;
for (p = ss = 0; p < s; p++) {
t = f [p];
curfront [t] = i + 1;
if (t ≥ jj) {

nextfront [t] = i + 1;
ff [ss ++] = t;

}
}
if (j ≡ jj ∧ nextfront [j] 6= i + 1) nextfront [j] = i + 1,ff [ss ++] = j;
if (k ≥ jj ∧ nextfront [k] 6= i + 1) nextfront [k] = i + 1,ff [ss ++] = k;

This code is used in section 7.

6 THE ALGORITHM SIMPATH-DIRECTED-CYCLES §9

9. This step sets mate [t] for all t ∈ Fi ∪ {j, k}, based on a queued state, while taking s bytes out of the
queue.

〈Unpack a state, and move tail up 9 〉 ≡
if (s ≡ 0) tail ++;
else {

for (p = 0; p < s; p++, tail ++) {
t = f [p];
mate [t] = mem [trunc(tail)];

}
}
if (curfront [j] 6= i + 1) mate [j] = j;
if (curfront [k] 6= i + 1) mate [k] = k;

This code is used in section 7.

10. Here’s where we update the mates. The order of doing this is carefully chosen so that it works fine
when mate [j] = j and/or mate [k] = k.

〈Print the successor if arc i is chosen 10 〉 ≡
if (sign > 0) {

jm = mate [j], km = mate [k];
if (jm ≡ j) jm = −j;
if (jm ≥ 0 ∨ km ≤ 0) printf ("0"); /∗ we mustn’t touch a saturated vertex ∗/
else if (jm ≡ −k) 〈Print 1 or 0, depending on whether this arc wins or loses 12 〉
else {

mate [j] = 0,mate [k] = 0;
mate [−jm] = km ,mate [km] = jm ;
printstate (j, jj , i, k);

}
} else {

jm = mate [j], km = mate [k];
if (km ≡ k) km = −k;
if (jm ≤ 0 ∨ km ≥ 0) printf ("0"); /∗ we mustn’t touch a saturated vertex ∗/
else if (km ≡ −j) 〈Print 1 or 0, depending on whether this arc wins or loses 12 〉
else {

mate [j] = 0,mate [k] = 0;
mate [jm] = km ,mate [−km] = jm ;
printstate (j, jj , i, k);

}
}

This code is used in section 7.

11. 〈Print the successor if arc i is not chosen 11 〉 ≡
printstate (j, jj , i, k);

This code is used in section 7.

§12 SIMPATH-DIRECTED-CYCLES THE ALGORITHM 7

12. See the note below regarding a change that will restrict consideration to Hamiltonian paths. A similar
change is needed here.

〈Print 1 or 0, depending on whether this arc wins or loses 12 〉 ≡
{

for (p = 0; p < s; p++) {
t = f [p];
if (t 6= j ∧ t 6= k ∧mate [t] ∧mate [t] 6= t) break;

}
if (p ≡ s) printf ("1"); /∗ we win: this cycle is all by itself ∗/
else printf ("0"); /∗ we lose: there’s junk outside this cycle ∗/
}

This code is used in section 10.

13. The printstate subroutine does the rest of the work. It makes sure that no incomplete paths linger
in positions that are about to disappear from the current frontier; and it puts the mate entries of the next
frontier into the queue, checking to see if that state was already there.

If ‘mate [t] 6= t’ is removed from the condition below, we get Hamiltonian cycles only (I mean, simple cycles
that include every vertex).

〈Subroutines 13 〉 ≡
void printstate (int j, int jj , int i, int k)
{

register int h, hh , p, t, tt , hash ;

for (p = 0; p < s; p++) {
t = f [p];
if (nextfront [t] 6= i + 1 ∧mate [t] ∧mate [t] 6= t) break;

}
if (p < s) printf ("0"); /∗ incomplete junk mustn’t be left hanging ∗/
else if (nextfront [j] 6= i + 1 ∧mate [j] ∧mate [j] 6= j) printf ("0");
else if (nextfront [k] 6= i + 1 ∧mate [k] ∧mate [k] 6= k) printf ("0");
else if (ss ≡ 0) printf ("%x",newserial);
else {

if (head + ss − tail > memsize) {
fprintf (stderr , "Oops, I’m out of memory: memsize=%d, serial=%d!\n",memsize , serial);
exit (−69);

}
〈Move the current state into position after head , and compute hash 14 〉;
〈Find the first match, hh , for the current state after boundary 15 〉;
h = trunc(hh − boundary)/ss ;
printf ("%x",newserial + h);

}
}

This code is used in section 1.

14. 〈Move the current state into position after head , and compute hash 14 〉 ≡
for (p = 0, h = trunc(head), hash = 0; p < ss ; p++, h = trunc(h + 1)) {
t = ff [p];
mem [h] = mate [t];
hash = hash ∗ 31415926525 + mate [t];
}

This code is used in section 13.

8 THE ALGORITHM SIMPATH-DIRECTED-CYCLES §15

15. The hash table is automatically cleared whenever htid is increased, because we store htid with each
relevant table entry.

〈Find the first match, hh , for the current state after boundary 15 〉 ≡
for (hash = hash & (htsize − 1); ; hash = (hash + 1) & (htsize − 1)) {

hh = htable [hash];
if ((hh ⊕ htid) ≥ memsize) 〈 Insert new entry and goto found 16 〉;
hh = trunc(hh);
for (t = hh , h = trunc(head), tt = trunc(t + ss − 1); ; t = trunc(t + 1), h = trunc(h + 1)) {

if (mem [t] 6= mem [h]) break;
if (t ≡ tt) goto found ;

}
}
found :

This code is used in section 13.

16. 〈 Insert new entry and goto found 16 〉 ≡
{

if (++htcount > (htsize � 1)) {
fprintf (stderr , "Sorry, the hash table is full (htsize=%d, serial=%d)!\n", htsize , serial);
exit (−96);

}
hh = trunc(head);
htable [hash] = htid + hh ;
head += ss ;
goto found ;
}

This code is used in section 15.

§17 SIMPATH-DIRECTED-CYCLES INDEX 9

17. Index.

a: 1.
addr : 7.
Arc: 1, 4.
arcs : 3, 4.
arcto : 1, 3, 5, 7.
argc : 1, 2.
argv : 1, 2.
b: 1, 4.
boundary : 1, 5, 7, 13.
curfront : 1, 8, 9.
exit : 2, 13, 16.
f : 1.
ff : 1, 7, 8, 14.
fflush : 5.
firstarc : 1, 3, 6, 8.
found : 15, 16.
fprintf : 2, 5, 13, 16.
g: 1.
gb virgin arc : 4.
Graph: 1.
h: 13.
hash : 1, 7, 13, 14, 15, 16.
head : 1, 5, 6, 7, 13, 14, 15, 16.
hh : 13, 15, 16.
htable : 1, 7, 15, 16.
htcount : 1, 7, 16.
htid : 1, 7, 15, 16.
htsize : 1, 7, 15, 16.
i: 1, 13.
invarcs : 3, 4.
j: 1, 13.
jj : 1, 6, 7, 8, 10, 11, 13.
jm : 1, 10.
k: 1, 13.
km : 1, 10.
l: 1.
len : 3, 4.
ll : 1.
loghtsize : 1.
logmemsize : 1, 7.
m: 1.
main : 1.
mate : 1, 5, 9, 10, 12, 13, 14.
maxm : 1, 2.
maxn : 1, 2.
mem : 1, 5, 9, 14, 15.
memsize : 1, 5, 7, 13, 15.
n: 1.
name : 3.
newserial : 1, 7, 13.
next : 3, 4.

nextfront : 1, 8, 13.
p: 1, 13.
panic code : 2.
printf : 3, 5, 7, 10, 12, 13.
printstate : 10, 11, 13.
restore graph : 2.
s: 1.
serial : 1, 5, 6, 7, 13, 16.
sign : 1, 7, 10.
ss : 1, 5, 6, 7, 8, 13, 14, 15, 16.
stderr : 2, 5, 13, 16.
stdout : 7.
t: 1, 13.
tail : 1, 5, 6, 7, 9, 13.
tip : 3, 4.
trunc : 7, 9, 13, 14, 15, 16.
tt : 13, 15.
u: 1.
v: 1.
vert : 1, 3, 4.
Vertex: 1.
vertices : 3, 4.
wrap : 1, 7.

10 NAMES OF THE SECTIONS SIMPATH-DIRECTED-CYCLES

〈Compute jj and Fi+1 8 〉 Used in section 7.

〈Do the algorithm 5 〉 Used in section 1.

〈Find the first match, hh , for the current state after boundary 15 〉 Used in section 13.

〈 Initialize the queue 6 〉 Used in section 5.

〈 Input the graph 2 〉 Used in section 1.

〈 Insert new entry and goto found 16 〉 Used in section 15.

〈Make the inverse-arc lists 4 〉 Used in section 3.

〈Move the current state into position after head , and compute hash 14 〉 Used in section 13.

〈Print 1 or 0, depending on whether this arc wins or loses 12 〉 Used in section 10.

〈Print the successor if arc i is chosen 10 〉 Used in section 7.

〈Print the successor if arc i is not chosen 11 〉 Used in section 7.

〈Process arc i 7 〉 Used in section 5.

〈Reformat the arcs 3 〉 Used in section 1.

〈Subroutines 13 〉 Used in section 1.

〈Unpack a state, and move tail up 9 〉 Used in section 7.

SIMPATH-DIRECTED-CYCLES

Section Page
Introduction . 1 1
The algorithm . 5 4
Index . 17 9

	Introduction
	The algorithm
	Index
	Names of the sections
	Compute jj and F_i+1
	Do the algorithm
	Find the first match, hh, for the current state after boundary
	Initialize the queue
	Input the graph
	Insert new entry and goto found
	Make the inverse-arc lists
	Move the current state into position after head, and compute hash
	Print 1 or 0, depending on whether this arc wins or loses
	Print the successor if arc i is chosen
	Print the successor if arc i is not chosen
	Process arc i
	Reformat the arcs
	Subroutines
	Unpack a state, and move tail up

