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(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program finds all nonisomorphic sets of SET cards that contain no SETs.
In case you don’t know what that means, a SET card is a vector (c1, c2, c3, c4) where each ci is 0, 1, or 2.

Thus there are 81 possible SET cards. A SET is a set of three SET cards that sums to (0, 0, 0, 0) modulo 3.
Equivalently, the numbers in each coordinate position of the three vectors in a SET are either all the same
or all different. (It’s kind of a 4-dimensional tic-tac-toe with wraparound.)

My previous SETSET program considered only isomorphisms that apply directly to the semantics of the
game of SET, namely permutations of coordinates and permutations of individual coordinate positions; there
are 4! × 3!4 = 31104 of those. But now I want to consider the much larger collection of all isomorphisms
that preserve SETs. There are 81 · (81− 1) · (81− 3) · (81− 9) · (81− 27) = 1,965,150,720 of these; thus the
method used in the previous program, which had complexity Ω(number of isomorphisms) in both time and
space, would be quite inappropriate. Here I’m using a possibly new method, with space requirement only
O(number of elements)2D, where D bounds the partial transitivity of the isomorphism group: The image of
the first D elements is sufficient to determine the images of all. In our case, D = 5.

A web page of David Van Brink states that you can’t have more than 20 SET cards without having a SET.
He says that he proved this in 1997 with a computer program that took about one week to run on a 90MHz
Pentium machine. I’m hoping to get the result faster by using ideas of isomorph rejection, meanwhile also
discovering all of the k-element SET-less solutions for k ≤ 20.

The theorem about at most 20 SET-free cards was actually proved in much stronger form by G. Pellegrino,
Matematiche 25 (1971), 149–157, without using computers. Pellegrino showed that any set of 21 points in
the projective space of 81 + 27 + 9 + 3 + 1 elements, represented by nonzero 5-tuples in which x and −x
are considered equivalent, has three collinear points; this would correspond to sets of three distinct points
in which the third is the sum or difference of the first two.

Incidentally, I’ve written this program for my own instruction, not for publication. I still haven’t had time
to read the highly relevant papers by Adalbert Kerber, Reinhard Laue, and their colleagues at Bayreuth,
although I’ve had those works in my files for many years. Members of that group probably are quite familiar
with equivalent or better methods. Perhaps I’m being foolish, but I thought it would be most educational
to try my own hand before looking at other people’s solutions. I seem to learn a new subject best when I
try to write code for it, because the computer is such a demanding, unbluffable taskmaster.

[SET is a registered trademark of SET Enterprises, Inc.]

#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

jmp buf restart point ;

〈Type definitions 5 〉
〈Global variables 6 〉
〈Subroutines 22 〉
main ( )
{
〈Local variables 40 〉
〈 Initialize 8 〉;
〈Enumerate and print all solutions 39 〉;
〈Print the totals 47 〉;
}

https://cs.stanford.edu/~knuth/programs.html
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2. Our basic approach is to define a linear ordering on solutions, and to look only for solutions that are
smallest in their isomorphism class. In other words, we will count the sets S such that S ≤ αS for all
automorphisms α. We’ll also count the number t of cases where S = αS; then the number of distinct
solutions isomorphic to S is 1965150720/t, so we will essentially have also enumerated the distinct solutions.

The ordering we use is almost standard: Vectors are ordered by weight, and vectors of equal weight
are ordered lexicographically; thus the sequence is (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0),
(0, 0, 0, 2), (0, 0, 1, 1), . . . , (2, 2, 2, 2). Also, when S and T are both sets of k SET cards, we define S ≤ T by
first sorting the vectors into order so that s1 < · · · < sk and t1 < · · · < tk, then we compare (s1, . . . , sk)
lexicographically to (t1, . . . , tk). (Equivalently, we compare the smallest elements of S and T ; if they are
equal, we compare the second-smallest elements, and so on, until we’ve either found inequality or established
that S = T .)

3. The automorphisms can be thought of as the collection of all linear mappings that take x 7→ Ax + b,
where x is the column vector (c1, c2, c3, c4)T , A is a nonsingular 4× 4 matrix (mod 3), and b is an arbitrary
vector. Alternatively we can think of the mapping x 7→ Ax, where each SET card x is a column vector of
the form (c1, c2, c3, c4, 1)T and A is a nonsingular 5 × 5 matrix whose bottom row is (0, 0, 0, 0, 1). In either
case we have the so-called “affine linear group” in 4-space (mod 3).

For example, any set of five points that are independent, in the sense that none is in the subspace spanned
by the other four, can be mapped into the smallest five cards

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.

The set consisting of the smallest four cards has 24 · 54 = 1296 automorphisms, hence there are exactly
1965150720/1296 = 1516320 ways to choose four SET cards that are independent in this sense. All other
SET-less sets of four cards are isomorphic to the dependent set

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)};

and this set has 31104 automorphisms, leading to an additional 1965150720/31104 = 63180 ways to choose
a set of four SET-less cards. This explains why the total number of such sets is 1516320 + 63180 = 1579500,
a number that the SETSET program was able to compute only after it had laboriously considered 128 cases
that were nonisomorphic in the previous setup.

4. We will generate the elements of a k-set in order. If we have s1 < · · · < sk and {s1, . . . , sk} ≤
{αs1, . . . , αsk} for all α, it is not hard to prove that {s1, . . . , sj} ≤ {αs1, . . . , αsj} for all α and 1 ≤ j ≤ k.
(The reason is that S < T and t ≥ maxT implies S ∪ {s} < S ∪ {∞} < T ∪ {t}, for all s.) Therefore every
canonical k-set is obtained by extending a unique canonical (k − 1)-set.
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5. Permutations. It’s convenient to represent SET card vectors in a compact code, as an integer between
0 and 80.

〈Type definitions 5 〉 ≡
typedef char SETcard; /∗ a SET card (c1, c2, c3, c4) represented as encode [(c1c2c3c4)3] ∗/

See also section 20.

This code is used in section 1.

6. Lexicographic order would correspond to ternary notation, but our weight-first ordering is slightly
different. Here we specify the card ranks in the desired order.

#define nn 81 /∗ the total number of elements permuted by automorphisms ∗/
#define nnn 128 /∗ the value of nn rounded up to a power of 2, for efficiency ∗/
〈Global variables 6 〉 ≡

SETcard encode [nn ] = {0, 1, 5, 2, 6, 15, 7, 16, 31,
3, 8, 17, 9, 18, 32, 19, 33, 50,
10, 20, 34, 21, 35, 51, 36, 52, 66,
4, 11, 22, 12, 23, 37, 24, 38, 53,
13, 25, 39, 26, 40, 54, 41, 55, 67,
27, 42, 56, 43, 57, 68, 58, 69, 76,
14, 28, 44, 29, 45, 59, 46, 60, 70,
30, 47, 61, 48, 62, 71, 63, 72, 77,
49, 64, 73, 65, 74, 78, 75, 79, 80};

See also sections 7, 9, 11, 15, 16, 21, 23, 28, 41, and 46.

This code is used in section 1.

7. When we output a SET card, however, we prefer a decimal code.

〈Global variables 6 〉 +≡
int decimalform [nn ] = {0, 1, 2, 10, 11, 12, 20, 21, 22,

100, 101, 102, 110, 111, 112, 120, 121, 122,
200, 201, 202, 210, 211, 212, 220, 221, 222,
1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022,
1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122,
1200, 1201, 1202, 1210, 1211, 1212, 1220, 1221, 1222,
2000, 2001, 2002, 2010, 2011, 2012, 2020, 2021, 2022,
2100, 2101, 2102, 2110, 2111, 2112, 2120, 2121, 2122,
2200, 2201, 2202, 2210, 2211, 2212, 2220, 2221, 2222};

int decode [nn ];

8. 〈 Initialize 8 〉 ≡
for (k = 0; k < nn ; k++) decode [encode [k]] = decimalform [k];

See also sections 10, 12, and 17.

This code is used in section 1.

9. We will frequently need to find the third card of a SET, given any two distinct cards x and y, so we
store the answers in a precomputed table.

〈Global variables 6 〉 +≡
char z[3][3] = {{0, 2, 1}, {2, 1, 0}, {1, 0, 2}}; /∗ x+ y + z ≡ 0 (mod 3) ∗/
char third [nn ][nnn ];
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10. #define pack (a, b, c, d) encode [(((a) ∗ 3 + (b)) ∗ 3 + (c)) ∗ 3 + (d)]

〈 Initialize 8 〉 +≡
{

int a, b, c, d, e, f , g, h;

for (a = 0; a < 3; a++)
for (b = 0; b < 3; b++)

for (c = 0; c < 3; c++)
for (d = 0; d < 3; d++)

for (e = 0; e < 3; e++)
for (f = 0; f < 3; f++)

for (g = 0; g < 3; g++)
for (h = 0; h < 3; h++)

third [pack (a, b, c, d)][pack (e, f , g, h)] = pack (z[a][e], z[b][f ], z[c][g], z[d][h]);
}

11. The set of automorphisms is conveniently represented by a mapping table, as in the author’s paper
“Efficient representation of perm groups,” Combinatorica 11 (1991), 33–43. If there is an α such that αk = j
and α fixes all elements < j, we let perm [j][k] be one such permutation α, represented as an array of 81
elements. In particular, perm [j][j] always is the identity permutation. If no such α exists, however, we set
perm [j][k][0] = −1.

Our algorithm for finding nonisomorphic SET-less sets is based entirely on the group of isomorphisms
defined by a perm table. If perm is initialized to the definition of some other group, the rest of this program
should need no further modification except for counting the total number of automorphisms. (Of course, not
every perm table defines a group of permutations; the set of all possible products π0π1 . . . π80, where each
πj is one of the permutations perm [j][k] for some k ≥ j, must be closed under multiplication. We assume
that this condition is satisfied.)

There is an integer D such that perm [j][k] = −1 for all D ≤ j < k; in other words, each α that fixes 0, 1,
. . . , D − 1 is the identity map. We needn’t bother representing perm [j][k] for j ≥ D.
Important Note [30 April 2001]: No, the algorithm does not work for arbitrary permutation groups. I

thank Prof. Reinhard Laue for pointing out a serious error. However, I do think the special group dealt with
here is handled satisfactorily because of its highly transitive nature.

#define dd 5 /∗ in our case D = 5 ∗/
〈Global variables 6 〉 +≡

char perm [dd ][nnn ][nnn ]; /∗ mapping table ∗/
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12. Now let’s set up the mapping table for the affine transformations we need. The basic idea is simple.
For example, the group of all 5 × 5 matrices that fix (0, 0, 0, 0) = 0 and (0, 0, 0, 1) = 1 is the set of all
nonsingular A of the form 

∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 1 0
0 0 0 0 1

 ;

and the image of (0, 0, 1, 0) is the third column. For every possible third column k (which must not be zero
in the top three rows, lest the matrix be singular), we need to choose an appropriate setting of the first two
columns. Then we get an affine mapping that takes (0, 0, 1, 0) = 2 into k, and the inverse of this mapping
can be stored in perm [2][k] because it maps k 7→ 2.

〈 Initialize 8 〉 +≡
aa [4][4] = 1;
for (j = 0; j < 5; j++) { /∗ we want to set up perm [4− j] ∗/

int a, b, c, d, e, f , g, h, jj , kk ;

for (jj = j + 1; jj < 5; jj ++)
for (k = 0; k < 4; k++) aa [jj ][k] = (k ≡ jj ? 1 : 0);

for (a = 0; a < 3; a++)
for (b = 0; b < 3; b++)

for (c = 0; c < 3; c++)
for (d = 0; d < 3; d++) {
aa [j][0] = a, aa [j][1] = b, aa [j][2] = c, aa [j][3] = d;
for (kk = j; kk ≥ 0; kk −−)

if (aa [j][kk ]) break;
if (kk < 0) perm [4− j][pack (a, b, c, d)][0] = −1;
else {
〈Complete aa to a nonsingular matrix 13 〉;
〈Use aa to define the mapping perm [4− j][pack (a, b, c, d)] 14 〉;

}
}

}

13. 〈Complete aa to a nonsingular matrix 13 〉 ≡
for (jj = 0; jj < j; jj ++) {

for (k = 0; k < 4; k++) aa [jj ][k] = 0;
aa [jj ][(jj + kk + 1) % (j + 1)] = 1;
}

This code is used in section 12.

14. 〈Use aa to define the mapping perm [4− j][pack (a, b, c, d)] 14 〉 ≡
kk = pack (a, b, c, d);
for (e = 0; e < 3; e++)

for (f = 0; f < 3; f++)
for (g = 0; g < 3; g++)

for (h = 0; h < 3; h++) {
for (k = 0; k < 4; k++)
trit [k] = (e ∗ aa [0][k] + f ∗ aa [1][k] + g ∗ aa [2][k] + h ∗ aa [3][k] + aa [4][k]) % 3;

perm [4− j][kk ][pack (trit [0], trit [1], trit [2], trit [3])] = pack (e, f , g, h);
}

This code is used in section 12.
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15. 〈Global variables 6 〉 +≡
char trit [4]; /∗ four ternary digits ∗/
char aa [5][8]; /∗ matrix A, stored columnwise ∗/

16. The algorithm below also needs another table of permutations: For j < D and k ≥ j, we let minp [j][k]
be a permutation that takes k into the smallest possible value, among all permutations that fix all elements
less than j.

〈Global variables 6 〉 +≡
char minp [dd ][nnn ][nnn + nnn ];

17. The minp table is readily built from the perm table, working from bottom to top. (In the affine linear
group under the ordering we have chosen, minp actually is the same as perm if we plug the identity in place
of empty permutations. But this code tries to be general.)

We store the inverse permutation too: If p = minp [j][k], then p maps v to p[v] and p[v + nnn ] to v.

〈 Initialize 8 〉 +≡
for (j = dd − 1; j ≥ 0; j−−)

for (k = j; k < nn ; k++) {
if (perm [j][k][0] 6= −1) { /∗ the best we can do is obviously k 7→ j ∗/

for (l = 0; l < nn ; l++) minp [j][k][l] = perm [j][k][l];
} else if (j ≡ dd − 1) {

for (l = 0; l < nn ; l++) minp [j][k][l] = l;
for (i = j + 1; i < nn ; i++)

if (perm [j][i][0] 6= −1 ∧ perm [j][i][k] < minp [j][k][k])
for (l = 0; l < nn ; l++) minp [j][k][l] = perm [j][i][l];

} else {
register int kk ;

for (l = 0; l < nn ; l++) minp [j][k][l] = minp [j + 1][k][l];
for (i = j + 1; i < nn ; i++)

if (perm [j][i][0] 6= −1) {
kk = perm [j][i][k];
if (minp [j + 1][kk ][kk ] < minp [j][k][k])

for (l = 0; l < nn ; l++) minp [j][k][l] = minp [j + 1][kk ][perm [j][i][l]];
}

}
for (l = 0; l < nn ; l++) minp [j][k][minp [j][k][l] + nnn ] = l;

}

18. The mapping table of a permutation group has many magical properties. For example, consider the
digraph with arcs from (j, x) to (j+1, y) whenever there is a k with perm [j][k] mapping x to y. This digraph
has a path from (j, x) to (D, y) if and only if the group has a permutation that maps x to y and fixes all
elements less than j; hence such a path exists if and only if there is also a path from (j, y) to (D,x).

Furthermore, if we let S be the set of all elements k such that perm [0][k][0] is −1, namely the set of all
elements that are not permutable into 0 (not in the “orbit” of 0), then the group never maps an element
of S to an element not in S. In other words, the group also induces a permutation group on the elements
of S. We will make use of this property in the algorithm below.
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19. Data structures. I’m going to try to describe the algorithm simultaneously as I explain its main
data structures, because the two are somewhat intertwined.

Our main task is to check that a set S = {x1, . . . , xl}, where x1 < · · · < xl, cannot be mapped into a
smaller set αS, for any automorphism α. This breaks down into subtasks where we consider cases in which
αxi is the smallest element of αS. If we can map xi into a number less than x1, we reject the set S. If we
cannot map xi into any number ≤ x1, we need not consider this subtask any further. But if there is an α
such that αxi = x1, we fix our attention on one such α and we reduce the problem to showing that the set
αx1, . . . , αxi−1, αxi+1, . . . , αxl} cannot be mapped into a set smaller than {x2, . . . , xl} in the subgroup of
automorphisms that fix all elements ≤ x1. For this subproblem we first rule out all elements that could map
into anything between x1 and x2; then we consider only the subgroup of automorphisms on the remaining
elements. (Only one α is needed for each xi; this is a key point, which is proved below.)

20. The data structure we use to support such an approach has one node p for each subtask. If we
are currently trying to see whether {y1, . . . , yr} can be mapped into a set smaller than {xd, . . . , xl}, by
automorphisms that fix all elements ≤ xd−1, then p will be on level d of the current tree of tasks and
subtasks, and p~val will be yi for some i.

The task tree is triply linked in the conventional way, with links par , kid , and sib for parent, child, and
sibling, respectively. In other words, if p is a subtask of q, we have p~par = q, and the subtasks of q (including
p itself) are respectively q~kid , q~kid~sib , q~kid~sib~sib , etc. The youngest child of a family, namely the child
added most recently to the structure, is q~kid , and the next youngest is q~kid~sib .

An additional field p~ trans , if non-null, is the automorphism α by which the values of p’s subtasks
{αy1, . . . , αyi−1, αyi+1, . . . , αyr} have been transformed. If p~ trans is null it means that subtask p is “dead”
because yi cannot be transformed into anything ≤ xd.

〈Type definitions 5 〉 +≡
typedef struct node struct {

SETcard val ; /∗ value that is assumed to be smallest after subsequent mapping ∗/
char level ; /∗ state information for terminal nodes, see below ∗/
struct node struct ∗par , ∗kid , ∗sib ; /∗ pointers in triply linked tree ∗/
char ∗trans ; /∗ a permutation, or Λ ∗/
} node;
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21. Part of the algorithm is somewhat subtle and requires proof, so I shall try to state the inductive
assumptions carefully. But I will state them only in a particular case, in order to keep the notation simple.
The general case can easily be inferred from the special case considered here.

Suppose q is a node at level 2 that corresponds to the subtask for permutations that map x3 7→ x1
and x5 7→ x2. Then we have found particular automorphisms α1 and α2 such that α1x3 = x1 and
α2α1x5 = x2, where α2 fixes all elements ≤ x1. (Automorphism α2 will be stored in q~ trans and α1 will be
in q~par~ trans ; x3 will be q~par~val , and q~val will be α1x5. Also q~sib~val = α1x4, q~sib~sib~val = α1x2,
q~sib~sib~sib~val = α1x1, and q~sib~sib~sib~sib = Λ.)

We assume that there is a set Xq of “legal” elements that might be used to extend the current set
{x1, . . . , xl}. This set has the property that, if α is any automorphism with αx3 = x1 and αx5 = x2 and
αx = y for some y, where x ∈ Xq, then there is an automorphism α′ that fixes all elements ≤ x2 and satisfies
α′α2α1x = y. In other words, we assume that we can obtain the images of all legal elements that belong
to our subtask by restricting consideration to automorphisms of the form αα2α1, where α fixes all elements
≤ x2 and where α1 and α2 are the particular automorphisms we have chosen..

Now one of the subtasks below q will be node p, having p~val = α2α1x4 and p~ trans = α3, where α3 is
some automorphism that fixes everything ≤ x2 and satisfies α3α2α1x4 = x3. The set of legal elements Xp is
obtained by deleting from Xq all elements z such that αα2α1z < x3 for some α fixing ≤ x2.

To prove that Xp satisfies the required inductive assumption, suppose α is any automorphism with
αx3 = x1, αx5 = x2, αx4 = x3, and αx = y, where x ∈ Xp. Then since x ∈ Xq, there is α′ fixing
≤ x2 such that α′α2α1x = y. And by definition of Xp we know that y ≥ x3; we can assume x 6= x4, hence
y > x3. We can write α′ = βα′′, where β is a product of x3 − x2 elements from the perm table (one from
each row j for x2 ≤ j < x3) and α′′ fixes all elements ≤ x3.

Consider the group G of all α that fix the elements ≤ x2. Every permutation π in G is a product π′π′′,
where π′ permutes the elements that can map into {x2, . . . , x3− 1} and π′′ permutes those that can’t. Thus
we have β = β′β′′ and α3 = α′3α

′′
3 . We also have πα2α1x = π′′α2α1x for any π in G.

Now the permutation α′′β′′α′′−3 fixes all elements ≤ x3, and we have α′′β′′α′′3
−α3α2α1x = α′′β′′α′3α2α1x =

α′′β′′α2α1x = α′′β′′β′α2α1x = α′α2α1x = y.
Important Note [30 April 2001]: Oops no, that permutations does not necessarily fix x3. I don’t know at

present how to repair this error without spoiling the efficiency of the algorithm.
Suppose {x1, . . . , xl} is non canonical because some α has αx3 = x1, αx5 = x2, αx4 = x3, and αx1 < x4.

If x1 is in Xp, we’ve proved that there must be α′ fixing ≤ x3 such that αα3α2α1x1 < x4; and α3α2α1x1
will be the value of one of p’s children, so we will discover the existence of α′ by looking at the minp table.
If x1 is in Xq but not Xp, there must be α′ fixing ≤ x2 such that αα2α1x1 < x3; the fact that {x1, . . . , xl}
is noncanonical will be discovered on a sibling task r of p, having r~val = α2α1x1. Similarly, if x1 is not in
Xq there must be α′ fixing ≤ x1 such that α′α1x1 < x2, and a sibling task of q will discover this.

That, for me, completes the proof. Readers who do not believe that I lived up to my promise of “keeping
the notation simple” are encouraged to supply a nicer argument; I decided to use brute force here in order
to familiarize myself with the underlying structure.

(Speaking of notation, I must admit to being unhappy today with my former choice, in SETSET, of writing
αx instead of xα for the image of x under a permutation α. This has compelled me to write α2α1 for the
permutation in which α1 is applied before α2, against my normal custom and preference. Certainly I’ll use
the other order if I ever write this up.)

〈Global variables 6 〉 +≡
char legal [nn + 1]; /∗ nonzero when a card is legal in all subtasks ∗/
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22. Nodes come and go in a last-in-first-out fashion, so we can allocate them sequentially.

#define max node count 22000000

〈Subroutines 22 〉 ≡
node ∗new node ( )
{

register node ∗p = node ptr ++;

if (p ≥ &nodes [max node count ]) {
fprintf (stderr , "Node memory overflow!\n");
exit (−3);

}
p~kid = Λ;
return p;
}

See also sections 24, 25, 30, 34, 36, 37, 38, and 44.

This code is used in section 1.

23. #define root &nodes [0]

〈Global variables 6 〉 +≡
node nodes [max node count ];
node ∗node ptr = &nodes [1];

24. When we’re processing a set {x1, . . . , xl}, every active node on level d of the tree has l − d children.
Thus when l increases by 1, every active node gains a child; this leads to an interesting recursive algorithm.

The new kid procedure creates a new child of p at level d+ 1 with a given value v.
If d is sufficiently deep, we switch to another strategy described below.

〈Subroutines 22 〉 +≡
void launch (node ∗, int,node ∗); /∗ prototype for a subroutine declared below ∗/
void new terminal kid (node ∗,SETcard); /∗ and another ∗/
void new kid (node ∗p, int d,SETcard v)
{

register node ∗q;
〈Use special strategy for new kid if d is sufficiently deep 29 〉;
q = new node ( );
q~val = v, q~par = p, q~ level = 0;
q~sib = p~kid , p~kid = q;
launch (p, d+ 1, q);
for (q = q~sib ; q; q = q~sib)

if (q~ trans ) new kid (q, d+ 1, q~ trans [v]);
}
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25. At this point we’ve reached the heart of the algorithm, the launch subroutine that initializes each new
node created by new kid (or by launch itself). When launch (p, d, q) is called, node q is a child of p on level d
whose val field has been set but the trans field has not.

〈Subroutines 22 〉 +≡
void launch (node ∗p, int d,node ∗q)
{

register int v, w;
register node ∗r, ∗s, ∗t;
v = q~val ;
w = minp [x[d− 1] + 1][v][v];
if (w < x[d]) 〈Reject the current set {x1, . . . , xl} 42 〉;
if (w > x[d]) q~ trans = Λ; /∗ this branch is dormant ∗/
else 〈Launch a new node that maps v to xd 26 〉;
}

26. We can exclude values that will map between xd−1 and xd+1, at least when d < l. By setting xl+1 = xl
below, we make this work also when d = l.

〈Launch a new node that maps v to xd 26 〉 ≡
{
w = x[d− 1] + 1;
q~ trans = minp [w][v];
for ( ; w < x[d+ 1]; w++)

if (w 6= x[d]) 〈Make sure w is forbidden 27 〉;
〈Use special strategy for launch if d is sufficiently deep 33 〉;
for (r = p~kid , s = Λ; r; r = r~sib)

if (r 6= q) {
t = new node ( );
t~par = q;
t~val = q~ trans [r~val ], t~ level = 0;
if (s) s~sib = t; else q~kid = t;
s = t;

}
if (s) s~sib = Λ;
else auts++; /∗ when we’ve reached level l, we’ve found an automorphism ∗/
for (r = q~kid ; r; r = r~sib) launch (q, d+ 1, r);
}

This code is used in section 25.
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27. The forbidden table is used in the algorithm below to ensure that no SET occurs among the elements
{x1, . . . , xl}. We also use it here to forbid card values that will be transformed into w by a sequence of
permutations ending with q~ trans . (Since all such cases will ultimately lead to rejection, we can presumably
save time by ruling them out in advance. If I myself had more time to spend, I’d check this to see just how
much it helps.)

The reader should not confuse “forbidden” elements with elements that are “illegal” in the sense of the
proof above. The two concepts are related, but the algorithm would work even if the present step were
omitted.

〈Make sure w is forbidden 27 〉 ≡
{

for (r = q, v = w; r 6= root ; r = r~par ) v = r~ trans [v + nnn ];
forbidden [v] = 1;
}

This code is used in section 26.

28. 〈Global variables 6 〉 +≡
SETcard x[22]; /∗ here’s where we remember x1, x2, etc. ∗/
char forbidden [nn + 1]; /∗ nonzero for noncanonical choices ∗/
int auts ; /∗ automorphisms of {x1, . . . , xl} found ∗/
int l; /∗ the current level ∗/

29. Eventually we get to a level so deep that only the identity mapping fixes all elements ≤ xd. Then the
algorithm we have described so far, although correct, begins to spin its wheels as it laboriously finds at most
one active child of each node.

Therefore we streamline the data structures for all such nodes, which we call “terminal,” and we go into
a different mode of operation when we reach a terminal node. Such a node q is identified by the condition
q~ level > 0; if q~ level = k it means that all nodes {x1, . . . , xk−1} have been matched among q and its
ancestors and older siblings. The next younger siblings of q will therefore try to match xk.

The new kid procedure will add a new terminal node to the descendants of p, if d is sufficiently deep as
described above; this will be true if and only if xd ≥ D−1, where D is the perm table depth. If p already has
at least one child, all of its children are terminal, and we use the new terminal kid procedure to extend p’s
family. Otherwise we initiate the family, using the fact that l must equal d+ 1 if p was previously childless.

〈Use special strategy for new kid if d is sufficiently deep 29 〉 ≡
if (x[d] ≥ dd − 1) {

if (p~kid ) new terminal kid (p, v);
else { /∗ l = d+ 1 ∗/

if (v < x[l]) 〈Reject the current set {x1, . . . , xl} 42 〉;
q = new node ( );
p~kid = q, q~val = v, q~sib = Λ, q~par = p;
if (v ≡ x[l]) q~ level = l + 1, auts++;
else q~ level = l;

}
return;
}

This code is used in section 24.
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30. The kid links in terminal nodes are not used for parenting; they jump across siblings known to be
irrelevant in future searches. (This is just a heuristic, designed to ameliorate the fact that we don’t want to
complicate the backtracking process by updating any existing links in a family when a new child is born.)

〈Subroutines 22 〉 +≡
void new terminal kid (node ∗q,SETcard v)
{

register node ∗r, ∗p;
register int k,w;

r = new node ( );
r~val = v, r~sib = q~kid , q~kid = r;
〈Find the index k such that we’ve matched {x1, . . . , xk−1} and such that all other values exceed xk 31 〉;
r~ level = k;
for (p = r~sib ; p; p = p~kid )

if (p~val > x[k]) break;
r~kid = p;
}

31. 〈Find the index k such that we’ve matched {x1, . . . , xk−1} and such that all other values
exceed xk 31 〉 ≡

k = r~sib~ level ;
while (1) { /∗ v is the smallest value greater than xk−1 ∗/

if (v < x[k]) 〈Reject the current set {x1, . . . , xl} 42 〉;
if (v > x[k]) break;
〈Forbid values that will cause rejection if they propagate this far 32 〉;
k++;
if (k > l) {

auts++; /∗ hey, we’ve matched everything ∗/
break;

}
for (p = r~sib , v = nn ; p; p = p~kid )

if (p~val > x[k − 1] ∧ p~val < v) v = p~val ;
}

This code is used in section 30.

32. We can exclude values that will map between xk−1 and xk+1, at least when k < l. By setting xl+1 = xl
below, we make this work also when k = l.

〈Forbid values that will cause rejection if they propagate this far 32 〉 ≡
for (w = x[k − 1] + 1; w < x[k + 1]; w++)

if (w 6= x[k]) {
for (p = q, v = w; p 6= root ; p = p~par ) v = p~ trans [v + nnn ];
forbidden [v] = 1;

}
This code is used in section 31.
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33. When all children of a newly launched node q are terminal, we append them in reverse order. This
is done only for convenience, because the order is unimportant in newly launched nodes. (Such nodes will
disappear completely when we backtrack.)

〈Use special strategy for launch if d is sufficiently deep 33 〉 ≡
if (x[d] ≥ dd − 1 ∧ d < l) {
s = p~kid ; if (s ≡ q) s = s~sib ;
v = q~ trans [s~val ];
if (v < x[d+ 1]) 〈Reject the current set {x1, . . . , xl} 42 〉;
r = new node ( );
q~kid = r, r~par = q;
r~val = v, r~sib = Λ;
if (v ≡ x[d+ 1]) {
r~ level = d+ 2;
if (d+ 1 ≡ l) auts++;

} else r~ level = d+ 1;
for (s = s~sib ; s; s = s~sib)

if (s 6= q) new terminal kid (q, q~ trans [s~val ]);
return;
}

This code is used in section 26.

34. Here’s a subroutine that I expect will be useful during the debugging process.

〈Subroutines 22 〉 +≡
void print subtree (node ∗p, int d)
{

register node ∗r;
register int k;

for (k = 0; k < d; k++) printf (p~ level ? " " : ".");
printf ("%04d", decode [p~val ]);
if (p~ level ) {
printf (",%d", p~ level );
if (p~kid ) printf (" −>%04d", decode [p~kid~val ]);
printf ("\n");

}
else if (p~ trans ) {
〈Print the current transform matrix 35 〉;
for (r = p~kid ; r; r = r~sib) print subtree (r, d+ 1);

} else printf ("\n");
}

35. We print the matrix by giving five vectors yi such that (x1, x2, x3, x4) 7→ y0+x1y1+x2y2+x3y3+x4y4.

〈Print the current transform matrix 35 〉 ≡
k = p~ trans [0];
printf (" [%04d,%04d,%04d,%04d,%04d]\n", decode [k], decode [third [k][third [0][p~ trans [4]]]],

decode [third [k][third [0][p~ trans [3]]]], decode [third [k][third [0][p~ trans [2]]]],
decode [third [k][third [0][p~ trans [1]]]]);

This code is used in section 34.
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36. 〈Subroutines 22 〉 +≡
void print trees ( )
{

register node ∗r;
for (r = (root )~kid ; r; r = r~sib) print subtree (r, 0);
}

37. More help for debugging: nod ("123") gives the third-youngest child of the second-youngest child of
the youngest child of the root.

〈Subroutines 22 〉 +≡
node ∗nod (char ∗s)
{

register char ∗p;
register int j;
register node ∗q = root ;

for (p = s; ∗p; p++) {
if (¬q) return Λ;
for (j = ∗p− ’1’, q = q~kid ; j; j−−) {

if (¬q) return Λ;
q = q~sib ;

}
}
return q;
}
void dummy ( )
{
malloc(1); /∗ loads a routine needed by gdb ∗/
}

38. And here’s a sort of converse routine, whoami .

〈Subroutines 22 〉 +≡
void print id (node ∗p)
{

register node ∗q = p~par , ∗r;
register char j;

if (q) {
print id (q);
for (r = q~kid , j = ’1’; r 6= p; j++)

if (r) r = r~sib ;
else {
printf ("???"); return;
}

printf ("%c", j);
}
}
void whoami (node ∗p)
{
print id (p); printf ("\n");
}
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39. Backtracking. Now we’re ready to construct the tree of all canonical SET-free sets {x1, . . . , xl}.
〈Enumerate and print all solutions 39 〉 ≡
l = 0; j = 0;
x[0] = −1;
if (setjmp(restart point )) goto backup ; /∗ get ready for longjmp ∗/

moveup : while (forbidden [j]) j++;
if (j ≡ nn ) goto backup ;
for (k = 0; k < nn ; k++) forbidden back [l][k] = forbidden [k];
node ptr back [l] = node ptr ;
auts = 0;
l++, x[l] = x[l + 1] = j;
new kid (root , 0, x[l]);
〈Record the current canonical l-set as a solution 45 〉;
〈Forbid all SETs that include {xk, xl} for 1 ≤ k < l 43 〉;
j = x[l] + 1; goto moveup ;

backup : l−−;
node ptr = node ptr back [l];
prune (root );
for (k = 0; k < nn ; k++) forbidden [k] = forbidden back [l][k];
j = x[l + 1] + 1;
if (l) goto moveup ;

This code is used in section 1.

40. 〈Local variables 40 〉 ≡
register int i, j, k; /∗ miscellaneous indices ∗/

This code is used in section 1.

41. 〈Global variables 6 〉 +≡
char forbidden back [22][nnn ]; /∗ brute-force undoing ∗/
node ∗node ptr back [22];

42. If the recursive procedures invoked by new kid lead to a non-canonical situation, we leave them and
back up by using C’s longjmp library function. (The code above will then cause control to pass to the label
rejected .)

〈Reject the current set {x1, . . . , xl} 42 〉 ≡
longjmp(restart point , 1);

This code is used in sections 25, 29, 31, and 33.

43. 〈Forbid all SETs that include {xk, xl} for 1 ≤ k < l 43 〉 ≡
for (k = 1; k < l; k++) forbidden [third [x[k]][x[l]]] = 1;

This code is used in section 39.
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44. The data structures have been designed so that all changes invoked by new kid and launch are easily
undone. Indeed, if new kid (root , 0, x[l]) terminates normally, it has added precisely one child to each active
node (including any terminal nodes that are present), and the newly added child will of course be the
youngest. But if new kid terminates abnormally via longjmp , some active nodes may not have been reached.

〈Subroutines 22 〉 +≡
void prune (node ∗p)
{

register node ∗q = p~kid ;
register node ∗r;
if (q) {
r = q;
if (q ≥ node ptr ) p~kid = q = q~sib ; /∗ the youngest should be pruned away ∗/
if (¬r~ level )

for ( ; q; q = q~sib) prune (q);
}
}
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45. The totals. I want to know not only the nonisomorphic solutions but also the exact number of
SET-less k sets that are possible. Then I’ll know the precise odds of having no SET in a random deal.

When the program reaches this point, auts will have been set to the number of permutations of {x1, . . . , xl}
that are achievable by automorphisms. The true number of automorphisms of {x1, . . . , xl} will therefore be
auts times the number of automorphisms that fix each of {x1, . . . , xl}.

I don’t know how to compute the latter quantity easily from the perm table of a general permutation
group. But in the affine linear group of interest here, we need only determine the number of independent
elements. This is the smallest index k such that xk+1 6= k.

〈Record the current canonical l-set as a solution 45 〉 ≡
for (j = 1; j < l; j++) printf (".");
non iso count [l]++;
for (k = 0; x[k + 1] ≡ k; k++) ;
total count [l] += multiplier [k − 1]/(double) auts ;
printf ("%04d (%d:%d) %d\n", decode [x[l]], auts , k,node ptr − nodes );

This code is used in section 39.

46. Integers of 32 bits are insufficient to hold the numbers we’re counting, but double precision floating
point turns out to be good enough for exact values in this problem.

〈Global variables 6 〉 +≡
int non iso count [30]; /∗ number of canonical solutions ∗/
double total count [30]; /∗ total number of solutions ∗/
double multiplier [5] = {81.0, 6480.0, 505440.0, 36391680.0, 1965150720.0};

47. 〈Print the totals 47 〉 ≡
for (j = 1; j ≤ 21; j++)
printf ("%20.20g SETless %d−sets (%d cases)\n", total count [j], j,non iso count [j]);

This code is used in section 1.
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48. Index.

a: 10, 12.
aa : 12, 13, 14, 15.
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〈Complete aa to a nonsingular matrix 13 〉 Used in section 12.

〈Enumerate and print all solutions 39 〉 Used in section 1.

〈Find the index k such that we’ve matched {x1, . . . , xk−1} and such that all other values exceed xk 31 〉
Used in section 30.

〈Forbid all SETs that include {xk, xl} for 1 ≤ k < l 43 〉 Used in section 39.

〈Forbid values that will cause rejection if they propagate this far 32 〉 Used in section 31.

〈Global variables 6, 7, 9, 11, 15, 16, 21, 23, 28, 41, 46 〉 Used in section 1.

〈 Initialize 8, 10, 12, 17 〉 Used in section 1.

〈Launch a new node that maps v to xd 26 〉 Used in section 25.

〈Local variables 40 〉 Used in section 1.

〈Make sure w is forbidden 27 〉 Used in section 26.

〈Print the current transform matrix 35 〉 Used in section 34.

〈Print the totals 47 〉 Used in section 1.

〈Record the current canonical l-set as a solution 45 〉 Used in section 39.

〈Reject the current set {x1, . . . , xl} 42 〉 Used in sections 25, 29, 31, and 33.

〈Subroutines 22, 24, 25, 30, 34, 36, 37, 38, 44 〉 Used in section 1.

〈Type definitions 5, 20 〉 Used in section 1.

〈Use special strategy for launch if d is sufficiently deep 33 〉 Used in section 26.

〈Use special strategy for new kid if d is sufficiently deep 29 〉 Used in section 24.

〈Use aa to define the mapping perm [4− j][pack (a, b, c, d)] 14 〉 Used in section 12.
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