
§1 SHAM SYMMETRIC HAMILTONIAN CYCLES 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Symmetric Hamiltonian cycles. This program finds all Hamiltonian cycles of an undirected graph
in which the mapping v 7→ N − 1− v is an automorphism, such that the same automorphism also applies to
the cycle.

We use a utility field to record the vertex degrees.

#define deg u.I
#define mm 8 /∗ should be even ∗/
#define nn 9

#include "gb_graph.h" /∗ the GraphBase data structures ∗/
#include "gb_basic.h" /∗ standard graphs ∗/
main ()
{

Graph ∗g = board (mm ,nn , 0, 0, 5, 0, 0); /∗ knight moves on rectangular chessboard ∗/
Vertex ∗x, ∗z, ∗tmax ;
register Vertex ∗t, ∗u, ∗v;
register Arc ∗a, ∗aa , ∗yy ;
register int d;
Arc ∗b, ∗bb ;
int count = 0, dcount = 0;
int dmin ;

〈Reduce g to half size 2 〉;
〈Prepare g for backtracking, and find a vertex x of minimum degree 4 〉;
for (v = g~vertices ; v < g~vertices + g~n; v++) printf (" %d", v~deg);
printf ("\n"); /∗ TEMPORARY CHECK ∗/
if (x~deg < 2) {

printf ("The minimum degree is %d (vertex %s)!\n", x~deg , x~name);
return −1;

}
for (b = x~arcs ; b~next ; b = b~next)

for (bb = b~next ; bb ; bb = bb~next) {
a = b;
z = bb~ tip ;
〈Find all simple paths of length g~n− 2 from a~ tip to z, avoiding x 5 〉;

}
printf ("Altogether %d solutions and %d wannabees.\n", count , dcount);
for (v = g~vertices ; v < g~vertices + g~n; v++) printf (" %d", v~deg);
printf ("\n"); /∗ TEMPORARY CHECK, SHOULD AGREE WITH FORMER VALUES ∗/
}

https://cs.stanford.edu/~knuth/programs.html

2 SYMMETRIC HAMILTONIAN CYCLES SHAM §2

2. We identify each vertex with its symmetric mate, and set the length of an arc to 1 if the arc crosses to
the mate instead of staying in the same class.

Multiple arcs and self-loops can be introduced in this step.

#define mate (v)
(Vertex ∗)(((unsigned long) g~vertices)+((unsigned long)(g~vertices +g~n−1))− ((unsigned

long) v))

〈Reduce g to half size 2 〉 ≡
for (v = g~vertices ; mate (v) > v; v++)

for (a = v~arcs ; a; a = a~next) {
u = mate (a~ tip);
if (u > a~ tip) a~ len = 0;
else {
a~ len = 1;
a~ tip = u;

}
}

g~n /= 2;

This code is used in section 1.

3. Self-loops caused a subtle bug (my test for v~deg ≡ 1 below failed), and they are of no interest in
Hamiltonian circuits. So I’m now getting rid of them.

〈Remove self-loops 3 〉 ≡
for (v = g~vertices ; v < g~vertices + g~n; v++)

for (a = v~arcs , aa = Λ; a; a = a~next)
if (a~ tip ≡ v) {

if (aa) aa~next = a~next ;
else v~arcs = a~next ;

}
else aa = a;

This code is used in section 4.

4. Vertices that have already appeared in the path are “taken,” and their taken field is nonzero. Initially
we make all those fields zero.

#define taken v.I

〈Prepare g for backtracking, and find a vertex x of minimum degree 4 〉 ≡
〈Remove self-loops 3 〉;
dmin = g~n;
for (v = g~vertices ; v < g~vertices + g~n; v++) {
v~ taken = 0;
d = 0;
for (a = v~arcs ; a; a = a~next) d++;
v~deg = d;
if (d < dmin) dmin = d, x = v;
}

This code is used in section 1.

§5 SHAM THE DATA STRUCTURES 3

5. The data structures. I use one simple rule to cut off unproductive branches of the search tree: If
one of the vertices we could move to next is adjacent to only one other unused vertex, we must move to it
now.

The moves will be recorded in the vertex array of g. More precisely, the kth arc of the path will be t~ark
when t is the kth vertex of the graph.

This program is a typical backtrack program. I am more comfortable doing it with labels and goto
statements than with while loops, but some day I may learn my lesson.

#define ark x.A

〈Find all simple paths of length g~n− 2 from a~ tip to z, avoiding x 5 〉 ≡
v = a~ tip ;
t = g~vertices ; tmax = t + g~n− 1;
x~ taken = 1;
a~ len += 4; /∗ the first move is “forced” ∗/

advance : 〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if
no further moves are possible 6 〉;

try : 〈Look at edge a and its successors, advancing if it is a valid move 8 〉;
restore : 〈Downdate the data structures to the state they were in when level t was entered 7 〉;
backtrack : 〈Decrease t, if possible, and try the next possibility; or goto done 9 〉;

done :

This code is used in section 1.

6. 〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no
further moves are possible 6 〉 ≡

t~ark = a;
t++;
v = a~ tip ;
v~ taken = 1;
if (v ≡ z) {

if (t ≡ tmax ∧ v~deg ≡ 1) 〈Record a solution 10 〉;
goto backtrack ;
}
yy = Λ; /∗ yy is a forced arc, if any exist ∗/
for (aa = v~arcs ; aa ; aa = aa~next) {
u = aa~ tip ;
d = u~deg − 1;
if (d ≡ 1 ∧ u~ taken ≡ 0) {

if (yy) goto restore ; /∗ restoration will stop at aa ∗/
yy = aa ;

}
u~deg = d;
}
if (yy) {
a = yy ;
a~ len += 4;
goto advance ;
}
a = v~arcs ;

This code is used in section 5.

4 THE DATA STRUCTURES SHAM §7

7. 〈Downdate the data structures to the state they were in when level t was entered 7 〉 ≡
for (a = (t− 1)~ark~ tip~arcs ; a 6= aa ; a = a~next) a~ tip~deg ++;

This code is used in section 5.

8. 〈Look at edge a and its successors, advancing if it is a valid move 8 〉 ≡
while (a) {

if (a~ tip~ taken ≡ 0) {
a~ len += 2; /∗ oops, this is unnecessary residue of SHAMR ∗/
goto advance ;

}
a = a~next ;
}

restore all : aa = Λ; /∗ all moves tried; we fall through to restore ∗/
This code is used in section 5.

9. Here we come to a subtle point. When a forced move is a duplicated arc, we want to continue with the
duplicate arc; we don’t want to backtrack!

But that isn’t the most subtle part. It turns out that we want to consider the duplicate arc previous to
the one that worked. (That one should really have been considered forced; if on the other hand the first of
two duplicate arcs is selected, the second one will decrease the degree to zero and cannot lead to a complete
tour, so we don’t want to reconsider it.) Get it? The present logic works only when there are at most two
duplicate arcs.

〈Decrease t, if possible, and try the next possibility; or goto done 9 〉 ≡
t−−;
a = t~ark ;
a~ tip~ taken = 0;
d = a~ len ;
a~ len &= 1; if (d < 4) { a = a~next ; goto
try ;
}
if (t ≡ g~vertices) goto done ;
for (aa = (t− 1)~ark~ tip~arcs ; aa 6= a; aa = aa~next)

if (aa~ tip ≡ a~ tip) {
aa~ len += 4;
a = aa ;
goto advance ;

}
goto restore all ; /∗ the move was forced ∗/

This code is used in section 5.

§10 SHAM THE DATA STRUCTURES 5

10. 〈Record a solution 10 〉 ≡
{

int s = 0;

for (u = g~vertices ; u < tmax ; u++) s ⊕= u~ark~ len & 1;
if (s) {

count ++;
if (count % 100000 ≡ 0) { /∗ use 100000 for the 8× 8 ∗/

printf ("%d: %s", count , x~name);
for (u = g~vertices ; u < tmax ; u++) printf ("%s%s", u~ark~ len & 1 ? "*" : " ", u~ark~ tip~name);
printf ("\n");

}
}
else {
dcount ++;
if (dcount % 100000 ≡ 0) { /∗ use 1 for small cases ∗/

printf (">%d: %s", dcount , x~name);
for (u = g~vertices ; u < tmax ; u++) printf ("%s%s", u~ark~ len & 1 ? "*" : " ", u~ark~ tip~name);
printf ("\n");

}
}
}

This code is used in section 6.

6 INDEX SHAM §11

11. Index.

a: 1.
aa : 1, 3, 6, 7, 8, 9.
advance : 5, 6, 8, 9.
Arc: 1.
arcs : 1, 2, 3, 4, 6, 7, 9.
ark : 5, 6, 7, 9, 10.
b: 1.
backtrack : 5, 6.
bb : 1.
board : 1.
count : 1, 10.
d: 1.
dcount : 1, 10.
deg : 1, 3, 4, 6, 7.
dmin : 1, 4.
done : 5, 9.
g: 1.
Graph: 1.
len : 2, 5, 6, 8, 9, 10.
main : 1.
mate : 2.
mm : 1.
name : 1, 10.
next : 1, 2, 3, 4, 6, 7, 8, 9.
nn : 1.
printf : 1, 10.
restore : 5, 6, 8.
restore all : 8, 9.
s: 10.
t: 1.
taken : 4, 5, 6, 8, 9.
tip : 1, 2, 3, 5, 6, 7, 8, 9, 10.
tmax : 1, 5, 6, 10.
u: 1.
v: 1.
Vertex: 1, 2.
vertices : 1, 2, 3, 4, 5, 9, 10.
x: 1.
yy : 1, 6.
z: 1.

SHAM NAMES OF THE SECTIONS 7

〈Decrease t, if possible, and try the next possibility; or goto done 9 〉 Used in section 5.

〈Downdate the data structures to the state they were in when level t was entered 7 〉 Used in section 5.

〈Find all simple paths of length g~n− 2 from a~ tip to z, avoiding x 5 〉 Used in section 1.

〈 Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no further
moves are possible 6 〉 Used in section 5.

〈Look at edge a and its successors, advancing if it is a valid move 8 〉 Used in section 5.

〈Prepare g for backtracking, and find a vertex x of minimum degree 4 〉 Used in section 1.

〈Record a solution 10 〉 Used in section 6.

〈Reduce g to half size 2 〉 Used in section 1.

〈Remove self-loops 3 〉 Used in section 4.

SHAM

Section Page
Symmetric Hamiltonian cycles . 1 1
The data structures . 5 3
Index . 11 6

	Symmetric Hamiltonian cycles
	The data structures
	Index
	Names of the sections
	Decrease t, if possible, and try the next possibility; or goto done
	Downdate the data structures to the state they were in when level t was entered
	Find all simple paths of length g->n-2 from a->tip to z, avoiding x
	Increase t and update the data structures to show that vertex v is now taken; goto backtrack if no further moves are possible
	Look at edge a and its successors, advancing if it is a valid move
	Prepare g for backtracking, and find a vertex x of minimum degree
	Record a solution
	Reduce g to half size
	Remove self-loops

