81 SETSET INTRODUCTION 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Introduction. This program finds all nonisomorphic sets of SET cards that contain no SETs.

In case you don’t know what that means, a SET card is a vector (z1, z2, x3,24) where each z; is 1, 2, or 3.
Thus there are 81 possible SET cards. A SET is a set of three SET cards that sums to (0,0,0,0) modulo 3.
Equivalently, the numbers in each coordinate position of the three vectors in a SET are either all the same
or all different. (It’s kind of a 4-dimensional tic-tac-toe with wraparound.)

There are 4! x 3!* = 31104 isomorphisms, since we can permute the coordinates in 4! ways and we can
permute the individual values of each coordinate position in 3! ways.

A web page of David Van Brink states that you can’t have more than 20 SET cards without having a SET.
He says that he proved this in 1997 with a computer program that took about one week to run on a 90MHz
Pentium machine. I'm hoping to get the result faster by using ideas of isomorph rejection, meanwhile also
discovering all of the k-element SET-less solutions for k& < 20.

The theorem about at most 20 SET-free cards was actually proved in much stronger form by G. Pellegrino,
Matematiche 25 (1971), 149-157, without using computers. Pellegrino showed that any set of 21 points in
the projective space of 81 4+ 27 + 9 + 3 4+ 1 elements, represented by nonzero 5-tuples in which x and —x
are considered equivalent, has three collinear points; this would correspond to sets of three distinct points
in which the third is the sum or difference of the first two.

[SET is a registered trademark of SET Enterprises, Inc.]

#define maps (66 %6 x6) /* this many ways to permute individual coordinates =/
#define isos (24 * maps) /* this many automorphisms altogether x/

#include <stdio.h>
('Type definitions 3)
(Global variables 4)
(Subroutines 15)

main ()

{

Local variables 18)

Initialize 6);

Enumerate and print all solutions 16);
Print the totals 36);

o~~~ o~

}

2. Our basic approach is to define a linear ordering on solutions, and to look only for solutions that are
smallest in their isomorphism class. In other words, we will count the sets S such that S < «S for all
automorphisms «. We’'ll also count the number ¢ of cases where S = «a.S; then the number of distinct
solutions isomorphic to S is 31104/¢, so we will essentially have also enumerated the distinct solutions.

The ordering we use is standard: Vectors are ordered lexicographically, so that (1,1,1,1) is the smallest
SET card and (3,3,3,3) is the largest. Also, when S and T both are sets of k SET cards, we define S < T
by first sorting the vectors into order so that s; < --- < s; and ¢; < --- < g, then we compare (s1,...,sg)
lexicographically to (t1,...,tx). (Equivalently, we compare the smallest elements of S and T if they are
equal, we compare the second-smallest elements, and so on, until we’ve either found inequality or established
that S =1T'.)

For example, the set {(1,2,2,3), (2,2,3,3)} is isomorphic to the set {(1,1,1,1), (1,1,2,2)}, because we can
interchange coordinates 1 and 4, then map 3 — 1 in coordinate 1, 2 — 1 in coordinate 2, and (2, 3) — (1,2)
in coordinate 3. The set {(1,1,1,1), (1,1,2,2)} has 32 automorphisms, hence 31104/32 = 972 sets are
isomorphic to it.

We will generate the elements of a k-set in order. If we have s; < .-+ < s, and {s1,...,sx} <
{as1,...,as} for all ¢, it is not hard to prove that {s1,...,s;} < {asi,...,as;} foralla and 1 < j < k.
(The reason is that S < T and ¢ > max T implies S U {s} < SU{oo} < T'U{t}, for all s.) Therefore every
canonical k-set is obtained by extending a unique canonical (k — 1)-set.

https://cs.stanford.edu/~knuth/programs.html

2 DATA STRUCTURES SETSET 83

3. Data structures. It’s convenient to represent SET card vectors in a compact code, as an integer
between 0 and 80.
(Type definitions 3) =

typedef char SETcard; /% a SET card (z1+ 1,22+ 1,23+ 1,24+ 1) represented as ((x1222314)3 */
See also section 9.

This code is used in section 1.

4. When we output a SET card, however, we prefer a hexadecimal code.

(Global variables 4) =
int he:L’form[Sl] e {#1111, #1112, #1113,#1121,#1122,#1123,#1131,#1132, #1133,

#1211,#1212, #1213, #1221, #1222, #1223, #1231, #1232, #1233,
#1311,#1312,#1313,#1321, #1322, #1323, #1331, #1332, #1333,
#2111,#2112,%2113,#2121, #2122, #2123, #2131, #2132, #2133,
#2211,#2212,#2213,#2221, #2222, #2223, #2231, #2232, #2233,
#2311,#2312,#2313,#2321, #2322, #2323, #2331, #2332, #2333,
#3111,#3112,#3113,#3121, #3122, #3123, #3131, #3132, #3133,
#3211,#3212,#3213, #3221, #3222, #3223, #3231, #3232, #3233,
#3311,#3312,%3313,#3321, #3322, #3323, #3331, #3332, #3333};

See also sections 5, 8, 10, 12, 13, 17, and 35.

This code is used in section 1.

5. We will frequently need to find the third card of a SET, given any two distinct cards = and y, so we
store the answers in a precomputed table.

(Global variables 4) +=
char 2(3)3] = {{0,2,1), {2, 1,0}, {1,0.2}}; /* 2+ y+2=0 (mod 3) +/
char third[81][81];

6. Fdefine pack(a,b,c,d) ((((a) *3+ (b)) *3+ (c)) *3+ (d))

(Initialize 6) =

int a,b,c,d,e, f,g,h;
for (a=0; a < 3; a++)
for (b=10; b < 3; b++)
for (c=0; ¢ < 3; c++)
for (d=0; d < 3; d++)
for (e =0; e < 3; e++)
for (f=0; f <3 f++)
for (9 =0; g <3; g++)
for (h=0; h < 3; h++)
} third [pack (a, b, c, d)][pack (e, f, g, h)] = pack(z[a][e], z[b][f], z[c]lg], z[d][h]);

See also sections 7, 11, and 14.

This code is used in section 1.

§7 SETSET DATA STRUCTURES 3

7. An even bigger table comes next: We precompute the permutation of SET cards for each of the 31104
potential automorphisms.
And, what the heck, we compute the inverse permutation too; it’s only another 2.5 megabytes.

#define pmap(d) trit[perm[p][d]]
#define ppack(p,a,b,c,d) (((((p) x6+ (a)) *6+ (b)) x6 + (¢)) * 6 + (d))

(Initialize 6) +=

int a,b,c,d,e, f,g,h,p,s,t;
for (p =0; p < 24; p++)
for (a =0; a < 6; a++)
for (b=0; b < 6; b++)
for (c=0; ¢ < 6; c++)
for (d=0; d < 6; d++)
for (e=0; e <3; e++)
for (f=0; f<3; f++)
for (9=0; g <3; g++)
for (h=0; h < 3; h++)
trit[0] = perm|alle], trit[1] = perm[b][f],

trit[2] = perm|c][g], trit[3] = perm[d][h],
alf = ppack(p,a,b,c,d),
s = pack(e, f,g,h),t = pack(pmap(0), pmap (1), pmap(2), pmap(3)),
aut[alf][s] = t, tualalf][t] = s;

8. (Global variables 4) +=
char trit[4]; /* four ternary digits */
char perm|[24][4] = {{0,1,2,3},{0,2,1,3},{1,0,2,3},{1,2,0,3}, {2,0,1,3},{2,1,0,3)
{07 1’ 37 2}7 {07 37 1’ 2}’ {1’ 0’ 37 2}7 {17 3, 07 2}7 {37 07 1’ 2}’ {3’ 1’ 07 2}7
{0,2,3,1},{0,3,2,1},{2,0,3,1},{2,3,0, 1}, {3,0,2, 1}, {3,2,0, 1},
{1,2,3,0},{1,3,2,0},{2,1,3,0},{2,3,1,0}, {3,1,2,0}, {3,2,1,0}}
char aut[31104][81], tua[31104][81]; /* basic permutation tables */

4 DATA STRUCTURES SETSET §9

9. Cards of a set are linked together cyclically in order of their values, with an “infinite” card at the head.
We also maintain an array of 31104 elements, one for each automorphism of a given element s; of the
canonical set {s1,...,s;} that we're working with. Such an array is called a “node.” In essence, the nodes
for (s1,...,s;) represent an array of 31104 sets {as1,...,as;}, each isomorphic to {s1,...,s;}.
Each element asy at level k also has a threshold level tlevel, which can be understood as follows: Suppose
S = {s1,...,8;} is the current canonical I-set of interest, so that S = {asy,...,as;} > S for all a. If
aS > S, there is a smallest index 7 such that ¢; > s;, where ¢; is the ith smallest element of a.S; in that case
we say that the threshold value of asy is s;, and the threshold level is i. A tentative value of s;11 can be
immediately rejected if as;y1 is less than s;, because such a set {s1,...,s;4+1} would not be canonical. On
the other hand, if as;4; is greater than s;, no action needs to be taken since the threshold stays the same in
this case.
The threshold level is considered to be [+ 1 if S = S. In that case, we say by convention that the
threshold value is unknown.
{ Type definitions 3) +=
typedef struct elt_struct {
SETcard val; /* value of this element */
char tlevel; /x the level of the threshold value */

char level; /* the level when the threshold was set */
struct elt_struct xlink; /* next larger element of a set */
struct elt_struct xnext; /* next element waiting for the same threshold =/

struct elt_struct xfizer; / the link to change when the threshold is hit */
} element;

typedef struct {

SETcard v; /% s */

element image[isos]; /* as; for each automorphism « */
} node;

10. The node for s; is called current[l], and current[0] contains the header nodes of circular lists.
#define head current|0]

#define curval(i) current[i].v /% s; *x/
(Global variables 4) +=
node current[22]; /* the nodes for s1, sa, etc. */

11. #define infty 81 /x larger than any SETcard value */
(Initialize 6) +=
for (j =0; j <isos; j++) head.image[j].val = infty, head.image[j].tlevel =1,
head.image[j].link = head.image[j].fixer = &head.image[j];

12. Each pair (s;,s;) for 1 <4 < j <1 defines a third SET card ¢ that must not be appended to the set

{s1,...,81}. The auxiliary table tab[t] tells how many such pairs exist for a given ¢. This table also counts

cards that are forbidden because they would produce values a1 less than the threshold for some a.
Another auxiliary table, called here, records the cards that are present in the current set.

(Global variables 4) +=
unsigned int tab[82]; /* nonzero for forbidden cards */
char here[81]; /* nonzero for cards in {s1,...,s} */

813 SETSET DATA STRUCTURES 5

13. We keep lists of all elements that need to be updated when a particular value s is appended to the
current set. Such a list begins at top[s]. The list beginning at top[infty] is the one for unknown thresholds,
namely for all elements such that « is an automorphism of {s1,...,s;}.

When an element is removed from a list as part of the updating at level [, it is placed on list back[l], so
that everything can be downdated when we backtrack. A separate list aback[l] is for elements removed from
top[infty].

(Global variables 4) +=

element xtop[82]; /* elements waiting for a particular card */
element xoldtop[22][81]; /* saved values of top */
element xback[22], xaback[22]; /* lists for undoing */

14. Automorphism 0 is the identity, and we need not bother updating its entries.
(Initialize 6) +=
head.v = —1;
for (k=1; k < isos — 1; k++) head.imagek].next = &head.image [k + 1];
toplinfty] = &head.image[1];

15. Here’s a subroutine that might facilitate debugging: It simply counts the elements of a list.

(Subroutines 15) =
int count(element x*p)
{
register int c;
register element xq;
for (g =p,c=0; ¢; ¢ = qnest) c++;
return c;

}

This code is used in section 1.

6 BACKTRACKING SETSET §16

16. Backtracking. Now we’re ready to construct the tree of all canonical SET-free sets {s1,...,5;}.

(Enumerate and print all solutions 16) =
1=0; j=0;
moveup: while (tab[j]) j++;
if (j = infty) goto big_-backup;
I++, curval (1) = j, here[j] = 1;
for (k=0; k < infty; k++) oldtop[l][k] = top[k];
auts = 1, newauts = A;
(Update the data structures for all elements whose threshold is j, or backup 21);
(Update the data structures for all elements whose threshold is unknown, or backup 29);
(Record the current canonical I-set as a solution 34);
(Update tab 19);
Jj = curval(l) + 1; goto moveup;
big-backup: (Downdate tab 20);
J = curval (l);
(Downdate the data structures for all elements whose threshold was unknown 30);
(Downdate the data structures for all elements whose threshold was j 28);
for (k=0; k < infty; k++) top[k] = oldtop[l][k];
herej] = 0;
j-H—a l__;
if (1) goto moveup;

This code is used in section 1.

17. (Global variables 4) +=
int auts; /* automorphisms of the current [-set */
element xnewauts; /* the list of nontrivial automorphisms at level [%/

18. (Local variables 18) =

int [; /* the current level x/

register int j, k; /* miscellaneous indices; usually j = s; */
See also section 22.

This code is used in section 1.

19. (Update tab 19) =
for (j=1; j <l; j++) tab[third[curval (§)][curval (1)]]++;

This code is used in section 16.

20. (Downdate tab 20) =
for (j=1; j <l; j++) tab[third[curval (§)][curval (1)]]—;

This code is used in section 16.

§21 SETSET BACKTRACKING 7

21. Now we come to the main point of this program, the part where elements as are incorporated into the
data structures because their threshold value has occurred.
(Update the data structures for all elements whose threshold is j, or backup 21) =
for (pp = A, p = top[j]; p; v = p-next, p-next = pp,pp =p,p=r1) {
Il = p~level,
alf = p — ¤t|[ll].image[0];
(Make quick check for easy cases that become dormant 23);
(Bring current[k].image[alf] up to date for Il < k <1 24);
(Compute the new threshold for «, or backup 25);

top[j] = A, back[l] = pp;

This code is used in section 16.

22. (Local variables 18) +=
element *p, xpp; /* element of list and its predecessor */
int [[; /* a previous or future level number x/
int alf; /x the current automorphism of interest x/
register element xq, *r; /* registers for list manipulations */
int j5; /* another convenient integer variable */

23. The list of elements waiting for j to occur will, I believe, consist mostly of the 384 elements inserted
on level 1, namely those a for which aj = 0. Once we have set s; = j, the next question is almost always,
“What is the value of j' for which «j’ = 1?7,” because we usually have so = 0 and s; = 0. More generally, if
we are waiting for j because aj = s;, we will next be interested in the value j' for which «j’ = s;,1. If that
value of j is less than j (which equals s;) but not already present, or if ¢tab[j’] is nonzero, we know that j’
will never be added to the current set, so we need not consider « any further.

We can save a significant amount of work in such cases, especially when [is rather large, so the following
code is useful even though not strictly necessary.
(Make quick check for easy cases that become dormant 23) =

i = tua[alf|[curval (p-tlevel 4+ 1)];

if (tab[jj] v (ij < j A —~herelif])) {

for (jj = curval(p-tlevel) + 1; jj < curval(p-tlevel + 1); jj++) {

k = tualalf][];

if (k> j) tablk]++;

else if (here[k]) (Begin backing up in Case A 33); /% (s1,...,8;) isn’t canonical */
continue; /* no need to update since jj won’t occur */

}

This code is used in section 21.

24. #define succ(p) (element x)((char x)p + sizeof (node))

(Bring current[k].image[alf] up to date for Il < k <1 24) =
for (ll++,q = succ(p); q < ¤t[l].image[0]; ll++,q = succ(q)) {
g~val = aut|alf |[curval (11)];
for (r = p~fizer; r-link~val < g~val; r = r-link) ;
qlink = r-link;
r-link = q; /* we have inserted g~val into the sorted list for o */
}
g~val = curval (ptlevel), g-link = p~fixer-link, p-fizer-link = g;

This code is used in section 21.

8 BACKTRACKING SETSET §25

25. (Compute the new threshold for «, or backup 25) =
for (r = q,ll = p-tlevel + 1; r-link~val = curval (ll); r = r-link, ll++) ;
if (r-link-val < curval (1)) /* oops, (s1,...,8) isn’t canonical */
(Begin backing up in Case B 32);
qtlevel = I, g=fixzer = r;
(' Tabulate newly forbidden values 26);
if (Il > 1) auts++, g=next = newauts, newauts = gq;
else jj = tualalf][curval (11)], g-level = 1, g=next = top[jj], top[jj] = ¢;

This code is used in section 21.

26. If p-tlevel = i, we have already used tab to forbid all s values such that as < s; and as ¢ {s1,...,;}.
At this point we essentially want to increase i to the new threshold level [[. If Il > [, however, we forbid
values only up to s;, because « is an automorphism of the full set {sy,...,s;} in this case.

(Tabulate newly forbidden values 26) =
for (jj = (Il > 175 : curval(ll)) — 1; jj > curval (p-tlevel); jj—) {
k = tualalf[jj];
if (k> j) tablk]++;

This code is used in section 25.

27. Later we’ll want to undo that last step.

(Untabulate values that were considered newly forbidden 27) =
for (j =l >177: curval(ll)) — 1; jj > curval (p-tlevel); jj—) {
k = tualalf[jj];
if (k> j) tablk]—;

This code is used in section 28.

28. Indeed, in a backtrack program, everything we do that affects subsequent decisions must eventually
be undone.
The main thing we must undo at this point is to remove the [— Il elements that were sorted in to the list
{81, ey Sl}.
(Downdate the data structures for all elements whose threshold was j 28) =
pp = A, p = back[l];
backup_a: while (p) {
alf = p — ¤t[p-level].image[0];
if (p-fizer-link < ¤t[l].image[0]) { /* the “quick check” worked x/
for (jj = curval (p-tlevel) + 1; jj < curval (p-tlevel +1); jj++) {
k = tualalf][5j];
if (k> j) tablk]—;

} else {
Il = currentl].image|alf].tlevel;
(Untabulate values that were considered newly forbidden 27);
backup_b: Il = p-level;
for (r = p-fizer,j55 =1 —1U; jj; r = r-link)
if (r-link > p) jj —,r-link = r-link-link;
}

r = p-next, p-nert = pp,pp =p,p =17;
}

This code is used in section 16.

829 SETSET BACKTRACKING 9

29. (Update the data structures for all elements whose threshold is unknown, or backup 29) =
for (pp = A,p = top[inftyl; p; r = prnest,p-next = pp,pp =p,p=r) {
alf = p — ¤t[l — 1].image[0];

Jj = aut[alf][j];
if (jj <j) (Begin backing up in Case C 31);
q = succ(p);

qlink = p-fizer-link , p~fixer-link = q;
if (jj >) {
qval = 37, glevel =1, g-tlevel = I, g~fixer = p-fizer;
Jj = tualalf][j], g-next = top[jj], top[jj] = ¢;
} else {
q~val = jj, g-tlevel =1+ 1, g~fixer = g;
auts ++, g-next = newauts, newauts = q;
}
for (jj = curval(l—1)4+1; 35 < 7; j++) {
k = tualalf][j7];
if (k> j) tablk]++;

top [infty] = newauts, aback[l] = pp;

This code is used in section 16.

30. (Downdate the data structures for all elements whose threshold was unknown 30) =
pp = A, p = aback]l];
backup_c: while (p) {
alf = p — ¤t[l — 1].image[0];
q = succ(p);
pfizer-link = g¢-link;
for (jj = curval(l —1) +1; jj <j; jj++) {
k = tualalf][jj];
if (k> j) tab[k]—;

r = prnext,p-nest = pp,pp =p,p =71;
}
top[infty] = pp;

This code is used in section 16.

31. It’s slightly tricky to begin backing up when we’re in the middle of updating a data structure.
(Begin backing up in Case C 31) =
{
r=p,p=Dpp,pp =713
goto backup_c;

}

This code is used in section 29.

10 BACKTRACKING SETSET §32

32. This is one of those fairly rare occasions when it’s OK to jump into the middle of a loop.

(Begin backing up in Case B 32) =
{
r = p~next,p-next = pp,pp =T;
goto backup_b;

}

This code is used in section 25.

33. (Begin backing up in Case A 33) =
{

for (jj—; jj > curval(p-tlevel); jj—) {
k = tualalf]i7];
if (k> j) tablk]—;

}

r=p,p=pp,pp =7T]

goto backup_a;

}

This code is used in section 23.

834 SETSET THE TOTALS 11

34. The totals. While we're at it, we might as well determine exactly how many SET-less k sets are
possible. Then we’ll know the precise odds of having no SET in a random deal.

(Record the current canonical [-set as a solution 34) =
if (verbose V1 <38) {
for (j =1; j <l; j++) printf(".");
printf ("%04x,(%d) \n", hexform[curval (1)], auts);
} else if (I >20) {
for (j=1; j <I; j++) printf ("u%x", hexform[curval(5)]);
printf ("u(%hd)\n", auts);

non_iso_count [++;
total_count[l] += 31104.0/(double) auts;

This code is used in section 16.

35. Integers of 32 bits are insufficient to hold the numbers we’re counting, but double precision floating
point turns out to be good enough for exact values in this problem.

(Global variables 4) +=

int non_iso_count[30]; /* number of canonical solutions x/
double total_count[30]; /* total number of solutions */
int verbose = 0; /x set nonzero for debugging */

36. (Print the totals 36) =
for (j=1; j <21; j++)
printf ("%20.20g SET1less id-sets (%dcases) \n", total_count[j], j, non_iso_count[j]);

This code is used in section 1.

12 INDEX
37. Index.
a: 6, 7.

aback: 13, 29, 30.

alf: 7,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33.

aut: 7, 8, 24, 29.

auts: 16, 17, 25, 29, 34.

b: 6, 7.

back: 13, 21, 28.

backup_a: 28, 33.

backup_b: 28, 32.

backup_c: 30, 31.

big_backup: 16.

c: 6, 7, 15.

count: 15.

current: 10, 21, 24, 28, 29, 30.
curval: 10, 16, 19, 20, 23, 24, 25, 26, 27, 28,

29, 30, 33, 34.
d: 6, 7.
e: 6, 7.

element: 9, 13, 15, 17, 22, 24.
elt_struct: 9.

f: @7 Z

fizer: 9, 11, 24, 25, 28, 29, 30.

g 6, T.

h: 6, 7.

head: 10, 11, 14.

here: 12, 16, 23.

hezform: 4, 34.

image: 9, 11, 14, 21, 24, 28, 29, 30.
infty: 11, 13, 14, 16, 29, 30.

isos: 1, 9, 11, 14.

g 18.

Jis 22, 23, 25, 26, 27, 28, 29, 30, 33.
k: 18.

l: 18.

level: 9, 21, 25, 28, 29.

link: 9, 11, 24, 25, 28, 29, 30.

l: 21, 22, 24, 25, 26, 27, 28.

main: 1.

maps: 1.

moveup: 16.

newauts: 16, 17, 25, 29.

next: 9, 14, 15, 21, 25, 28, 29, 30, 32.
node: 9, 10, 24.

non-iso_count: 34, 35, 36.

oldtop: 13, 16.

p: 1, 15, 22.

pack: 6, 7.

perm: 7, 8.

pmap: 7.
pp: 21, 22, 28, 29, 30, 31, 32, 33.
ppack: 7.

SETSET §37

printf: 34, 36.

q: 15, 22.

r. 22,

s 1.

SETcard: 3, 9, 11.

succ: 24, 29, 30.

t. 7.

tab: 12, 16, 19, 20, 23, 26, 27, 28, 29, 30, 33.
third: 5, 6, 19, 20.

tlevel: 9, 11, 23, 24, 25, 26, 27, 28, 29, 33.
top: 13, 14, 16, 21, 25, 29, 30.
total_count: 34, 35, 36.

trit: 7, 8.
tua: 7, 8, 23, 25, 26, 27, 28, 29, 30, 33.
v: 9

val: 9, 11, 24, 25, 29.
verbose: 34, 35.
z: b

SETSET NAMES OF THE SECTIONS

Begin backing up in Case A 33) Used in section 23.

Begin backing up in Case B 32) Used in section 25.

Begin backing up in Case C 31) Used in section 29.

Bring current[k].image[alf] up to date for Il < k <1 24) Used in section 21.

Compute the new threshold for «, or backup 25) Used in section 21.

Downdate the data structures for all elements whose threshold was j 28) Used in section 16.
Downdate the data structures for all elements whose threshold was unknown 30) Used in section 16.
Downdate tab 20) Used in section 16.

Enumerate and print all solutions 16) Used in section 1.

Global variables 4, 5, 8, 10, 12, 13, 17, 35) Used in section 1.

Initialize 6, 7, 11, 14> Used in section 1.

Make quick check for easy cases that become dormant 23) Used in section 21.

Print the totals 36) Used in section 1.

Record the current canonical I-set as a solution 34) Used in section 16.

Subroutines 15) Used in section 1.

Tabulate newly forbidden values 26) Used in section 25.

Type definitions 3,9) Used in section 1.

Untabulate values that were considered newly forbidden 27) Used in section 28.

Update the data structures for all elements whose threshold is j, or backup 21) Used in section 16.

13

Update the data structures for all elements whose threshold is unknown, or backup 29) Used in section 16.

(
(
(
(
(
(
(
(
(
(
(
(Local variables 18, 22> Used in section 1.
(
(
(
(
(
(
(
(
(
(

Update tab 19) Used in section 16.

SETSET

Section
Introduction 1
Data sStructures e 3
Backtracking 16
The totals . ..o e 34

IndeX oo 37

Page

11
12

	Introduction
	Data structures
	Backtracking
	The totals
	Index
	Names of the sections
	Begin backing up in Case A
	Begin backing up in Case B
	Begin backing up in Case C
	Bring current[k].image[alf] up to date for ll<k<=l
	Compute the new threshold for , or backup
	Downdate the data structures for all elements whose threshold was j
	Downdate the data structures for all elements whose threshold was unknown
	Downdate tab
	Enumerate and print all solutions
	Global variables
	Initialize
	Local variables
	Make quick check for easy cases that become dormant
	Print the totals
	Record the current canonical l-set as a solution
	Subroutines
	Tabulate newly forbidden values
	Type definitions
	Untabulate values that were considered newly forbidden
	Update the data structures for all elements whose threshold is j, or backup
	Update the data structures for all elements whose threshold is unknown, or backup
	Update tab

