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(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on May 28, 2023)

1. Intro. This program is part of a family of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments to learn how different approaches work in
practice.

I’m hoping that this one, which has the lucky number SAT13, will be the fastest of all, on a majority of the
example satisfiability problems that I’ve been exploring. Why? Because it is based on the “modern” ideas
of so-called conflict driven clause learning (CDCL) solvers. This approach, pioneered notably by Sakallah
and Marques-Silva (GRASP) and by Moskewicz, Madigan, Zhao, Zhang, Malik (CHAFF), has reportedly
revolutionized the field, making SAT-solvers applicable to large-scale industrial problems.

My model for SAT13 has been Eén and Sörensson’s MiniSAT solver, together with Biere’s PicoSAT solver,
both of which were at one time representative of world-class CDCL implementations. The technology has
continued to improve, and to become more complex than appropriate for my book to survey; therefore I have
not added all the latest bells and whistles. But I think this program decently represents the main CDCL
paradigms.

If you have already read SAT10 (or some other program of this series), you might as well skip now past
all the code for the “I/O wrapper,” because you have seen it before.

The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals
separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~ are ignored (treated as comments). The output will be ‘~’ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘~x1 ~x2 x3’, in some
order, possibly together with either x4 or ~x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.

The running time in “mems” is also reported, together with the approximate number of bytes needed for
data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)

https://cs.stanford.edu/~knuth/programs.html
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2. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
#define show gory details 8 /∗ verbose code for more yet ∗/
#define show warmlearn 16 /∗ verbose code for info about clauses learned during warmups ∗/
#define show recycling 32 /∗ verbose code to mention when recycling occurs ∗/
#define show recycling details 64 /∗ verbose code to display clauses that survive recycling ∗/
#define show restarts 128 /∗ verbose code to mention when restarts occur ∗/
#define show initial clauses 256 /∗ verbose code to list the unsatisfied clauses ∗/
#define show watches 512 /∗ verbose code to show when a watch list changes ∗/
#define show experiments 4096 /∗ verbose code sometimes used in change files ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 9 〉;
〈Global variables 4 〉;
〈Debugging fallbacks 139 〉;
〈Subroutines 31 〉;
main (int argc , char ∗argv [ ])
{

register int h, hp , i, j, jj , k, kk , l, ll , lll , p, q, r, s;
register int c, cc , endc , la , t, u, v, w, x, y;
register double au , av ;

〈Process the command line 3 〉;
〈 Initialize everything 12 〉;
〈 Input the clauses 13 〉;
if (verbose & show basics ) 〈Report the successful completion of the input phase 25 〉;
〈Set up the main data structures 45 〉;
imems = mems ,mems = 0;
〈Solve the problem 124 〉;

all done : 〈Close the files 8 〉;
〈Print farewell messages 7 〉;
}
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3. On the command line one can specify any or all of the following options:

• ‘v〈 integer 〉’ to enable various levels of verbose output on stderr .
• ‘c〈positive integer 〉’ to limit the levels on which choices are shown by show choices .
• ‘H〈positive integer 〉’ to limit the literals whose histories are shown by print state .
• ‘h〈positive integer 〉’ to adjust the hash table size.
• ‘b〈positive integer 〉’ to adjust the size of the input buffer.
• ‘s〈 integer 〉’ to define the seed for any random numbers that are used.
• ‘d〈 integer 〉’ to set delta for periodic state reports (default 10000000000). (See print state .)
• ‘D〈positive integer 〉’ to set doomsday , the number of conflicts after which this world comes to an end.
• ‘m〈positive integer 〉’ to adjust the maximum memory size. (The binary logarithm is specified; it must be

at most 31.)
• ‘t〈positive integer 〉’ to adjust trivial limit (default 10). A trivial clause is substituted for a learned clause

when the size of the latter is at least trivial limit more than the size of the former.
• ‘w〈 integer 〉’ to set warmups , the number of “full runs” done after a restart (default 0).
• ‘f〈positive float 〉’ to adjust restart psi fraction , the minimum agility threshold between automatically

scheduled restarts (default 0.05).
• ‘j〈 integer 〉’ to adjust recycle bump , the number of conflicts before the first recycling pass (default 1000).
• ‘J〈positive integer 〉’ to adjust recycle inc , the increase in number of conflicts between recycling passes

(default 500).
• ‘a〈float 〉’ to adjust alpha , the weight given to unsatisfied levels when computing a clause’s score during

the recycling process (default 0.4). This parameter must be between 0 and 1.
• ‘r〈positive float 〉’ to adjust var rho , the damping factor for variable activity scores.
• ‘R〈positive float 〉’ to adjust clause rho , the damping factor for clause activity scores.
• ‘p〈nonnegative float 〉’ to adjust rand prob , the probability that a branch variable is chosen randomly.
• ‘P〈nonnegative float 〉’ to adjust true prob , the probability that a variable’s default initial value is true.
• ‘x〈filename 〉’ to output a solution-eliminating clause to the specified file. If the given problem is satisfiable

in more than one way, a different solution can be obtained by appending that file to the input. (In principle,
all solutions could be found by repeated use of this feature, together with a restart file.)

• ‘l〈filename 〉’ to output all of the learned clauses of length ≤ learn save to the specified file. (This data
can be used, for example, as a certificate of unsatisfiability.)

• ‘K〈positive integer 〉’ to adjust the learn save parameter (default 10000).
• ‘L〈filename 〉’ to output some learned clauses to the specified file, for purposes of restarting after doomsday.

(Those clauses can be combined with the original clauses and simplified by a preprocessor.)
• ‘z〈filename 〉’ to input a “polarity file,” which is a list of literals that receive specified default values to

be used until forced otherwise. (Literals in this file whose names do not appear within any of the input
clauses are ignored.)

• ‘Z〈filename 〉’ to output a “polarity file” that will be suitable for restarting after doomsday.
• ‘T〈 integer 〉’ to set timeout : This program will abruptly terminate, when it discovers that mems > timeout .

〈Process the command line 3 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
〈Respond to a command-line option, setting k nonzero on error 5 〉;

default: k = 1; /∗ unrecognized command-line option ∗/
}
〈 If there’s a problem, print a message about Usage: and exit 6 〉;

This code is used in section 2.
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4. 〈Global variables 4 〉 ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics ; /∗ level of verbosity ∗/
uint show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int print state cutoff = 0; /∗ don’t print more than this many hists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
FILE ∗out file ; /∗ file for optional output of a solution-avoiding clause ∗/
char ∗out name ; /∗ its name ∗/
FILE ∗restart file ; /∗ file for learned clauses to be used in a restart ∗/
char ∗restart name ; /∗ its name ∗/
FILE ∗learned file ; /∗ file for output of every learned clause ∗/
char ∗learned name ; /∗ its name ∗/
int learn save = 10000; /∗ threshold for not outputting to learned file ∗/
ullng learned out ; /∗ this many learned clauses have been output ∗/
FILE ∗polarity infile ; /∗ file for input of literal polarities ∗/
char ∗polarity in name ; /∗ its name ∗/
FILE ∗polarity outfile ; /∗ file for output of literal polarities ∗/
char ∗polarity out name ; /∗ its name ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ the number of nodes entered ∗/
ullng thresh = 10000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
uint memk max = memk max default ; /∗ binary log of the maximum size of mem ∗/
uint max cells used ; /∗ how much of mem has ever held data? ∗/
int trivial limit = 10; /∗ threshold for substituting trivial clauses ∗/
float var rho = 0.9; /∗ damping factor for variable activity ∗/
float clause rho = 0.9995; /∗ damping factor for clause activity ∗/
float rand prob = 0.02; /∗ probability of choosing at random ∗/
float true prob = 0.50; /∗ probability of starting true on first ascent ∗/
uint rand prob thresh ; /∗ 231 times rand prob ∗/
uint true prob thresh ; /∗ 231 times true prob ∗/
float alpha = 0.4; /∗ weighting for unsatisfiable levels in clause scores ∗/
int warmups = 0; /∗ the number of full runs done after restart ∗/
ullng total learned ; /∗ we’ve learned this many clauses ∗/
double cells learned ; /∗ and this is their total length ∗/
double cells prelearned ; /∗ which was this before simplification ∗/
ullng discards ; /∗ we quickly discarded this many of those clauses ∗/
ullng trivials ; /∗ we learned this many intentionally trivial clauses ∗/
ullng subsumptions ; /∗ we subsumed this many clauses on-the-fly ∗/
ullng doomsday = #8000000000000000; /∗ force endgame when total learned exceeds this ∗/
ullng next recycle ; /∗ begin recycling when total learned exceeds this ∗/
ullng recycle bump = 1000; /∗ interval till the next recycling time ∗/
ullng recycle inc = 500; /∗ amount to increase recycle bump after each round ∗/
ullng next restart ; /∗ begin to restart when total learned exceeds this ∗/
ullng restart psi ; /∗ minimum agility threshold for restarts ∗/
float restart psi fraction = .05; /∗ fractional equivalent of restart psi ∗/
ullng actual restarts ;

See also sections 11, 27, 41, 59, 80, 90, 97, 111, and 140.

This code is used in section 2.
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5. 〈Respond to a command-line option, setting k nonzero on error 5 〉 ≡
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&verbose )− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max )− 1); break;
case ’H’: k |= (sscanf (argv [j] + 1, ""O"d",&print state cutoff )− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, ""O"d",&hbits )− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, ""O"d",&buf size )− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed )− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta )− 1); thresh = delta ; break;
case ’D’: k |= (sscanf (argv [j] + 1, ""O"lld",&doomsday )− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&memk max )− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"d",&trivial limit )− 1); break;
case ’w’: k |= (sscanf (argv [j] + 1, ""O"d",&warmups )− 1); break;
case ’j’: k |= (sscanf (argv [j] + 1, ""O"lld",&recycle bump)− 1); break;
case ’J’: k |= (sscanf (argv [j] + 1, ""O"lld",&recycle inc)− 1); break;
case ’K’: k |= (sscanf (argv [j] + 1, ""O"d",&learn save )− 1); break;
case ’f’: k |= (sscanf (argv [j] + 1, ""O"f",&restart psi fraction )− 1); break;
case ’a’: k |= (sscanf (argv [j] + 1, ""O"f",&alpha )− 1); break;
case ’r’: k |= (sscanf (argv [j] + 1, ""O"f",&var rho)− 1); break;
case ’R’: k |= (sscanf (argv [j] + 1, ""O"f",&clause rho)− 1); break;
case ’p’: k |= (sscanf (argv [j] + 1, ""O"f",&rand prob)− 1); break;
case ’P’: k |= (sscanf (argv [j] + 1, ""O"f",&true prob)− 1); break;
case ’x’: out name = argv [j] + 1, out file = fopen (out name , "w");

if (¬out file ) fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", out name );
break;

case ’l’: learned name = argv [j] + 1, learned file = fopen (learned name , "w");
if (¬learned file )

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", learned name );
break;

case ’L’: restart name = argv [j] + 1, restart file = fopen (restart name , "w");
if (¬restart file )

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", restart name );
break;

case ’z’: polarity in name = argv [j] + 1, polarity infile = fopen (polarity in name , "r");
if (¬polarity infile )

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for reading!\n", polarity in name );
break;

case ’Z’: polarity out name = argv [j] + 1, polarity outfile = fopen (polarity out name , "w");
if (¬polarity outfile )

fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", polarity out name );
break;

case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout )− 1); break;

This code is used in section 3.
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6. 〈 If there’s a problem, print a message about Usage: and exit 6 〉 ≡
if (k ∨ hbits < 0∨ hbits > 30∨ buf size ≤ 0∨memk max < 2∨memk max > 31∨ trivial limit ≤ 0∨ (int)

recycle inc < 0 ∨ alpha < 0.0 ∨ alpha > 1.0 ∨ rand prob < 0.0 ∨ true prob < 0.0 ∨ var rho ≤
0.0 ∨ clause rho ≤ 0.0) {

fprintf (stderr , "Usage: "O"s [v<n>] [c<n>] [H<n>] [h<n>] [b<n>] [s<n>] [d<n>]", argv [0]);
fprintf (stderr , " [D<n>] [m<n>] [t<n>] [w<n>] [j<n>] [J<n>] [K<n>]");
fprintf (stderr , " [f<f>] [a<f>] [r<f>] [R<f>] [p<f>] [P<f>]");
fprintf (stderr , " [x<foo>] [l<bar>] [L<baz>] [z<poi>] [Z<poo>] [T<n>] < foo.sat\n");
exit (−1);

}
This code is used in section 3.

7. 〈Print farewell messages 7 〉 ≡
if (verbose & show basics ) {

fprintf (stderr , "Altogether "O"llu+"O"llu mems, "O"llu bytes, "O"llu node"O"s,", imems ,
mems , bytes ,nodes ,nodes ≡ 1 ? "" : "s");

fprintf (stderr , " "O"llu clauses learned", total learned );
if (total learned ) fprintf (stderr , " (ave "O".1f−>"O".1f)", cells prelearned /(double)

total learned , cells learned /(double) total learned );
fprintf (stderr , ", "O"u memcells.\n",max cells used );
if (learned file ) fprintf (stderr , ""O"lld learned clauses written to file ‘"O"s’.\n",

learned out , learned name );
if (trivials ) fprintf (stderr , "("O"lld learned clause"O"s trivial.)\n", trivials ,

trivials ≡ 1 ? " was" : "s were");
if (discards ) fprintf (stderr , "("O"lld learned clause"O"s discarded.)\n", discards ,

discards ≡ 1 ? " was" : "s were");
if (subsumptions ) fprintf (stderr , "("O"lld clause"O"s subsumed on−the−fly.)\n",

subsumptions , subsumptions ≡ 1 ? " was" : "s were");
fprintf (stderr , "("O"lld restart"O"s.)\n", actual restarts , actual restarts ≡ 1 ? "" : "s");
}

This code is used in section 2.

8. 〈Close the files 8 〉 ≡
if (out file ) fclose (out file );
if (learned file ) fclose (learned file );
if (restart file ) fclose (restart file );
if (polarity infile ) fclose (polarity infile );
if (polarity outfile ) fclose (polarity outfile );

This code is used in section 2.
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9. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines into all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.

In these temporary tables, each variable is represented by four things: its unique name; its serial number;
the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/
〈Type definitions 9 〉 ≡

typedef union {
char ch8 [8];
uint u2 [2];
ullng lng ;
} octa;
typedef struct tmp var struct {

octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/
} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk ];
} vchunk;

See also sections 10, 28, 29, and 30.

This code is used in section 2.

10. Each clause in the temporary tables is represented by a sequence of one or more pointers to the
tmp var nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The
first literal of a clause is indicated by adding 2. Several of these pointers are represented sequentially in
chunks of memory, which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/
〈Type definitions 9 〉 +≡

typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk ];
} chunk;
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11. 〈Global variables 4 〉 +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
int unaries ; /∗ how many were unary? ∗/
int binaries ; /∗ how many were binary? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/

12. 〈 Initialize everything 12 〉 ≡
gb init rand (random seed );
buf = (char ∗) malloc(buf size ∗ sizeof (char));
if (¬buf ) {

fprintf (stderr , "Couldn’t allocate the input buffer (buf_size="O"d)!\n", buf size );
exit (−2);
}
hash = (tmp var ∗∗) malloc(sizeof (tmp var)� hbits );
if (¬hash ) {

fprintf (stderr , "Couldn’t allocate "O"d hash list heads (hbits="O"d)!\n", 1� hbits , hbits );
exit (−3);
}
for (h = 0; h < 1� hbits ; h++) hash [h] = Λ;

See also section 18.

This code is used in section 2.
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13. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)

All the hashing takes place at the very beginning, and the hash tables are actually recycled before any
SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

〈 Input the clauses 13 〉 ≡
while (1) {

if (¬fgets (buf , buf size , stdin )) break;
clauses ++;
if (buf [strlen (buf )− 1] 6= ’\n’) {

fprintf (stderr , "The clause on line "O"lld ("O".20s...) is too long for me;\n", clauses ,
buf );

fprintf (stderr , " my buf_size is only "O"d!\n", buf size );
fprintf (stderr , "Please use the command−line option b<newsize>.\n");
exit (−4);

}
〈 Input the clause in buf 14 〉;
}
if ((vars � hbits ) ≥ 10) {

fprintf (stderr , "There are "O"lld variables but only "O"d hash tables;\n", vars , 1� hbits );
for (h = hbits + 1; (vars � h) ≥ 10; h++) ;
fprintf (stderr , " maybe you should use command−line option h"O"d?\n", h);
}
clauses −= nullclauses ;
if (clauses ≡ 0) {

fprintf (stderr , "No clauses were input!\n");
exit (−77);
}
if (vars ≥ #80000000) {

fprintf (stderr , "Whoa, the input had "O"llu variables!\n", vars );
exit (−664);
}
if (clauses ≥ #80000000) {

fprintf (stderr , "Whoa, the input had "O"llu clauses!\n", clauses );
exit (−665);
}
if (cells ≥ #100000000) {

fprintf (stderr , "Whoa, the input had "O"llu occurrences of literals!\n", cells );
exit (−666);
}

This code is used in section 2.
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14. 〈 Input the clause in buf 14 〉 ≡
for (j = k = 0; ; ) {

while (buf [j] ≡ ’ ’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’ ’ ∨ buf [j] > ’~’) {

fprintf (stderr , "Illegal character (code #"O"x) in the clause on line "O"lld!\n",
buf [j], clauses );

exit (−5);
}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
〈Scan and record a variable; negate it if i ≡ 1 15 〉;
}
if (k ≡ 0) {

fprintf (stderr , "(Empty line "O"lld is being ignored)\n", clauses );
nullclauses ++; /∗ strictly speaking it would be unsatisfiable ∗/
}
goto clause done ;

empty clause : 〈Remove all variables of the current clause 22 〉;
clause done : cells += k;

if (k ≡ 1) unaries ++;
else if (k ≡ 2) binaries ++;

This code is used in section 13.

15. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)

〈Scan and record a variable; negate it if i ≡ 1 15 〉 ≡
{

register tmp var ∗p;
if (cur tmp var ≡ bad tmp var ) 〈 Install a new vchunk 16 〉;
〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 19 〉;
〈Find cur tmp var~name in the hash table at p 20 〉;
if (p~stamp ≡ clauses ∨ p~stamp ≡ −clauses ) 〈Handle a duplicate literal 21 〉
else {
p~stamp = (i ? −clauses : clauses );
if (cur cell ≡ bad cell ) 〈 Install a new chunk 17 〉;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

This code is used in section 14.
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16. 〈 Install a new vchunk 16 〉 ≡
{

register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc(sizeof (vchunk));
if (¬new vchunk ) {

fprintf (stderr , "Can’t allocate a new vchunk!\n");
exit (−6);

}
new vchunk~prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk~var [0];
bad tmp var = &new vchunk~var [vars per vchunk ];
}

This code is used in section 15.

17. 〈 Install a new chunk 17 〉 ≡
{

register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc(sizeof (chunk));
if (¬new chunk ) {

fprintf (stderr , "Can’t allocate a new chunk!\n");
exit (−7);

}
new chunk~prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk~cell [0];
bad cell = &new chunk~cell [cells per chunk ];
}

This code is used in section 15.

18. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

〈 Initialize everything 12 〉 +≡
for (j = 92; j; j−−)

for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ( );

19. 〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 19 〉 ≡
cur tmp var~name .lng = 0;
for (h = l = 0; buf [j + l] > ’ ’ ∧ buf [j + l] ≤ ’~’; l++) {

if (l > 7) {
fprintf (stderr , "Variable name "O".9s... in the clause on line "O"lld is too long!\n",

buf + j, clauses );
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var~name .ch8 [l] = buf [j + l];
}
if (l ≡ 0) goto empty clause ; /∗ ‘~’ by itself is like ‘true’ ∗/
j += l;
h &= (1� hbits )− 1;

This code is used in sections 15 and 79.
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20. 〈Find cur tmp var~name in the hash table at p 20 〉 ≡
for (p = hash [h]; p; p = p~next )

if (p~name .lng ≡ cur tmp var~name .lng ) break;
if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p~next = hash [h], hash [h] = p;
p~serial = vars ++;
p~stamp = 0;
}

This code is used in section 15.

21. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

〈Handle a duplicate literal 21 〉 ≡
{

if ((p~stamp > 0) ≡ (i > 0)) goto empty clause ;
}

This code is used in section 15.

22. An input line that begins with ‘~ ’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

〈Remove all variables of the current clause 22 〉 ≡
while (k) {
〈Move cur cell backward to the previous cell 23 〉;
k−−;
}
if ((buf [0] 6= ’~’) ∨ (buf [1] 6= ’ ’))

fprintf (stderr , "(The clause on line "O"lld is always satisfied)\n", clauses );
nullclauses ++;

This code is used in section 14.

23. 〈Move cur cell backward to the previous cell 23 〉 ≡
if (cur cell > &cur chunk~cell [0]) cur cell −−;
else {

register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk~prev ; free (old chunk );
bad cell = &cur chunk~cell [cells per chunk ];
cur cell = bad cell − 1;
}

This code is used in sections 22 and 50.

24. 〈Move cur tmp var backward to the previous temporary variable 24 〉 ≡
if (cur tmp var > &cur vchunk~var [0]) cur tmp var −−;
else {

register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk~prev ; free (old vchunk );
bad tmp var = &cur vchunk~var [vars per vchunk ];
cur tmp var = bad tmp var − 1;
}

This code is used in section 54.
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25. 〈Report the successful completion of the input phase 25 〉 ≡
fprintf (stderr , "("O"lld variables, "O"lld clauses, "O"llu literals successfully read)\n",

vars , clauses , cells );

This code is used in section 2.
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26. SAT solving, version 13. The methods used in this program have much in common with what
we’ve seen before in SAT0, SAT1, etc.; yet conflict-driven clause learning is also rather different. So we might
as well derive everything from first principles.

As usual, our goal is to find strictly distinct literals that satisfy all of the given clauses, or to prove that
those clauses can’t all be satisfied. Thus our subgoal, after having created a “trail” l0l1 . . . lt of literals that
don’t falsify any clause, will be to extend that sequence until finding a solution, and to do this without failing
unless no solution exists.

If there’s a clause c of the form l ∨ ā1 ∨ · · · ∨ āk, where a1 through ak are in the trail but l isn’t, we
append l to the trail and say that c is its “reason.” This operation, often called unit propagation, is basic to
our program; we shall simply call it forcing. (We’re forced to make l true, if a1 through ak are true, because
c must be satisfied.) A conflict occurs if the complementary literal l̄ is already in the trail, because l can’t
be both true and false; but let’s assume for now that no conflicts arise.

If no such forcing clause exists, and if the clauses aren’t all satisfied, we choose a new distinct literal
in some heuristic way, and append it to the trail with a “reason” of 0. Such literals are called decisions.
They partition the trail into a sequence of decision levels, with literal lj belonging to level d if and only if
id ≤ j < id+1. In general 0 ≤ i1 < i2 < · · · ; and we also define i0 = 0. (Level 0 is special; it contains literals
that are forced by clauses of length 1, if such clauses exist. Any such literals are unconditionally true. Every
other level begins with exactly one decision.)

If the reason for l includes the literal l̄′, we say “l depends directly on l′,” and we write l � l′. And if
there’s a chain of one or more direct dependencies l � l1 � · · · � lk = l′, we write l �+ l′ and say simply
that “l depends on l′.” For example, given the three clauses a and ā ∨ b and b̄ ∨ c̄ ∨ d, we might begin the
trail with l0l1l2l3 = abcd, where the first clause is the reason for a, the second clause is the reason for b, and
the third clause is the reason for d, while c is a decision. Then d � c and d � b and b � a; hence d �+ a.

Notice that a literal can depend only on literals that precede it in the trail. Furthermore, every literal l
that’s forced at level d > 0 depends directly on some other literal on that same level; hence l must necessarily
depend on the d th decision.

The reason for reasons is that we need to deal with conflicts. We will see that every conflict allows us to
construct a new clause c that must be true whenever the existing clauses are satisfiable, although c itself
does not contain any existing clause. Therefore we can “learn” c by adding it to the existing clauses, and
we can try again. This learning process can’t go on forever, because only finitely many clauses are possible.
Sooner or later we will therefore either find a solution or learn the empty clause.

A conflict clause cd on decision level d has the form l̄ ∨ ā1 ∨ · · · ∨ āk, where l and all the a’s belong to the
trail; furthermore l and at least one ai belong to level d. We can assume that l is rightmost in the trail, of
all the literals in cd. Hence l cannot be the d th decision; and it has a reason, say l∨ ā′1 ∨ · · · ∨ ā′k′ . Resolving
cd with this reason gives the clause c = ā1 ∨ · · · ∨ āk ∨ ā′1 ∨ · · · ∨ ā′k′ , which includes at least one literal l̄′

for which l′ is on level d. If more than one such literal is present, we can resolve c with the reason of a
rightmost l′; the result will involve negations of literals that are still further to the left. By repeating this
process we’ll eventually obtain c of the form l̄′ ∨ b̄1 ∨ · · · ∨ b̄r, where l′ is on level d and where b1 through br
are on lower levels.

Such a c is learnable, as desired, because it can’t contain any existing clause. (Every subclause of c,
including c itself, would have given us something to force at a lower level.) We can now discard levels > d′ of
the trail, where d′ is the maximum level of b1 through br; and we append l̄′ to the end of level d′, with c as
its reason. The forcing process now resumes at level d′, as if the learned clause had been present all along.

Okay, that’s the basic idea of conflict-driven clause learning. Many other issues will come up as we refine
it, of course. For example, we’ll see that the clause c can often be simplified by removing one or more of its
literals b̄i. And we’ll want to “unlearn” clauses that outlive their usefulness.
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27. What data structures support this procedure? We obviously need to represent the trail, as well as the
levels, the values, and the reasons for each of its literals.

A principal concern is to make forcing as fast as possible. Many applications involve numerous binary
clauses (that is, clauses of length 2); and binary clauses make forcing quite easy. So we should have a special
mechanism to derive binary implications quickly.

Long clauses are also important. (Even if they aren’t common in the input, the clauses that we learn may
well turn out to involve dozens of literals.) “Watch lists” provide a good way to recognize when such clauses
become ready for forcing: We choose two literals in each long clause, neither of which is false, and we pay
no attention to that clause until one of its watched literals becomes false. In the latter case, we’ll be able
to watch it with another literal, unless the clause has become true or it’s ready to force something. (We’ve
used a similar idea, but with only one watched literal per clause, in SAT0W and SAT10.)

We’ll want a good heuristic for choosing the decision literals. This program adopts the strategy of Eén and
Sörensson’s MiniSAT, which associates a floating-point activity score with each variable, and uses a heap to
choose the most active variable.

Learned clauses also have a measure of clause quality devised by Gilles Audemard and Laurent Simon.
The original clauses are static and stay in place, but we must periodically decide which of the learned clauses
to keep.

〈Global variables 4 〉 +≡
cel ∗mem ; /∗ master array of clause data ∗/
uint memsize ; /∗ the number of cells allocated for it ∗/
uint min learned ; /∗ boundary between original and learned clauses ∗/
uint first learned ; /∗ address of the first learned clause ∗/
uint max learned ; /∗ the first unused position of mem ∗/
int max lit ; /∗ value of the largest legal literal ∗/
uint ∗bmem ; /∗ binary clause data ∗/
literal ∗lmem ; /∗ attributes of literals ∗/
variable ∗vmem ; /∗ attributes of variables ∗/
uint ∗heap ; /∗ priority queue for sorting variables by their activity ∗/
int hn ; /∗ number of items currently in the heap ∗/
uint ∗trail ; /∗ literals currently assumed, or forced by those assumptions ∗/
int eptr ; /∗ just past the end of the trail ∗/
int ebptr ; /∗ just past where binary propagations haven’t been done yet ∗/
int lptr ; /∗ just past where we’ve checked nonbinary propagations ∗/
int lbptr ; /∗ just past where we’ve checked binary propagations ∗/
char ∗history ; /∗ type of assertion, for diagnostic printouts ∗/
int llevel ; /∗ twice the current level ∗/
int ∗leveldat ; /∗ where levels begin; also conflict data on full runs ∗/
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28. Binary clauses u∨v are represented by putting v into a list associated with ū and u into a list associated
with v̄. These “binary implication” lists are created once and for all at the beginning of the run, as explained
below.

Longer clauses (and binary clauses that are learned later) are represented in a big array mem of 32-
bit integers. (Entries of mem are often called “cells” in this documentation.) The literals of clause c are
mem [c].lit , mem [c + 1].lit , mem [c + 2].lit , etc.; the first two of these are “watching” c. The number of
literals, size (c), is mem [c − 1].lit ; and we keep links to other clauses being watched by the same literals in
link0 (c) = mem [c− 2].lit and link1 (c) = mem [c− 3].lit .

(Incidentally, this linked structure for watch lists was originally introduced in PicoSAT by Armin Biere
[Journal on Satisfiability, Boolean Modeling and Computation 4 (2008), 75–97]. Nowadays the fastest
solvers use a more complicated mechanism called “blocking literals,” due to Niklas Sörensson, which is faster
because it is more cache friendly. However, I’m sticking to linked lists, because (1) they don’t need dynamic
storage allocation of sequential arrays; (2) they use fewer memory accesses; and (3) on modern multithreaded
machines they can be implemented so as to avoid the cache misses, by starting up threads whose sole purpose
is to preload the link-containing cells into the cache. I expect that software to facilitate such transformations
will be widely available before long.)

Sometimes we learn that a clause can be strengthened by removing one of its literals. In such cases we
add sign bit to the surplus literal, swap it to the end of the clause, and decrease the size field. Except for
such deleted literals, the sign bit of every cell in mem should be zero. (The earliest cell of a learned clause c
is the nonnegative floating-point value activ (c). The final clause should be followed by a zero cell, so that
garbage at the end isn’t confused with a deleted literal.)

If c is the current reason for literal l, its first literal mem [c].lit is always equal to l. This condition makes
it easy to tell if a given clause plays an important role in the current trail.

A learned clause is identifiable by the condition c ≥ min learned . Such clauses have additional information,
range (c) = mem [c − 4].lit and activ (c) = mem [c − 5].flt , which will help us decide whether or not to keep
them after memory has begun to fill up.

#define size (c) mem [(c)− 1].lit
#define link0 (c) mem [(c)− 2].lit
#define link1 (c) mem [(c)− 3].lit
#define clause extra 3 /∗ every clause has a 3-cell preamble ∗/
#define sign bit #80000000

#define range (c) mem [(c)− 4].lit
#define activ (c) mem [(c)− 5].flt
#define activ as lit (c) ((ullng) mem [(c)− 5].lit � 32)
#define learned supplement 2 /∗ learned clauses have this many more cells in their preamble ∗/
#define learned extra (clause extra + learned supplement ) /∗ preamble length ∗/
〈Type definitions 9 〉 +≡

typedef union {
uint lit ;
float flt ;
} cel;
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29. The variables are numbered from 1 to n. The literals corresponding to variable k are k+k and k+k+1,
standing respectively for v and v̄ if the kth variable is v.

Several different kinds of data are maintained for each variable: its eight-character name ; its activity
score (used to indicate relative desirability for being chosen to make the next decision); its current value ,
which also encodes the level at which the value was set; its current location, tloc , in the trail; and its current
location, hloc , in the heap (which is used to find a maximum activity score). There’s also oldval and stamp ,
which will be explained later.

#define bar (l) ((l)⊕ 1)
#define thevar (l) ((l)� 1)
#define litname (l) (l) & 1 ? "~" : "", vmem [thevar (l)].name .ch8 /∗ used in printouts ∗/
#define poslit (v) ((v)� 1)
#define neglit (v) (((v)� 1) + 1)
#define unset #ffffffff /∗ value when the variable hasn’t been assigned ∗/
#define isknown (l) (vmem [thevar (l)].value 6= unset )
#define iscontrary (l) ((vmem [thevar (l)].value ⊕ (l)) & 1)

〈Type definitions 9 〉 +≡
typedef struct {

octa name ;
double activity ;
uint value ;
int tloc ;
int hloc ; /∗ is −1 if the variable isn’t in the heap ∗/
uint oldval ;
uint stamp ;
uint filler ; /∗ not used, but gives octabyte alignment ∗/
} variable;

30. Special data for each literal goes into lmem , containing the literal’s reason for being true, the first
clause (if any) that it watches, and the boundaries of its binary implications in bmem .

〈Type definitions 9 〉 +≡
typedef struct {

int reason ; /∗ is negative for binary reasons, otherwise clause number ∗/
uint watch ; /∗ head of the list of clauses watched by this literal ∗/
uint bimp start ; /∗ where binary implications begin in bmem ∗/
uint bimp end ; /∗ just after where they end (or zero if there aren’t any) ∗/
} literal;
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31. Here is a subroutine that prints the binary implicant data for a given literal. (Used only when
debugging.)

〈Subroutines 31 〉 ≡
void print bimp(int l)
{

register uint la ;

printf (""O"s"O".8s("O"d) −>", litname (l), l);
if (lmem [l].bimp end ) {

for (la = lmem [l].bimp start ; la < lmem [l].bimp end ; la ++)
printf (" "O"s"O".8s("O"d)", litname (bmem [la ]), bmem [la ]);

}
printf ("\n");
}

See also sections 32, 33, 34, 39, 42, 43, 44, and 71.

This code is used in section 2.

32. Similarly, we can print the numbers of all clauses that l is currently watching.

〈Subroutines 31 〉 +≡
void print watches for (int l)
{

register uint c;

printf (""O"s"O".8s("O"d) watched in", litname (l), l);
for (c = lmem [l].watch ; c; ) {

printf (" "O"u", c);
if (mem [c].lit ≡ l) c = link0 (c);
else c = link1 (c);

}
printf ("\n");
}
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33. And we also sometimes need to see the literals of a given clause.

〈Subroutines 31 〉 +≡
void print clause (uint c)
{

register int k, l;

printf (""O"u:", c);
if (c < clause extra ∨ c ≥ max learned ) {

printf (" clause "O"d doesn’t exist!\n", c);
return;

}
for (k = 0; k < size (c); k++) {
l = mem [c+ k].lit ;
if (l < 2 ∨ l > max lit ) {

printf (" BAD!\n");
return;

}
printf (" "O"s"O".8s("O"u)", litname (l), l);

}
while (mem [c+ k].lit & sign bit ) {
l = mem [c+ k].lit ⊕ sign bit ;
if (l < 2 ∨ l > max lit ) {

printf (" !BAD!\n");
return;

}
printf (" !"O"s"O".8s("O"u)", litname (l), l);
k++;

}
printf ("\n");
}

34. Speaking of debugging, here’s a routine to check if the redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 31 〉 +≡

void sanity (int eptr )
{

register uint k, l, c, endc , u, v, clauses , watches , vals , llevel ;

〈Check all clauses for spurious data 35 〉;
〈Check the watch lists 36 〉;
〈Check the sanity of the heap 72 〉;
〈Check the trail 37 〉;
〈Check the variables 38 〉;
}
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35. 〈Check all clauses for spurious data 35 〉 ≡
for (clauses = k = 0, c = clause extra ; c < min learned ; k = c, c = endc + clause extra ) {

endc = c+ size (c);
clauses ++;
if (link0 (c) ≥ max learned ) {

fprintf (stderr , "bad link0("O"u)!\n", c);
return;

}
if (link1 (c) ≥ max learned ) {

fprintf (stderr , "bad link1("O"u)!\n", c);
return;

}
if (size (c) < 2) fprintf (stderr , "size("O"u)="O"d!\n", c, size (c));
for (k = 0; k < size (c); k++)

if (mem [c+ k].lit < 2 ∨mem [c+ k].lit > max lit )
fprintf (stderr , "bad lit "O"d of "O"d!\n", k, c);

while (mem [c+ k].lit & sign bit ) {
if (mem [c+ k].lit < 2 + sign bit ∨mem [c+ k].lit > max lit + sign bit )

fprintf (stderr , "bad deleted lit "O"d of "O"d!\n", k, c);
k++, endc ++;

}
}
if (c 6= min learned ) fprintf (stderr , "bad last unlearned clause ("O"d)!\n", k);
else {

for (k = 0, c = first learned ; c < max learned ; k = c, c = endc + learned extra ) {
endc = c+ size (c);
clauses ++;
if (link0 (c) ≥ max learned ) {

fprintf (stderr , "bad link0("O"u)!\n", c);
return;

}
if (link1 (c) ≥ max learned ) {

fprintf (stderr , "bad link1("O"u)!\n", c);
return;

}
if (size (c) < 2) fprintf (stderr , "size("O"u)="O"d!\n", c, size (c));
for (k = 0; k < size (c); k++)

if (mem [c+ k].lit < 2 ∨mem [c+ k].lit > max lit )
fprintf (stderr , "bad lit "O"d of "O"d!\n", k, c);

while (mem [c+ k].lit & sign bit ) {
if (mem [c+ k].lit < 2 + sign bit ∨mem [c+ k].lit > max lit + sign bit )

fprintf (stderr , "bad deleted lit "O"d of "O"d!\n", k, c);
k++, endc ++;

}
}
if (c 6= max learned ) fprintf (stderr , "bad last learned clause ("O"d)!\n", k);
if (mem [c− learned extra ].lit ) fprintf (stderr , "missing zero at end of mem!\n");
}

This code is used in section 34.
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36. In really bad cases this routine will get into a loop. I try to avoid segmentation faults, but not loops.

〈Check the watch lists 36 〉 ≡
for (watches = 0, l = 2; l ≤ max lit ; l++) {

for (c = lmem [l].watch ; c; ) {
watches ++;
if (c < clause extra ∨ c ≥ max learned ) {

fprintf (stderr , "clause "O"u in watch list "O"u out of range!\n", c, l);
return;

}
if (mem [c].lit ≡ l) c = link0 (c);
else if (mem [c+ 1].lit ≡ l) c = link1 (c);
else {

fprintf (stderr , "clause "O"u improperly on watch list "O"u!\n", c, l);
return;

}
}
}
if (watches 6= clauses + clauses )

fprintf (stderr , ""O"u clauses but "O"u watches!\n", clauses ,watches );

This code is used in section 34.
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37. 〈Check the trail 37 〉 ≡
for (k = llevel = 0; k < eptr ; k++) {
l = trail [k];
if (l < 2 ∨ l > max lit ) {

fprintf (stderr , "bad lit "O"u in trail["O"u]!\n", l, k);
return;

}
if (vmem [thevar (l)].tloc 6= k) fprintf (stderr , ""O"s"O".8s has bad tloc ("O"d not "O"d)!\n",

litname (l), vmem [thevar (l)].tloc , k);
if (k ≡ leveldat [llevel + 2]) {

llevel += 2;
if (lmem [l].reason )

fprintf (stderr , ""O"s"O".8s("O"u), level "O"u, shouldn’t have reason!\n", litname (l),
l, llevel � 1);

} else {
if (llevel ∧ ¬lmem [l].reason ) fprintf (stderr ,

""O"s"O".8s("O"u), level "O"u, should have reason!\n", litname (l), l, llevel � 1);
}
if (lmem [bar (l)].reason ) fprintf (stderr ,

""O"s"O".8s("O"u), level "O"u, comp has reason!\n", litname (l), l, llevel � 1);
if (vmem [thevar (l)].value 6= llevel + (l & 1))

fprintf (stderr , ""O"s"O".8s("O"u), level "O"u, has bad value!\n", litname (l), l, llevel � 1);
if (llevel ) {

if (lmem [l].reason ≤ 0) {
if (lmem [l].reason ≡ −1 ∨ lmem [l].reason < −max lit )

fprintf (stderr , ""O"s"O".8s("O"u), level "O"u, has wrong binary reason ("O"u)!\n",
litname (l), l, llevel � 1, c);

} else {
c = lmem [l].reason ;
if (mem [c].lit 6= l)

fprintf (stderr , ""O"s"O".8s("O"u), level "O"u, has wrong reason ("O"u)!\n",
litname (l), l, llevel � 1, c);

u = bar (mem [c+ 1].lit );
if (vmem [thevar (u)].value 6= llevel + (u& 1))

fprintf (stderr , ""O"s"O".8s("O"u), level "O"u, has bad reason ("O"u)!\n",
litname (l), l, llevel � 1, c);

}
}
}

This code is used in section 34.

38. 〈Check the variables 38 〉 ≡
for (vals = 0, v = 1; v ≤ vars ; v++) {

if (vmem [v].value > llevel + 1) {
if (vmem [v].value 6= unset ) fprintf (stderr , "strange val "O".8s (level "O"u)!\n",

vmem [v].name .ch8 , vmem [v].value � 1);
else if (vmem [v].hloc < 0)

fprintf (stderr , ""O".8s should be in the heap!\n", vmem [v].name .ch8 );
} else vals ++;
}
if (vals 6= eptr ) fprintf (stderr , "I found "O"u values, but eptr="O"u!\n", vals , eptr );

This code is used in section 34.
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39. The print stats subroutine presents a digest of the current goings-on. First it shows the number of
literals learned at level zero (z). Then it shows recent smoothed-average values of decision depth (d), trail
length (t), mems per conflict (m), propagations per conflict (p), resolutions per conflict (r), literals per
learned clause (L and l, where the latter is restricted to nontrivial clauses), glucose per learned clause (g),
and clauses of length six or less per learned clause (s), together with the recent agility (a). For my own
edification I also estimate mems per propagation (m/p).

#define two to the 32 4294967296.0

〈Subroutines 31 〉 +≡
void print stats (void)
{

register double mpc = mems per confl , ppc = props per confl ;

fprintf (stderr , "z="O"d d="O".1f t="O".1f m="O".1f p="O".1f m/p="O".1f", leveldat [2],
(double) depth per decision/two to the 32 , (double) trail per decision/two to the 32 ,
mpc/two to the 32 , ppc/two to the 32 ,mpc/ppc);

fprintf (stderr , " r="O".1f L="O".1f l="O".1f g="O".1f s="O".2f a="O".2f\n", (double)
res per confl /two to the 32 , (double) lits per confl /two to the 32 ,
(double) lits per nontriv /two to the 32 , (double) glucose per confl /two to the 32 , (double)
short per confl /two to the 32 , (double) agility/two to the 32 );

}

40. We represent the statistics σ = (x0+x1ζ+x2ζ
2+· · · )/(1+ζ+ζ2+· · · ), for various integer quantities x,

as 64-bit unsigned integers with 32 bits of fraction. Here xk denotes the value of x at the k-from-last conflict,
and ζ is the damping factor 1− 2−7.

Thus, to update σ with a new value of x at conflict time, we replace it by ζσ + 232x/(1 + ζ + ζ2 + · · · ) =
σ − σ/27 + 225x.

〈Update the smoothed-average stats after a clause has been learned 40 〉 ≡
mems per confl += −(mems per confl � 7) + ((mems −mems at prev confl )� 25);
mems at prev confl = mems ;
props per confl += −(props per confl � 7) + ((ullng) props � 25);
props = 0;
res per confl += −(res per confl � 7) + ((ullng) resols � 25);
lits per confl += −(lits per confl � 7) + ((ullng) learned size � 25);
if (¬trivial learning ) lits per nontriv += −(lits per nontriv � 7) + ((ullng) learned size � 25);
short per confl += −(short per confl � 7) + (learned size > 6 ? 0 : 1� 25);
glucose per confl += −(glucose per confl � 7) + ((ullng) clevels � 25);

This code is used in section 102.

41. 〈Global variables 4 〉 +≡
ullng depth per decision ; /∗ smoothed average of llevel � 1 at decision time ∗/
ullng trail per decision ; /∗ smoothed average of eptr at decision time ∗/
ullng mems per confl , lits per confl , lits per nontriv ; /∗ smoothed averages ∗/
ullng res per confl , glucose per confl ; /∗ more smoothies ∗/
ullng props per confl = two to the 32 ; /∗ this one ought to be nonzero ∗/
uint short per confl ; /∗ smoothed probability of learned clause being short ∗/
uint agility ; /∗ smoothed probability of forced flips in value ∗/
ullng mems at prev confl ; /∗ mems at the previous update ∗/
uint props ; /∗ propagations since the previous update ∗/
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42. In long runs it’s helpful to know how far we’ve gotten. A numeric code summarizes the histories of
literals that appear in the current trail: 0 or 1 means that we’re trying to set a variable true or false, as a
decision at the beginning of a level; 2 or 3 is similar, but after we’ve learned that the decision was wrong
(hence we’ve learned a clause that has forced the opposite decision); 4 or 5 is similar, but when the value was
forced by the decision at the previous decision node; 6 or 7 is similar, but after we learned that a previous
decision forces this one. (In the latter case, the learned clause forced a variable that was not the decision
variable at its level.) This code is also used for unit clauses in the input.

A special history array is used to provide these base codes (0, 2, 4, or 6). No mems are assessed for
maintaining history , because it isn’t used in any decisions taken by the algorithm; it’s purely for diagnostic
purposes.

The variable trail marker marks a place in the trail that I’m trying to study. This subroutine inserts
a vertical line at that point, so that I can watch where it goes. (Maybe other users might even find it
informative some day, who knows?)

Note: These codes are analogous to similar codes in SAT0, SAT0W, SAT10, and SAT11. But they don’t
really give an easy-to-read picture of progress, as they did in the others, because they don’t increase lexico-
graphically in the presence of restarts. Therefore they are displayed only if the user has set print state cutoff
to a positive value, using the command-line parameter H.

〈Subroutines 31 〉 +≡
void print state (int eptr )
{

register uint j, k;

fprintf (stderr , " after "O"lld mems:",mems );
if (print state cutoff ) {

for (k = 0; k < eptr ; k++) {
if (k ≡ trail marker ) fprintf (stderr , "|");
fprintf (stderr , ""O"d", history [k] + (trail [k] & 1));
if (k ≥ print state cutoff ) {

fprintf (stderr , "..."); break;
}

}
fprintf (stderr , "\n");

}
fprintf (stderr , " ");
print stats ( );
fflush (stderr );
}
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43. We might also like to see the complete trail, including names and reasons.

〈Subroutines 31 〉 +≡
void print trail (int eptr )
{

register int k, l;

for (k = 0; k < eptr ; k++) {
l = trail [k];
if (k ≥ vars ∨ l < 2 ∨ l > max lit ) return;
fprintf (stderr , ""O"d: "O"d "O"d "O"s"O".8s("O"d)", k, history [k] + (l & 1),

vmem [thevar (l)].value � 1, litname (l), l);
if (lmem [l].reason > 0) {

if ((vmem [thevar (l)].value � 1) ∨ lmem [l].reason < min learned )
fprintf (stderr , " #"O"u\n", lmem [l].reason );

else fprintf (stderr , " learned\n"); /∗ learned at root level ∗/
} else if (lmem [l].reason < 0) fprintf (stderr , " <− "O"s"O".8s\n", litname (−lmem [l].reason ));
else fprintf (stderr , "\n");

}
}

44. Here’s a diagnostic routine that runs through all the nonbinary, nonlearned clauses, printing any that
are unsatisfied with respect to the current partial assignment of values to variables.

〈Subroutines 31 〉 +≡
void print unsat (void)
{

register int c, endc , k, l;

for (c = clause extra ; c < min learned ; c = endc + clause extra ) {
endc = c+ size (c);
for (k = endc − 1; k ≥ c; k−−) {
l = mem [k].lit ;
if (isknown (l) ∧ ¬iscontrary (l)) break;

}
if (k < c) { /∗ clause c not satisfied ∗/

fprintf (stderr , ""O"d:", c);
for (k = 0; k < size (c); k++) {
l = mem [c+ k].lit ;
if (¬isknown (l)) fprintf (stderr , " "O"s"O".8s", litname (l));

}
fprintf (stderr , " |"); /∗ the remaining literals are false ∗/
for (k = 0; k < size (c); k++) {
l = mem [c+ k].lit ;
if (isknown (l)) fprintf (stderr , " "O"s"O".8s", litname (l));

}
fprintf (stderr , "\n");

}
while (mem [endc ].lit & sign bit ) endc ++;

}
}
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45. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks. The code below is, of course, similar to what has worked
in previous programs of this series.

〈Set up the main data structures 45 〉 ≡
〈Allocate vmem and heap 46 〉;
if (polarity infile ) 〈 Initialize the heap from a file 79 〉
else 〈 Initialize the heap randomly 78 〉;
〈Allocate the other main arrays 47 〉;
〈Copy all the temporary cells to the mem and bmem and trail arrays in proper format 49 〉;
〈Copy all the temporary variable nodes to the vmem array in proper format 54 〉;
〈Check consistency 55 〉;
〈Allocate the auxiliary arrays 57 〉;

This code is used in section 2.

46. 〈Allocate vmem and heap 46 〉 ≡
vmem = (variable ∗) malloc((vars + 1) ∗ sizeof (variable));
if (¬vmem ) {

fprintf (stderr , "Oops, I can’t allocate the vmem array!\n");
exit (−12);
}
bytes += (vars + 1) ∗ sizeof (variable);
for (k = 1; k ≤ vars ; k++) o, vmem [k].value = unset , vmem [k].tloc = −1;
heap = (uint ∗) malloc(vars ∗ sizeof (uint));
if (¬heap) {

fprintf (stderr , "Oops, I can’t allocate the heap array!\n");
exit (−11);
}
bytes += vars ∗ sizeof (uint);

This code is used in section 45.
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47. 〈Allocate the other main arrays 47 〉 ≡
free (buf ); free (hash ); /∗ a tiny gesture to make a little room ∗/
〈Figure out how big mem ought to be 48 〉;
mem = (cel ∗) malloc(memsize ∗ sizeof (cel));
if (¬mem ) {

fprintf (stderr , "Oops, I can’t allocate the big mem array!\n");
exit (−10);
}
bytes += max cells used ∗ sizeof (cel);
max lit = vars + vars + 1;
lmem = (literal ∗) malloc((max lit + 1) ∗ sizeof (literal));
if (¬lmem ) {

fprintf (stderr , "Oops, I can’t allocate the lmem array!\n");
exit (−13);
}
bytes += (max lit + 1) ∗ sizeof (literal);
trail = (uint ∗) malloc(vars ∗ sizeof (uint));
if (¬trail ) {

fprintf (stderr , "Oops, I can’t allocate the trail array!\n");
exit (−14);
}
bytes += vars ∗ sizeof (uint);

See also section 56.

This code is used in section 45.
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48. The mem array will contain 2k−1 < 231 cells of four bytes each, where k is the parameter memk max ;
this parameter is memk max default (currently 26) by default, and changeable by the user via m on the
command line. (Apology: This program is for my own use in experiments, so I haven’t bothered to give it
a more user-friendly interface.)

It will begin with data for all clauses of length 3 or more; then come the learned clauses, which have
slightly longer preambles. During the initialization, some of the eventual space for learned clauses is used
temporarily to hold the binary clause information.

We will record in bytes and max cells used only the number of cells actually utilized; this at least gives
the user some clue about how big m should be.

#define memk max default 26 /∗ allow 64 million cells in mem by default ∗/
〈Figure out how big mem ought to be 48 〉 ≡
{

ullng proto memsize = (clauses − unaries − binaries ) ∗ clause extra + (cells − unaries − 2 ∗ binaries ) +
clause extra ;

min learned = proto memsize ;
proto memsize += 2 ∗ binaries + learned supplement ;
if (proto memsize ≥ #80000000) {

fprintf (stderr , "Sorry, I can’t handle "O"llu cells (2^31 is my limit)!\n",
proto memsize );

exit (−665);
}
max cells used = proto memsize − learned supplement + 2;
first learned = max learned = min learned + learned supplement ;
memsize = 1� memk max ;
if (max cells used > memsize ) {

fprintf (stderr , "Immediate memory overflow (memsize="O"u<"O"u), please increase m!\n",
memsize ,max cells used );

exit (−666);
}
if (verbose & show details ) fprintf (stderr , "(learned clauses begin at "O"u)\n",first learned );
}

This code is used in section 47.



§49 SAT13 INITIALIZING THE REAL DATA STRUCTURES 29

49. Binary data is copied temporarily into cells starting at min learned + 2. (The ‘ + 2’ is needed because
the final clause processed is input with c = min learned .)

〈Copy all the temporary cells to the mem and bmem and trail arrays in proper format 49 〉 ≡
eptr = 0; /∗ empty the trail in preparation for unit clauses ∗/
for (l = 2; l ≤ max lit ; l++) oo , lmem [l].reason = lmem [l].watch = lmem [l].bimp end = 0;
for (c = clause extra , j = clauses , jj = min learned + 2; j; j−−) {
k = 0;
〈 Insert the cells for the literals of clause c 50 〉;
if (k ≤ 2) 〈Do special things for unary and binary clauses 51 〉
else {
o, size (c) = k;
l = mem [c].lit ;
ooo , link0 (c) = lmem [l].watch , lmem [l].watch = c;
l = mem [c+ 1].lit ;
ooo , link1 (c) = lmem [l].watch , lmem [l].watch = c;
c += k + clause extra ;

}
}
o,mem [c− clause extra ].lit = 0; /∗ put zero at end of mem ∗/
if (c 6= min learned ) {

fprintf (stderr , "Oh oh, I didn’t load the correct number of cells ("O"u:"O"u)!\n", c,
min learned );

exit (−17);
}
if (jj 6= max cells used ) {

fprintf (stderr , "Oh oh, I miscounted binaries somehow ("O"u:"O"u)!\n", jj ,max cells used );
exit (−18);
}
〈Reformat the binary implications 53 〉;

This code is used in section 45.

50. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

〈 Insert the cells for the literals of clause c 50 〉 ≡
for (i = 0; i < 2; ) {
〈Move cur cell backward to the previous cell 23 〉;
i = hack out (∗cur cell );
p = hack clean (∗cur cell )~serial ;
p += p+ (i& 1) + 2;
o,mem [c+ k++].lit = p;
}

This code is used in section 49.
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51. 〈Do special things for unary and binary clauses 51 〉 ≡
{

if (k < 2) 〈Define mem [c].lit at level 0 52 〉
else {
l = mem [c].lit , ll = mem [c+ 1].lit ; /∗ no mem charged for these ∗/
oo , lmem [bar (l)].bimp end ++;
oo , lmem [bar (ll )].bimp end ++;
o,mem [jj ].lit = l,mem [jj + 1].lit = ll , jj += 2; /∗ copy the literals temporarily ∗/

}
}

This code is used in section 49.

52. We have to watch for degenerate cases: Unit clauses in the input might be duplicated or contradictory.

〈Define mem [c].lit at level 0 52 〉 ≡
{
l = mem [c].lit , v = thevar (l);
if (o, vmem [v].value ≡ unset ) {
o, vmem [v].value = l & 1, vmem [v].tloc = eptr ;
o, history [eptr ] = 6, trail [eptr ++] = l;

} else if (vmem [v].value 6= (l & 1)) goto unsat ;
}

This code is used in section 51.

53. 〈Reformat the binary implications 53 〉 ≡
for (l = 2, jj = 0; l ≤ max lit ; l++) {
o, k = lmem [l].bimp end ;
if (k) o, lmem [l].bimp start = lmem [l].bimp end = jj , jj += k;
}
for (jj = min learned + 2, j = binaries ; j; j−−) {
o, l = mem [jj ].lit , ll = mem [jj + 1].lit , jj += 2;
ooo , k = lmem [bar (l)].bimp end , bmem [k] = ll , lmem [bar (l)].bimp end = k + 1;
ooo , k = lmem [bar (ll )].bimp end , bmem [k] = l, lmem [bar (ll )].bimp end = k + 1;
}

This code is used in section 49.

54. 〈Copy all the temporary variable nodes to the vmem array in proper format 54 〉 ≡
for (c = vars ; c; c−−) {
〈Move cur tmp var backward to the previous temporary variable 24 〉;
o, vmem [c].name .lng = cur tmp var~name .lng ;
o, vmem [c].stamp = 0;
}

This code is used in section 45.



§55 SAT13 INITIALIZING THE REAL DATA STRUCTURES 31

55. We should now have unwound all the temporary data chunks back to their beginnings.

〈Check consistency 55 〉 ≡
if (cur cell 6= &cur chunk~cell [0] ∨ cur chunk~prev 6= Λ ∨ cur tmp var 6=

&cur vchunk~var [0] ∨ cur vchunk~prev 6= Λ) {
fprintf (stderr , "This can’t happen (consistency check failure)!\n");
exit (−14);
}
free (cur chunk ); free (cur vchunk );

This code is used in section 45.

56. A few arrays aren’t really of “main” importance, but we need to allocate them before incorporating
the clause information into mem .

〈Allocate the other main arrays 47 〉 +≡
bmem = (uint ∗) malloc(binaries ∗ 2 ∗ sizeof (uint));
if (¬bmem ) {

fprintf (stderr , "Oops, I can’t allocate the bmem array!\n");
exit (−16);
}
bytes += binaries ∗ 2 ∗ sizeof (uint);
history = (char ∗) malloc(vars ∗ sizeof (char));
if (¬history ) {

fprintf (stderr , "Oops, I can’t allocate the history array!\n");
exit (−15);
}
bytes += vars ∗ sizeof (char);

57. The other arrays can perhaps make use of the memory chunks that are freed while we’re reformatting
the clause and variable data.

〈Allocate the auxiliary arrays 57 〉 ≡
leveldat = (int ∗) malloc(vars ∗ 2 ∗ sizeof (int));
if (¬leveldat ) {

fprintf (stderr , "Oops, I can’t allocate the leveldat array!\n");
exit (−16);
}
bytes += vars ∗ 2 ∗ sizeof (int);

See also sections 89, 96, 109, and 116.

This code is used in section 45.
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58. Forcing. This program spends most of its time adding literals to the current trail when they are
forced to be true because of earlier items on the trail.

The “inner loop” of the forcing phase tries to derive the consequences of literal l that follow from binary
clauses in the input. At this point l is a literal in the trail. Furthermore lat = lmem [l].bimp end has just
been fetched, and it’s known to be nonzero.

(I apologize for the awkward interface between this loop and its context. Maybe I shouldn’t worry so
much about saving mems in the inner loop. But that’s the kind of guy I am.)

〈Propagate binary implications of l; goto confl if a conflict arises 58 〉 ≡
for (lbptr = eptr ; ; ) {

for (la = lmem [l].bimp start ; la < lat ; la ++) {
o, ll = bmem [la ];
if (o, isknown (ll )) {

if (iscontrary (ll )) {
props ++;
〈Deal with a binary conflict 66 〉;
}

} else {
props ++;
if (verbose & show details )

fprintf (stderr , " "O"s"O".8s −> "O"s"O".8s\n", litname (l), litname (ll ));
o, history [eptr ] = 4, trail [eptr ] = ll ;
o, lmem [ll ].reason = −l;
o, vmem [thevar (ll )].value = llevel + (ll & 1), vmem [thevar (ll )].tloc = eptr ++;
agility −= agility � 13; /∗ use the damping factor 1− 2−13 ∗/
if (o, (vmem [thevar (ll )].oldval + ll ) & 1) agility += 1� 19;

}
}
while (1) {

if (lbptr ≡ eptr ) {
l = 0; break; /∗ kludge for breaking out of two loops ∗/

}
o, l = trail [lbptr ++];
o, lat = lmem [l].bimp end ;
if (lat ) break;

}
if (l ≡ 0) break;
}

This code is used in sections 65 and 127.

59. 〈Global variables 4 〉 +≡
uint lt ; /∗ literal on the trail ∗/
uint lat ; /∗ its bimp end ∗/
uint wa , next wa ; /∗ a clause in its watch list ∗/
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60. The “next to inner loop” of forcing looks for nonbinary clauses that have at most one literal that isn’t
false.

At this point we’re looking at a literal lt that was placed on the trail. Its binary implications were found
at that time; now we want to examine the more complex ones, by looking at all clauses on the watch list of
bar (lt ).

While doing this, we swap the first two literals, if necessary, so that bar (lt ) is the second one watching.
Counting of mems is a bit tricky here: If c is the address of a clause, either mem [c].lit and mem [c+ 1].lit

are in the same octabyte, or link0 (c) and link1 (c), but not both. So we make three memory references when
we’re reading from or storing into all four items.

〈Propagate nonbinary implications of lt ; goto confl if there’s a conflict 60 〉 ≡
o,wa = lmem [bar (lt )].watch ;
if (wa ) {

for (q = 0; wa ; wa = next wa ) {
o, ll = mem [wa ].lit ;
if (ll ≡ bar (lt )) {
o, ll = mem [wa + 1].lit ;
oo ,mem [wa ].lit = ll ,mem [wa + 1].lit = bar (lt );
o,next wa = link0 (wa );
o, link0 (wa ) = link1 (wa ), link1 (wa ) = next wa ;

} else o,next wa = link1 (wa );
〈 If clause wa is satisfied by ll , keep wa on the watch list and continue 63 〉;
for (o, s = size (wa ), j = wa + s− 1; j > wa + 1; j−−) {
o, l = mem [j].lit ;
if (o,¬isknown (l) ∨ ¬iscontrary (l)) break;
if (vmem [thevar (l)].value < 2 ∧ llevel ) 〈Delete l from clause wa 61 〉;

}
if (j > wa + 1) 〈Swap wa to the watch list of l and continue 62 〉;
〈Keep wa on the watch list 64 〉;
〈Force a new value, if appropriate, or goto confl 65 〉;

}
〈Keep wa on the watch list 64 〉; /∗ this terminates the watch list with 0 ∗/
}

This code is used in section 127.

61. The literal l is known to be permanently false, so we seize this opportunity to remove it from the active
memory. (Such deletions will be important later, when we attempt to do “on-the-fly subsumption.”)

At this point, s is the current size of clause wa .

〈Delete l from clause wa 61 〉 ≡
{
o, size (wa ) = −−s;
if (j 6= wa + s) oo ,mem [j].lit = mem [wa + s].lit ; /∗ swap past end of clause ∗/
o,mem [wa + s].lit = l + sign bit ;
}

This code is used in section 60.
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62. 〈Swap wa to the watch list of l and continue 62 〉 ≡
{

if (verbose & show watches ) fprintf (stderr , " "O"s"O".8s watched in "O"d\n", litname (l),wa );
oo ,mem [wa + 1].lit = l,mem [j].lit = bar (lt );
o, link1 (wa ) = lmem [l].watch ;
o, lmem [l].watch = wa ;
continue;
}

This code is used in section 60.

63. We’re looking at clause wa , which is watched by bar (lt ) and ll , where lt is known to be true (at least
with respect to the decisions currently in force).

Consider what happens in the case that literal ll is also true, thereby satisfying clause wa : We can continue
with wa on the watch list of bar (lt ), even though bar (lt ) is false, because this clause will remain satisfied
until backtracking makes lt undefined.

〈 If clause wa is satisfied by ll , keep wa on the watch list and continue 63 〉 ≡
if ((o, isknown (ll )) ∧ ¬iscontrary (ll )) {
〈Keep wa on the watch list 64 〉;
continue;
}

This code is used in section 60.

64. A satisfied clause wa can be watched by a false literal, as noted above. Furthermore, during full
runs we allow clauses to become entirely false; in such cases both watchers must have become false on the
maximum level of all literals in wa .

〈Keep wa on the watch list 64 〉 ≡
if (q ≡ 0) o, lmem [bar (lt )].watch = wa ;
else o, link1 (q) = wa ;
q = wa ;

This code is used in sections 60 and 63.



§65 SAT13 FORCING 35

65. Well, all literals of clause wa , except possibly the first one, did in fact turn out to be false. That first
literal is what the program calls ll , and we’ve already verified that ll isn’t true.

If ll is false, we’ve run into a conflict. Otherwise we will force ll to be true at the current decision level.

〈Force a new value, if appropriate, or goto confl 65 〉 ≡
props ++;
if (isknown (ll )) 〈Deal with a nonbinary conflict 67 〉
else {

if (verbose & show details ) fprintf (stderr , " "O"s"O".8s from "O"d\n", litname (ll ),wa );
o, history [eptr ] = 4, trail [eptr ] = ll ;
o, vmem [thevar (ll )].tloc = eptr ++;
vmem [thevar (ll )].value = llevel + (ll & 1);
agility −= agility � 13; /∗ use the damping factor 1− 2−13 ∗/
if (o, (vmem [thevar (ll )].oldval + ll ) & 1) agility += 1� 19;
o, lmem [ll ].reason = wa ;
o, lat = lmem [ll ].bimp end ;
if (lat ) {
l = ll ;
〈Propagate binary implications of l; goto confl if a conflict arises 58 〉;

}
}

This code is used in section 60.

66. In the case considered here, a conflict has arisen from the binary clause ū∨ v̄, where u = l and v̄ = ll .
This clause is represented only implicitly in the bmem array, not explicitly in mem .

〈Deal with a binary conflict 66 〉 ≡
{

if (verbose & show details )
fprintf (stderr , " "O"s"O".8s −> "O"s"O".8s #\n", litname (l), litname (ll ));

if (full run ∧ llevel ) 〈Record a binary conflict 68 〉
else {
c = −l;
goto confl ;

}
}

This code is used in section 58.

67. 〈Deal with a nonbinary conflict 67 〉 ≡
{

if (verbose & show details ) fprintf (stderr , " "O"s"O".8s from "O"d #\n", litname (ll ),wa );
if (full run ∧ llevel ) 〈Record a nonbinary conflict 69 〉
else {
c = wa ;
goto confl ;

}
}

This code is used in section 65.
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68. During a “full run,” we continue to propagate after finding a conflict. We remember only the first one,
at any given level, putting its clause number into leveldat [llevel + 1].

The “clause number” of a binary clause is considered to be −l, and the value of bar (ll ) is saved in
odd-numbered entries of the conflictdat array.

A stack of levels on which conflicts have occurred is maintained in the even-numbered entries of conflictdat .
The top of this stack is called conflict level .

〈Record a binary conflict 68 〉 ≡
{

if (¬conflict seen ) {
conflict seen = 1;
o, leveldat [llevel + 1] = −l;
o, conflictdat [llevel + 1] = ll ;
conflictdat [llevel ] = conflict level , conflict level = llevel ;

}
}

This code is used in section 66.

69. 〈Record a nonbinary conflict 69 〉 ≡
{

if (¬conflict seen ) {
conflict seen = 1;
o, leveldat [llevel + 1] = wa ;
o, conflictdat [llevel ] = conflict level , conflict level = llevel ;

}
}

This code is used in section 67.
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70. Activity scores. Experience shows that it’s usually a good idea to branch on a variable that has
participated recently in the construction of conflict clauses. More precisely, we try to maximize “activity,”
where the activity of variable v is proportional to the sum of {ρt | v participates in the t th-from-last conflict};
here ρ is a parameter representing the rate of decay by which influential activity decays with time. (Users
can change the default ratio ρ = .95 if desired.)

There’s a simple way to implement this quantity, because activity is also proportional to the sum of
{ρ−t | v participates in the t th conflict}; that sum counts forward in time rather than backward. We can
therefore get proper results by adding var bump to v’s score whenever v participates in a conflict, and then
dividing var bump by ρ after each conflict.

If the activity scores computed in this way become too large, we simply scale them back, so that relative
ratios are preserved.

Incidentally, the somewhat mysterious acronym VSIDS, which stands for “variable state independent
decaying sum,” is often used by insiders to describe this aspect of a CDCL solver. The activity scoring
mechanism adopted here, due to Niklas Eén in the 2005 version of MiniSAT, was inspired by a similar but
less effective VSIDS scheme originally introduced by Matthew Moskewitz in the CHAFF solver.

〈Bump l’s activity 70 〉 ≡
v = thevar (l);
o, av = vmem [v].activity + var bump ;
o, vmem [v].activity = av ;
if (av ≥ 1 · 10100) 〈Rescale all variable activities 83 〉;
o, h = vmem [v].hloc ;
if (h > 0) 〈Sift v up in the heap 73 〉;

This code is used in sections 87, 88, and 95.

71. The heap contains hn variables, ordered in such a way that vmem [x].activity ≥ vmem [y].activity
whenever x = heap [h] and y = heap [2 ∗ h+ 1] or y = heap [2 ∗ h+ 2]. In particular, heap [0] always names a
variable of maximum activity.

〈Subroutines 31 〉 +≡
void print heap(void)
{

register int k;

for (k = 0; k < hn ; k++) {
fprintf (stderr , ""O"d: "O".8s "O"e\n", k, vmem [heap [k]].name .ch8 , vmem [heap [k]].activity );

}
}
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72. 〈Check the sanity of the heap 72 〉 ≡
for (k = 1; k ≤ vars ; k++) {

if (vmem [k].hloc ≥ hn )
fprintf (stderr , "hloc of "O".8s exceeds "O"d!\n", vmem [k].name .ch8 , hn − 1);

else if (vmem [k].hloc ≥ 0 ∧ heap [vmem [k].hloc ] 6= k)
fprintf (stderr , "hloc of "O".8s errs!\n", vmem [k].name .ch8 );

}
for (k = 0; k < hn ; k++) {
v = heap [k];
if (v ≤ 0 ∨ v > vars ) fprintf (stderr , "heap["O"d]="O"d!\n", k, v);
else if (k) {
u = heap [(k − 1)� 1];
if (u > 0 ∧ u ≤ vars ∧ vmem [u].activity < vmem [v].activity )

fprintf (stderr , "heap["O"d]act<heap["O"d]act!\n", (k − 1)� 1, k);
}

}
This code is used in section 34.

73. At this point we assume that av = vmem [v].activity .

〈Sift v up in the heap 73 〉 ≡
{

hp = (h− 1)� 1; /∗ the “parent” of position h ∗/
o, u = heap [hp ];
if (o, vmem [u].activity < av ) {

while (1) {
o, heap [h] = u;
o, vmem [u].hloc = h;
h = hp ;
if (h ≡ 0) break;
hp = (h− 1)� 1;
o, u = heap [hp ];
if (o, vmem [u].activity ≥ av ) break;

}
o, heap [h] = v;
o, vmem [v].hloc = h;
j = 1;

}
}

This code is used in sections 70 and 74.

74. 〈Put v into the heap 74 〉 ≡
{
o, av = vmem [v].activity ;
h = hn ++, j = 0;
if (h > 0) 〈Sift v up in the heap 73 〉;
if (j ≡ 0) oo , heap [h] = v, vmem [v].hloc = h;
}

This code is used in section 128.



§75 SAT13 ACTIVITY SCORES 39

75. With probability rand prob , we select a variable from the heap at random; this policy is a heuristic
designed to avoid getting into a rut. Otherwise we take the variable at the top, because that variable has
maximum activity.

Variables in the heap often have known values, however. If our first choice was one of them, we keep trying
from the top, until we find vmem [v].value ≡ unset .

The variable’s polarity is taken from vmem [v].oldval , because good values from prior experiments tend to
remain good.

As in other programs of this family, the cost of generating 31 random bits is four mems.

#define two to the 31 ((unsigned long) #80000000)

〈Choose the next decision literal, l 75 〉 ≡
if (rand prob thresh ) {

mems += 4, h = gb next rand ( );
if (h < rand prob thresh ) {
〈Set h to a random integer less than hn 76 〉
o, v = heap [h];
if (o, vmem [v].value 6= unset ) h = 0;

} else h = 0;
} else h = 0;
if (h ≡ 0) {

while (1) {
o, v = heap [0];
〈Delete v from the heap 77 〉;
if (o, vmem [v].value ≡ unset ) break;

}
}
o, l = poslit (v) + (vmem [v].oldval & 1);

This code is used in section 124.

76. 〈Set h to a random integer less than hn 76 〉 ≡
{

register unsigned long t = two to the 31 − (two to the 31 mod hn );
register long r;

do {
mems += 4, r = gb next rand ( );

} while (t ≤ (unsigned long) r);
h = r mod hn ;
}

This code is used in sections 75 and 78.
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77. Here we assume that v = heap [0].

〈Delete v from the heap 77 〉 ≡
o, vmem [v].hloc = −1;
if (−−hn ) {
o, u = heap [hn ]; /∗ we’ll move u into the “hole” at position 0 ∗/
o, au = vmem [u].activity ;
for (h = 0, hp = 1; hp < hn ; h = hp , hp = h+ h+ 1) {

oo , av = vmem [heap [hp ]].activity ;
if (hp + 1 < hn ∧ (oo , vmem [heap [hp + 1]].activity > av )) hp ++, av = vmem [heap [hp ]].activity ;
if (au ≥ av ) break;
o, heap [h] = heap [hp ];
o, vmem [heap [hp ]].hloc = h;

}
o, heap [h] = u;
o, vmem [u].hloc = h;
}

This code is used in sections 75 and 137.

78. At the very beginning, all activity scores are zero. We’ll permute the variables randomly in heap , for
the sake of variety.

〈 Initialize the heap randomly 78 〉 ≡
{

if (true prob ≥ 1.0) true prob thresh = #80000000;
else true prob thresh = (int)(true prob ∗ 2147483648.0);
for (k = 1; k ≤ vars ; k++) o, heap [k − 1] = k;
for (hn = vars ; hn > 1; ) {
〈Set h to a random integer less than hn 76 〉;
hn−−;
if (h 6= hn ) {
o, k = heap [h];
ooo , heap [h] = heap [hn ], heap [hn ] = k;

}
}
for (h = 0; h < vars ; h++) {
o, v = heap [h];
o, vmem [v].hloc = h;
if (true prob thresh ∧ (mems += 4, gb next rand ( ) < true prob thresh )) vmem [v].oldval = 0;
else vmem [v].oldval = 1;
o, vmem [v].activity = 0.0;

}
hn = vars ;
}

This code is used in section 45.
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79. Literals that occur in polarity infile must be separated by whitespace, but they can appear on any
number of lines. If the literal isn’t in the hash table, we ignore it. (Perhaps a preprocessor has made this
literal obsolete.)

〈 Initialize the heap from a file 79 〉 ≡
{

if (true prob ≥ 1.0) true prob thresh = #80000000;
else true prob thresh = (int)(true prob ∗ 2147483648.0);
for (q = 0; ; ) {

register tmp var ∗p;
if (fscanf (polarity infile , ""O"s", buf ) 6= 1) break;
if (buf [0] ≡ ’~’) i = j = 1;
else i = j = 0;
〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 19 〉;
for (p = hash [h]; p; p = p~next )

if (p~name .lng ≡ cur tmp var~name .lng ) break;
if (p) {
v = p~serial + 1;
o, vmem [v].oldval = i, vmem [v].hloc = q;
o, heap [q] = v;
o, vmem [v].activity = (vars − q)/(double) vars ;
o, vmem [v].tloc = 0;
q++;

}
}
for (v = 0; q < vars ; q++) {

while (o, vmem [++v].tloc ≡ 0) ; /∗ bypass variables already seen ∗/
vmem [v].hloc = q;
if (true prob thresh ∧ (mems += 4, gb next rand ( ) < true prob thresh )) vmem [v].oldval = 0;
else vmem [v].oldval = 1;
o, heap [q] = v;

}
hn = vars ;
}

This code is used in section 45.

80. 〈Global variables 4 〉 +≡
double var bump = 1.0;
float clause bump = 1.0;
double var bump factor ; /∗ reciprocal of var rho ∗/
float clause bump factor ; /∗ reciprocal of clause rho ∗/

81. Learned clauses also have activity scores. They aren’t used as heavily as the scores for variables; we
look at them only when deciding what clauses to keep after too many learned clauses have accumulated.

〈Bump c’s activity 81 〉 ≡
{

float ac ;

o, ac = activ (c) + clause bump ;
o, activ (c) = ac ;
if (ac ≥ 1 · 1020) 〈Rescale all clause activities 84 〉;
}

This code is used in sections 87 and 93.
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82. 〈Bump the bumps 82 〉 ≡
var bump ∗= var bump factor ;
clause bump ∗= clause bump factor ;

This code is used in sections 125 and 133.

83. When a nonzero activity is rescaled, we are careful to keep it nonzero so that a variable once active
will not take second place to a totally inactive variable. (I doubt if this is terrifically important, but Niklas
Eén told me that he recommends it.)

#define tiny 2.225073858507201383 · 10−308 /∗ 2−1022, the smallest positive nondenormal double ∗/
〈Rescale all variable activities 83 〉 ≡
{

register int v;
register double av ;

for (v = 1; v ≤ vars ; v++) {
o, av = vmem [v].activity ;
if (av ) o, vmem [v].activity = (av ∗ 1 · 10−100 < tiny ? tiny : av ∗ 1 · 10−100);

}
var bump ∗= 1 · 10−100;
}

This code is used in section 70.

84. #define single tiny 1.1754943508222875080 · 10−38

/∗ 2−126, the smallest positive nondenormal float ∗/
〈Rescale all clause activities 84 〉 ≡
{

register int cc , endc ;

for (cc = first learned ; cc < max learned ; cc = endc + learned extra ) {
o, endc = cc + size (cc);
o, ac = activ (cc);
if (ac) o, activ (cc) = (ac ∗ 1 · 10−20 < single tiny ? single tiny : ac ∗ 1 · 10−20);
while (o,mem [endc ].lit & sign bit ) endc ++;

}
clause bump ∗= 1 · 10−20;
}

This code is used in section 81.
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85. Learning from a conflict. A conflict arises when some clause is found to have no true literals at
the current level. This program relies on a technique for avoiding such a conflict in the future, by creating
a new clause that is worth learning. Our current goal is to implement (and thereby to understand) that
technique.

Let’s say that a literal is “new” if it has become true or false at the current decision level; otherwise it
is “old.” A conflict must contain at least two new literals, because we don’t start a new level until every
unsatisfied clause is watched by two unassigned literals.

(Hedge: In a “full run” we march boldly into deeper levels after finding conflicts; and in such cases the
conflict clauses of level d are watched by two literals that are false at level d. However, even in this case,
every unsatisfied clause that could lead to a conflict at a deeper level is watched by two unassigned literals.)

Suppose all literals of c are false. If l̄ ∈ c and c′ is the reason for l, we can resolve c with c′ to get a
new clause c′′. This clause c′′ is obtained from c by deleting l̄ and then inserting l̄′ for all l′ such that
l � l′. (Indeed, when introducing the method of conflict-driven clause learning above, we defined this direct
dependency relation by saying that l � l′ if and only if l̄′ appears in the reason for l.) Notice that all of the
literals that belong to c′′ are false; hence c′′, like c, represents a conflict.

By starting with a conflict clause c and repeatedly resolving away its rightmost literal, using the ordering
of the trail, we’ll eventually obtain a clause c0 that has only one new literal. And if c0 was derived by
resolving with other clauses c1, . . . , ck, the old literals of c0 will be the old literals of c, c1, . . . , ck.

We could now learn the clause c0, and return to decision level d, the maximum of the levels of c0’s old
literals. (Its new literal will now be forced false at that level.)

Actually, we’ll try to simplify c0 before learning it, by removing some of its old literals if they are redundant.
But that’s another story, which we can safely postpone until later. The main idea is this: Starting with a
conflict clause c, containing two or more new literals, we boil it down to a clause c0 that contains only one.
Then we can resume at a previous level.

86. So much for theory; let’s proceed to practice. We can use the stamp field to identify literals that
appear in the conflict clause c, or in the clauses derived from c as we compute c0: A variable’s stamp will
equal curstamp if and only if we have just marked it. At this point llevel > 0.

〈Deal with the conflict clause c 86 〉 ≡
oldptr = jumplev = xnew = clevels = resols = 0;
〈Bump curstamp to a new value 91 〉;
if (verbose & show gory details ) fprintf (stderr , "Preparing to learn");
if (c < 0) 〈 Initialize a binary conflict 88 〉
else 〈 Initialize a nonbinary conflict 87 〉;
〈Reduce xnew to zero 92 〉;
while (1) {
o, l = trail [tl −−];
if (o, vmem [thevar (l)].stamp ≡ curstamp) break;
}
lll = bar (l); /∗ lll will complete the learned clause ∗/
if (verbose & show gory details ) fprintf (stderr , " "O"s"O".8s\n", litname (lll ));

This code is used in section 125.
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87. 〈 Initialize a nonbinary conflict 87 〉 ≡
{
o, l = bar (mem [c].lit );
o, tl = vmem [thevar (l)].tloc ;
o, vmem [thevar (l)].stamp = curstamp ;
〈Bump l’s activity 70 〉;
if (c ≥ first learned ) 〈Bump c’s activity 81 〉;
for (o, s = size (c), k = c+ s− 1; k > c; k−−) {
o, l = bar (mem [k].lit );
j = vmem [thevar (l)].tloc ; /∗ mem will be charged when fetching value ∗/
if (j > tl ) tl = j;
〈Stamp l as part of the conflict clause milieu 95 〉;

}
}

This code is used in section 86.

88. Here the conflict is that l implies ll , where literal l = −c is true but literal ll is false.

〈 Initialize a binary conflict 88 〉 ≡
{
o, tl = vmem [thevar (ll )].tloc ;
o, vmem [thevar (ll )].stamp = curstamp ;
l = ll ;
〈Bump l’s activity 70 〉;
l = −c;
if (o, vmem [thevar (l)].tloc > tl ) tl = vmem [thevar (l)].tloc ;
o, vmem [thevar (l)].stamp = curstamp ;
〈Bump l’s activity 70 〉;
xnew = 1;
}

This code is used in section 86.

89. 〈Allocate the auxiliary arrays 57 〉 +≡
learn = (uint ∗) malloc(vars ∗ sizeof (uint));
if (¬learn ) {

fprintf (stderr , "Oops, I can’t allocate the learn array!\n");
exit (−16);
}
bytes += vars ∗ sizeof (uint);

90. 〈Global variables 4 〉 +≡
uint curstamp ; /∗ a unique value for marking literals and levels of interest ∗/
uint ∗learn ; /∗ literals in a clause being learned ∗/
int oldptr ; /∗ this many old literals contributed to learned clause so far ∗/
int jumplev ; /∗ level to which we’ll return after learning ∗/
int tl ; /∗ trail location for examination of stamped literals ∗/
int xnew ; /∗ excess new literals in the current conflict clause ∗/
int clevels ; /∗ levels represented in the current conflict clause ∗/
uint resols ; /∗ resolutions made while reducing the current conflict clause ∗/
uint learned size ; /∗ number of literals in the learned clause ∗/
int prelearned size ; /∗ learned size before simplification ∗/
int trivial learning ; /∗ does the learned clause involve every decision? ∗/
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91. The algorithm that follows will use curstamp , curstamp + 1, and curstamp + 2.

〈Bump curstamp to a new value 91 〉 ≡
if (curstamp ≥ #fffffffe) {

for (k = 1; k ≤ vars ; k++) oo , vmem [k].stamp = levstamp [k + k − 2] = 0;
curstamp = 1;
} else curstamp += 3;

This code is used in section 86.

92. 〈Reduce xnew to zero 92 〉 ≡
while (xnew ) {

while (1) {
o, l = trail [tl −−];
if (o, vmem [thevar (l)].stamp ≡ curstamp) break;

}
xnew −−;
〈Resolve with the reason of l 93 〉;
}

This code is used in section 86.

93. At this point the current conflict clause is represented implicitly as the set of negatives of the literals
trail [j] for j ≤ tl that have stamp = curstamp , together with bar (l). Old literals in that set are in the learn
array. The conflict clause contains exactly xnew + 1 new literals besides bar (l); we will replace bar (l) by the
other literals in l’s reason.

〈Resolve with the reason of l 93 〉 ≡
resols ++;
if (verbose & show gory details ) fprintf (stderr , " ["O"s"O".8s]", litname (l));
o, c = lmem [l].reason ;
if (c < 0) 〈Resolve with binary reason 94 〉
else if (c) { /∗ l = mem [c].lit ∗/

if (c ≥ first learned ) 〈Bump c’s activity 81 〉;
for (o, s = size (c), k = c+ s− 1; k > c; k−−) {
o, l = bar (mem [k].lit );
if (o, vmem [thevar (l)].stamp 6= curstamp) 〈Stamp l as part of the conflict clause milieu 95 〉;

}
if (xnew + oldptr + 1 < s ∧ xnew ) 〈Subsume c by removing its first literal 98 〉;
}

This code is used in section 92.

94. 〈Resolve with binary reason 94 〉 ≡
{
l = −c;
if (o, vmem [thevar (l)].stamp 6= curstamp) 〈Stamp l as part of the conflict clause milieu 95 〉;
}

This code is used in section 93.
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95. 〈Stamp l as part of the conflict clause milieu 95 〉 ≡
{
o, jj = vmem [thevar (l)].value &−2;
if (¬jj ) confusion ("permanently false lit");
else {
o, vmem [thevar (l)].stamp = curstamp ;
〈Bump l’s activity 70 〉;
if (jj ≥ llevel ) xnew ++;
else {

if (jj > jumplev ) jumplev = jj ;
o, learn [oldptr ++] = bar (l);
if (verbose & show gory details )

fprintf (stderr , " "O"s"O".8s{"O"d}", litname (bar (l)), vmem [thevar (l)].value � 1);
if (o, levstamp [jj ] < curstamp) o, levstamp [jj ] = curstamp , clevels ++;
else if (levstamp [jj ] ≡ curstamp) o, levstamp [jj ] = curstamp + 1;

}
}
}

This code is used in sections 87, 93, and 94.

96. The stack and conflictdat arrays have enough room for twice the number of variables in the worst
case.

The levstamp array also has that same size. We use its even-numbered slots when learning and its odd-
numbered slots when recycling.

〈Allocate the auxiliary arrays 57 〉 +≡
stack = (int ∗) malloc(vars ∗ 2 ∗ sizeof (int));
if (¬stack ) {

fprintf (stderr , "Oops, I can’t allocate the stack array!\n");
exit (−16);
}
bytes += vars ∗ 2 ∗ sizeof (int);
conflictdat = (int ∗) malloc(vars ∗ 2 ∗ sizeof (int));
if (¬conflictdat ) {

fprintf (stderr , "Oops, I can’t allocate the conflictdat array!\n");
exit (−16);
}
bytes += vars ∗ 2 ∗ sizeof (int);
levstamp = (uint ∗) malloc(2 ∗ vars ∗ sizeof (uint));
if (¬levstamp) {

fprintf (stderr , "Oops, I can’t allocate the levstamp array!\n");
exit (−16);
}
bytes += 2 ∗ vars ∗ sizeof (uint);
for (k = 0; k < vars ; k++) o, levstamp [k + k] = 0;

97. 〈Global variables 4 〉 +≡
int ∗stack ; /∗ place for homemade recursion control ∗/
int stackptr ; /∗ number of elements in the stack ∗/
int ∗conflictdat ; /∗ recorded data about conflicts in full runs ∗/
int conflict level ; /∗ pointer to top of the recorded conflict stack ∗/
uint ∗levstamp ; /∗ memos for recursive answers; also binary conflict info ∗/
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98. Here now is the technique of “on-the-fly subsumption,” which allows us to strengthen the clause c
because it happens to contain the current conflict clause. [This technique was discovered by Han and
Somenzi in America, and independently by Hamadi, Jabbour, and Säıs in Europe, both in 2009!]

The current conflict has been obtained by resolving c with another clause, and by removing literals that
are false at level 0. We’ve also removed such literals from c. Therefore we know that the current conflict
clause equals c minus its first literal (which is true and was resolved away).

Clause c is the reason for l, and it becomes the reason for a false literal that would have produced an earlier
conflict. (That false literal must have become false at the current trail level.) We don’t have to update the
reason data, because backtracking will clear it out before it will be needed.

There are strange scenarios in which c = prev learned and the newly learned clause might duplicate the
previous one. The previous one won’t be removed unless we now happen to be watching the literal that will
later be called bar (lll ).

〈Subsume c by removing its first literal 98 〉 ≡
{
l = mem [c].lit ; /∗ no mem charged; we already knew this literal ∗/
o, size (c) = −−s, subsumptions ++;
if (learned file ∧ s ≤ learn save ) {

fprintf (learned file , " "); /∗ this space identifies a subsumer ∗/
for (k = c+ 1; k ≤ c+ s; k++) fprintf (learned file , " "O"s"O".8s", litname (mem [k].lit ));
fprintf (learned file , "\n");
fflush (learned file );
learned out ++;

}
o, r = link0 (c);
〈Remove c from l’s watch list 106 〉;
o, ll = mem [c+ s].lit ; /∗ this false literal will now be moved elsewhere ∗/
for (lll = ll , k = c+ s; ; k−−) { /∗ lll = mem [k].lit ∗/
o, r = vmem [thevar (lll )].value &−2;
if (r ≡ llevel ) break;
o, lll = mem [k − 1].lit ;

}
if (lll 6= ll ) o,mem [k].lit = ll ;
oo ,mem [c+ s].lit = l + sign bit ,mem [c].lit = lll ;
ooo , link0 (c) = lmem [lll ].watch , lmem [lll ].watch = c;
if (verbose & show watches ) fprintf (stderr , " ["O"s"O".8s watches "O"d]", litname (lll ), c);
}

This code is used in section 93.
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99. Simplifying the learned clause. Suppose the clause to be learned is l̄∨ ā1 ∨ · · · ∨ āk. Many of the
literals āj often turn out to be redundant, in the sense that a few well-chosen resolutions will remove them.

For example, if the reason of a4 is a4 ∨ ā1 ∨ b̄1 and the reason of b1 is b1 ∨ ā2 ∨ b̄2 and the reason of b2 is
b2 ∨ ā1 ∨ ā3, then ā4 is redundant.

Niklas Sörensson, one of the authors of MiniSAT, noticed that learned clauses could typically be shortened
by 30% when such simplifications are made. Therefore we certainly want to look for removable literals, even
though the algorithm for doing so is somewhat tricky.

The literal ā is redundant in the clause-to-be-learned if and only if the other literals in its reason are
either present in that clause or (recursively) redundant. (In the example above we must check that ā1 and
b̄1 satisfy this condition; that boils down to observing that b̄1 is redundant, because b̄2 is redundant.)

Since the relation �+ is a partial ordering, we can determine redundancy by using a “bottom up” method
with this recursive definition. Or we can go “top down” with memoization (which is what we’ll do): We
shall stamp a literal b with curstamp + 1 if b̄ is known to be redundant, and with curstamp + 2 if b̄ is known
to be nonredundant. Once we know a literal’s status, we won’t need to apply the recursive definition again.

A nice trick (also due to Sörensson) can be used to speed this process up, using the fact that a non-decision
literal always depends on at least one other literal at the same level: A literal āj can be redundant only if
it shares a level with some other literal āi in the learned clause. Furthermore, a literal b̄ not in that clause
can be redundant only if it shares a level with some āj .

A careful reader of the code in the previous sections will have noticed that we’ve set levstamp [t + t] =
curstamp if level t contains exactly one of the literals āj , and we’ve set levstamp [t + t] = curstamp + 1
if it contains more than one. Those facts will help us decide non-redundancy without pursuing the whole
recursion into impossible levels.
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100. Instead of doing this computation with a recursive procedure, I want to control the counting of
memory accesses, and to take advantage of the special logical structure that’s present. So the program here
uses an explicit stack to hold the parameters of unfinished queries.

When we enter this section, stackptr will be zero (it says here). When we leave it, whether by going to
redundant or not, the original value of l will be in ll . I think this loop makes an instructive example of how
recursion relates to iteration.

One can prove inductively that, at label test , we have vmem [thevar (l)].stamp ≤ curstamp , with equality
if and only if stackptr = 0.

〈 If l̄ is redundant, goto redundant 100 〉 ≡
if (stackptr ) confusion ("stack");

test : ll = l;
o, c = lmem [l].reason ;
if (c ≡ 0) goto clear stack ; /∗ decision literal is never redundant ∗/
if (c < 0) { /∗ binary reason ∗/
l = bar (−c);
o, s = vmem [thevar (l)].stamp ;
if (s ≥ curstamp) {

if (s ≡ curstamp + 2) goto clear stack ; /∗ known non-redundant ∗/
} else {
o, stack [stackptr ++] = ll ;
goto test ;

}
} else {

for (o, k = c+ size (c)− 1; k > c; k−−) {
oo , l = bar (mem [k].lit ), s = vmem [thevar (l)].stamp ;
if (s ≥ curstamp) {

if (s ≡ curstamp + 2) goto clear stack ; /∗ known non-redundant ∗/
continue; /∗ in learned clause or known redundant ∗/

}
o, s = vmem [thevar (l)].value &−2;
if (s ≡ 0) continue; /∗ literals on level 0 are redundant ∗/
o, s = levstamp [s];
if (s < curstamp) { /∗ the level is bad ∗/
o, vmem [thevar (l)].stamp = curstamp + 2;
goto clear stack ;

}
o, stack [stackptr ] = k, stack [stackptr + 1] = ll , stackptr += 2;
goto test ;

test1 : continue;
}
}

is red : o, vmem [thevar (ll )].stamp = curstamp + 1; /∗ we’ve proved bar (ll ) redundant ∗/
if (stackptr ) {

oo , ll = stack [−−stackptr ], c = lmem [ll ].reason ;
if (c < 0) goto is red ;
o, k = stack [−−stackptr ];
goto test1 ; /∗ jump back into the loop ∗/
}
goto redundant ;
〈Clear the stack 101 〉;

This code is used in section 102.
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101. If any of the literals we encounter during that recursive exploration are non-redundant, the literal ll
we’re currently working on is non-redundant, and so are all of the literals on the stack.

(The literal at the bottom of the stack belongs to the learned clause, so we keep its stamp equal to
curstamp . The other literals, whose stamp was less than curstamp , are now marked with curstamp + 2.)

〈Clear the stack 101 〉 ≡
clear stack : if (stackptr ) {

o, vmem [thevar (ll )].stamp = curstamp + 2;
o, ll = stack [−−stackptr ];
o, c = lmem [ll ].reason ;
if (c > 0) stackptr −−;
goto clear stack ;
}

This code is used in section 100.

102. Sometimes the learned clause turns out to be unnecessarily long even after we simplify it. This can
happen, for example, if the decision literal l on level 1 is not part of the clause, but all the other literals have
a reason that depends on l; then no literal is redundant, by our definitions, yet many literals can be from
the same level.

If the learned clause size exceeds the jump level plus trivial limit , we replace it by a “trivial” clause
based on decision literals only. (In such cases we are essentially doing no better than an ordinary backtrack
algorithm.)

〈Simplify the learned clause 102 〉 ≡
learned size = oldptr + 1;
cells prelearned += learned size , prelearned size = learned size ;
for (kk = 0; kk < oldptr ; kk ++) {
o, l = bar (learn [kk ]);
oo , s = levstamp [vmem [thevar (l)].value &−2];
if (s < curstamp + 1) continue; /∗ l’s level doesn’t support redundancy ∗/
〈 If l̄ is redundant, goto redundant 100 〉;
continue;

redundant : learned size−−;
if (verbose & show gory details ) /∗ note that l has been moved to ll ∗/

fprintf (stderr , "("O"s"O".8s is redundant)\n", litname (bar (ll )));
}
if (learned size ≤ (jumplev � 1) + trivial limit ) trivial learning = 0;
else trivial learning = 1, clevels = jumplev � 1, learned size = clevels + 1, trivials ++;
cells learned += learned size , total learned ++;
〈Update the smoothed-average stats after a clause has been learned 40 〉;

This code is used in section 125.
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103. The following code is used only when learned size > 1. (Learned unit clauses are, of course, happy
events; but we deal with them separately.)

The new clause must be watched by two literals. One literal in this clause, namely lll , was formerly false
but it will become true. It’s the one that survived from the conflict on the active level, and it will be one of
the watchers we need.

All other literals in the learned clause are currently false. We must choose one of those on the highest
level (furthest from root level) to be a watcher. For if we don’t, backtracking might take us to a lower level
on which the clause becomes forcing, yet we won’t see that fact — we won’t be watching it! (The true literal
and an unwatched literal become unassigned during backtracking. Then, if the unwatched literal becomes
false, we won’t notice that the formerly true literal is now forced true again.)

〈Learn the simplified clause 103 〉 ≡
{
〈Determine the address, c, for the learned clause 104 〉;
〈Store the learned clause c 107 〉;
prev learned = c;
if (learned file ∧ learned size ≤ learn save ) 〈Output c to the file of learned clauses 108 〉;
}

This code is used in sections 125 and 134.

104. In early runs of this program, I noticed several times when the previously learned clause is immediately
subsumed by the next clause to be learned. On further inspection, it turned out that this happened when
the previously learned clause was the reason for a literal on a level that is going away (because jumplev is
smaller).

So I now check for this case. Backtracking has already zeroed out this literal’s reason.

〈Determine the address, c, for the learned clause 104 〉 ≡
if (prev learned ) {
o, l = mem [prev learned ].lit ;
if (¬trivial learning ∧ (o, lmem [l].reason ≡ 0) ∧ (o, vmem [thevar (l)].value ≡ unset ))
〈Discard clause prev learned if it is subsumed by the current learned clause 105 〉;

}
c = max learned ; /∗ this will be the address of the new clause ∗/
o,mem [c+ learned size ].lit = 0; /∗ put zero at end of mem ∗/
max learned += learned size + learned extra ;
if (max learned > max cells used ) {

if (max learned ≥ memsize ) {
fprintf (stderr , "Memory overflow (memsize="O"u<"O"u), please increase m!\n",memsize ,

max cells used + 1);
exit (−666);

}
bytes += (max learned −max cells used ) ∗ sizeof (cel);
max cells used = max learned ;
}

This code is used in section 103.
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105. The first literal of prev learned has no set value, so it isn’t part of the conflict clause. We will discard
prev learned if all literals of the learned clause appear among the other literals of prev learned .

〈Discard clause prev learned if it is subsumed by the current learned clause 105 〉 ≡
{

for (o, k = size (prev learned )− 1, q = learned size ; q ∧ k ≥ q; k−−) {
oo , l = mem [prev learned + k].lit , r = vmem [thevar (l)].value &−2;
if ((l ≡ lll ∨ (uint) r ≤ jumplev ) ∧ (o, vmem [thevar (l)].stamp ≡ curstamp)) q−−;

/∗ yes, l is in the learned clause ∗/
}
if (q ≡ 0) {

max learned = prev learned ; /∗ forget the previously learned clause ∗/
if (verbose & show gory details ) fprintf (stderr , "(clause "O"d discarded)\n", prev learned );
discards ++;
o, c = prev learned , activ (c) = 0;
o, l = mem [c].lit , r = link0 (c);
〈Remove c from l’s watch list 106 〉;
oo , l = mem [c+ 1].lit , r = link1 (c);
〈Remove c from l’s watch list 106 〉;

}
}

This code is used in section 104.

106. At this point r is the successor of c in the watch list.

〈Remove c from l’s watch list 106 〉 ≡
for (o,wa = lmem [l].watch , q = 0; wa 6= c; q = wa ,wa = next wa ) {
o, p = mem [wa ].lit ;
o,next wa = (p ≡ l ? link0 (wa ) : link1 (wa ));
}
if (¬q) o, lmem [l].watch = r;
else if (p ≡ l) o, link0 (q) = r;
else o, link1 (q) = r;

This code is used in sections 98 and 105.
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107. 〈Store the learned clause c 107 〉 ≡
if (activ (c)) confusion ("bumps");
size (c) = learned size ; /∗ no mem need be charged here, since we’re charging for link0 , link1 ∗/
o,mem [c].lit = lll ;
oo , link0 (c) = lmem [lll ].watch ;
o, lmem [lll ].watch = c;
if (trivial learning ) {

for (j = 1, k = jumplev ; k; j++, k −= 2) {
oo , l = bar (trail [leveldat [k]]);
if (j ≡ 1) ooo , link1 (c) = lmem [l].watch , lmem [l].watch = c;
o,mem [c+ j].lit = l;

}
if (verbose & show gory details ) fprintf (stderr , "(trivial clause is substituted)\n");
} else

for (k = 1, j = 0, jj = 1; k < learned size ; j++) {
o, l = learn [j];
if (o, vmem [thevar (l)].stamp ≡ curstamp) { /∗ not redundant ∗/
o, r = vmem [thevar (l)].value ;
if (jj ∧ r ≥ jumplev ) {
o,mem [c+ 1].lit = l;
oo , link1 (c) = lmem [l].watch ;
o, lmem [l].watch = c;
jj = 0;
} else o,mem [c+ k + jj ].lit = l;
k++;

}
}

This code is used in section 103.

108. 〈Output c to the file of learned clauses 108 〉 ≡
{

for (k = c; k < c+ learned size ; k++) fprintf (learned file , " "O"s"O".8s", litname (mem [k].lit ));
fprintf (learned file , "\n");
fflush (learned file );
learned out ++;
}

This code is used in section 103.
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109. Recycling unhelpful clauses. After thousands of conflicts have occurred, we have learned thou-
sands of new clauses. New clauses guide the search by steering us away from unproductive paths; but they
also slow down the propagation process because we have to watch them.

Therefore we try to rank the clauses that have accumulated, and we periodically attempt to weed out the
ones that appear to be hurting us more than they help.

This program assesses the utility of learned clauses by using a heuristic measure of quality inspired by the
paper of Gilles Audemard and Laurent Simon in IJCAI 21 (2009), 399-404. Suppose the literals of clause c
appear on exactly p+ q distinct levels of the trail, where there’s at least one true literal in p of those levels,
but all literals of the other q levels are false. Then we give c the score p+αq, called its “range.” Heuristically,
this range will tend to be small if c is going to participate in future forcing operations.

The parameter α equals 0.2 by default, but users can tune it to their heart’s content, as long as 0 ≤ α ≤ 1.
Audemard and Simon considered only the case α = 1 in their paper, calling p+ q the “literal block distance”
of c. Smaller values of α appeared to give even better results, in my early tests; however, I’ve had mixed
results since then. Certainly α = 0 is too small, because p tends to have a limited range and q is needed to
break ties. Similarly, I think α = 1 is inadvisable, because p is needed to break ties in clauses with the same
literal block distance.

If a learned clause is currently used as the reason for some literal in the trail, we must keep it: That clause
is “asserting.” So we give it range 0. (Except at root level.)

Armin Biere has advised me not to recycle clauses of size 3 or less. But this program doesn’t make any
special provision for such clauses, because they will almost surely stick around as a consequence of the range
heuristic.

Let’s suppose that we have accumulated h learned clauses in mem , and that we want to reduce that
number from h to h/2. We shall do that by retaining those clauses whose range lies below the median range.

A precise determination of the median isn’t necessary, because ranges are only heuristic. We actually
convert the range to an 8-bit number by computing min

(
b16(p + αq)c, 255

)
. (All ranges of 16 or more are

therefore considered to be equally bad.) Knowing the distribution of these scaled ranges then makes it easy
to select the smallest ones.

#define buckets 256 /∗ number of distinct range levels after scaling ∗/
#define badlevel 16.0 /∗ ranges greater than this are essentially infinite ∗/
〈Allocate the auxiliary arrays 57 〉 +≡

rangedist = (int ∗) malloc(buckets ∗ sizeof (int));
if (¬rangedist ) {

fprintf (stderr , "Oops, I can’t allocate the rangedist array!\n");
exit (−16);
}
bytes += buckets ∗ sizeof (int);
for (k = 0; k + k < buckets ; k++) o, rangedist [k + k] = rangedist [k + k + 1] = 0;
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110. The following program computes the scaled range by using the auxiliary array levstamp to identify
levels that have been seen before. All odd-numbered entries of levstamp should be less than c when this
code begins.

〈Compute the scaled range of c 110 〉 ≡
{
o, l = mem [c].lit ;
if (o, lmem [l].reason ≡ c) {

if (o, vmem [thevar (l)].value &−2) o, range (c) = 0, asserts ++;
else goto its true ; /∗ true at root level ∗/

} else {
for (p = q = 0, k = c+ size (c)− 1; k ≥ c; k−−) {

oo , l = mem [k].lit , v = vmem [thevar (l)].value ;
if (v < 2) { /∗ l is defined at root level ∗/

if ((v ⊕ l) & 1) continue; /∗ it’s false, ignore it ∗/
its true : v = buckets + 1; o, range (c) = buckets + 1;

goto range set ; /∗ it’s true, clause is superfluous ∗/
} else {

if (o, levstamp [(v &−2) + 1] < c) o, levstamp [(v &−2) + 1] = c, q++;
/∗ q here is called p+ q above ∗/

if (levstamp [(v &−2) + 1] ≡ c ∧ (((l ⊕ v) & 1) ≡ 0)) /∗ true literal ∗/
o, levstamp [(v &−2) + 1] = c+ 1, p++;

}
}
v = (int)((buckets/badlevel ) ∗ ((float) p+ alpha ∗ (float)(q − p)));
if (v ≥ buckets ) v = buckets − 1;
o, range (c) = v;
if (v < minrange ) minrange = v;
if (v > maxrange ) maxrange = v;
oo , rangedist [v]++;

}
range set : ;
}

This code is used in section 112.

111. 〈Global variables 4 〉 +≡
int ∗rangedist ; /∗ how many clauses have a particular scaled range? ∗/
int asserts ; /∗ how many learned clauses are assertions that must remain? ∗/
int minrange ; /∗ the smallest scaled range we’ve seen on this round ∗/
int maxrange ; /∗ the largest scaled range we’ve seen on this round ∗/
int recycle point ; /∗ the first clause learned after the current full run ∗/
int budget ; /∗ the desired number of learned clauses after recycling ∗/
ullng ∗clause heap ; /∗ auxiliary array for partially sorting clause activity ∗/
int clause heap size ; /∗ its maximum size ∗/
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112. Each clause recycling pass is a major event, something like spring cleaning. First we prepare to
compute the ranges by doing a full run, so that every variable has been assigned to a level and a tentative
Boolean value. Then we backtrack to level zero, possibly learning new clauses as we go. (Any such clauses c
will have c ≥ recycle point ; they have no range, so we treat them as if they were asserted, with range zero.)
And then we drastically reduce our database of learned clauses, using this opportunity to remove clauses
that are permanently satisfied and to remove literals that are permanently false. During this process the
watch lists need to be dismantled and rebuilt.

Notice that the second step in this process, backtracking to level zero, is very much like doing a restart.
(The only difference is that “warmup” rounds are automatically scheduled after every true restart.) Thus
the decisions that are taken at levels 1, 2, . . . will not necessarily match the decisions that were in force at
those levels when we decided to do a recycling pass.

I don’t think that is a bad thing. However, we could recreate those decisions if we wanted to, by doing the
following when backtracking past a decision literal l: Set l’s activity to the currently largest activity, which
is the activity of the variable currently in heap [0]; then bump it up, so that it becomes the new champion.

〈Compute ranges for clause recycling 112 〉 ≡
recycle point = max learned ;
minrange = buckets ,maxrange = 0;
asserts = 0;
for (k = 0; k < vars ; k++) o, levstamp [k + k + 1] = 0;
for (h = 0, c = first learned ; c < max learned ; h++, c = endc + learned extra ) {
o, endc = c+ size (c);
〈Compute the scaled range of c 110 〉;
while (o,mem [endc ].lit & sign bit ) endc ++;
}
budget = h/2;
prev learned = 0;

This code is used in section 133.

113. 〈Recycle half of the learned clauses 113 〉 ≡
〈Compress the database 114 〉;
〈Recompute all the watch lists 122 〉;
recycle point = 0;

This code is used in section 133.
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114. 〈Compress the database 114 〉 ≡
for (o, j = minrange , s = asserts + rangedist [j]; s < budget ∧ j < maxrange ; ) o, s += rangedist [++j];
if (s > budget ) 〈Remove t = s− budget clauses at the threshold 115 〉;
for (k = minrange � 1; k + k ≤ maxrange ; k++) o, rangedist [k + k] = rangedist [k + k + 1] = 0;
for (h = 0, cc = c = first learned ; c < max learned ; c = endc + learned extra ) {
o, jj = endc = c+ size (c);
while (o,mem [endc ].lit & sign bit ) o,mem [endc ++].lit = 0;
if (c < recycle point ∧ (o, range (c) > j)) continue; /∗ reject when the range is too high ∗/
for (kk = cc , k = c; k < jj ; k++) {
o, l = mem [k].lit ;
o, v = vmem [thevar (l)].value ;
if ((uint) v 6= unset ) { /∗ l has a permanent value at root level ∗/

if ((v ⊕ l) & 1) continue; /∗ don’t copy a permanently false literal ∗/
break; /∗ and don’t copy a permanently satisfied clause ∗/

} else o,mem [kk ++].lit = l; /∗ but do copy otherwise ∗/
}
if (k < jj ) continue; /∗ reject a satisfied clause ∗/
h++; 〈Wrap up clause cc 121 〉;

}
max learned = cc , prev learned = 0;
o,mem [max learned − learned extra ].lit = 0; /∗ put zero at end of mem ∗/
if (verbose & (show recycling + show recycling details ))

fprintf (stderr , " (recycling reduced "O"d learned clauses to "O"d)\n", budget ∗ 2 + 1, h);
/∗ a little white lie sometimes ∗/

This code is used in section 113.

115. Clause activity scores are used only to break ties. So it’s natural to ask whether the effort of
computing them and sorting through them is actually worthwhile. Armin Biere has told me that a small
but significant number of problems do have a fairly large number of clauses at the median range, so I’m
following his recommendation.

〈Remove t = s− budget clauses at the threshold 115 〉 ≡
{

register ullng accum ;

t = s− budget ;
jj = rangedist [j]− t;
if (jj > clause heap size ) jj = clause heap size ;
〈Put jj entries of range j into the clause heap 117 〉;
〈Establish heap order in the clause heap 118 〉;
〈 Increase the range of t clauses from j to j + 1 120 〉;
}

This code is used in section 114.

116. 〈Allocate the auxiliary arrays 57 〉 +≡
clause heap size = recycle bump � 1;
clause heap = (ullng ∗) malloc(clause heap size ∗ sizeof (ullng));
if (¬clause heap) {

fprintf (stderr , "Oops, I can’t allocate the clause_heap array!\n");
exit (−16);
}
bytes += clause heap size ∗ sizeof (ullng);
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117. Entries of clause heap are packed so that they sort on activity first, location second. (If two clauses
have equally low activity, we prefer to forget the one that has had more time to become active.)

We use the fact that nonnegative float numbers can be compared as if they were integers. Thus we
interpret active (c) as a ‘lit ’ instead of as a ‘flt ’.

〈Put jj entries of range j into the clause heap 117 〉 ≡
for (h = 0, c = first learned ; h < jj ; c = endc + learned extra ) {

if (c ≥ recycle point ) confusion ("rangedist1");
o, endc = c+ size (c);
while (o,mem [endc ].lit & sign bit ) endc ++;
if (o, range (c) ≡ j) clause heap [h++] = activ as lit (c) + c;
}

This code is used in section 115.

118. 〈Establish heap order in the clause heap 118 〉 ≡
for (h = jj � 1; h; ) {
q = h+ h, p = −−h, o, accum = clause heap [p];
〈Sift accum into the clause heap at p 119 〉;
}

This code is used in section 115.

119. At this point q = p+ p+ 2.

〈Sift accum into the clause heap at p 119 〉 ≡
while (q ≤ jj ) {

if (q ≡ jj ∨ (oo , clause heap [q − 1] < clause heap [q])) q−−;
if (accum ≤ clause heap [q]) break; /∗ equality can’t actually occur ∗/
o, clause heap [p] = clause heap [q];
p = q, q = p+ p+ 2;
}
o, clause heap [p] = accum ;

This code is used in sections 118 and 120.
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120. We continue to pass over all learned clauses, looking for those whose range is j, until t more are
found.

〈 Increase the range of t clauses from j to j + 1 120 〉 ≡
for ( ; ; c = endc + learned extra ) {

if (c ≥ recycle point ) confusion ("rangedist2");
if (o, range (c) ≡ j) {
o, accum = activ as lit (c) + c;
if (o, accum < clause heap [0]) {
o, range (c) = j + 1;
if (−−t ≡ 0) break;

} else {
o, range ((int)(clause heap [0] & #ffffffff)) = j + 1;
if (−−t ≡ 0) break;
p = 0, q = 2;
〈Sift accum into the clause heap at p 119 〉;

}
}
o, endc = c+ size (c);
while (o,mem [endc ].lit & sign bit ) endc ++;
}

This code is used in section 115.

121. At this point we’re operating at root level; that is, llevel = 0. And we’ve just copied the literals of a
learned-clause-to-remember into positions mem [cc ].lit , mem [cc + 1].lit , . . . , mem [kk − 1].lit .

In rare circumstances the simplifications we’ve made might result in a learned clause of size 1. Or even
size 0!

〈Wrap up clause cc 121 〉 ≡
if (kk ≥ cc + 2) {

if (verbose & show recycling details )
fprintf (stderr , " clause "O"d = recycled "O"d (size "O"d)\n", cc , c, kk − cc);

ooo , size (cc) = kk − cc , activ (cc) = activ (c), cc = kk + learned extra ;
} else if (kk ≡ cc) goto unsat ;
else {
o, l = mem [cc ].lit ;
o, vmem [thevar (l)].value = l & 1, vmem [thevar (l)].tloc = eptr ;
o, history [eptr ] = 4, trail [eptr ++] = l;
if (verbose & (show choices + show details + show recycling details ))

fprintf (stderr , " level 0, "O"s"O".8s from recycled "O"d\n", litname (l), c);
}

This code is used in section 114.
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122. 〈Recompute all the watch lists 122 〉 ≡
for (l = 2; l ≤ max lit ; l++) o, lmem [l].watch = 0;
for (c = clause extra ; c < min learned ; c = endc + clause extra ) {
o, endc = c+ size (c);
〈Watch the first two literals of c 123 〉;
while (o,mem [endc ].lit & sign bit ) endc ++; /∗ necessary for c < min learned ∗/
}
for (c = first learned ; c < max learned ; c = endc + learned extra ) {
o, endc = c+ size (c);
〈Watch the first two literals of c 123 〉;
}

This code is used in section 113.

123. A technicality for mem counting: We save one memory access either when fetching mem [c+ 1].lit or
when storing into link1 (c).

〈Watch the first two literals of c 123 〉 ≡
{
o, l = mem [c].lit ;
ooo , link0 (c) = lmem [l].watch , lmem [l].watch = c;
l = mem [c+ 1].lit ;
ooo , link1 (c) = lmem [l].watch , lmem [l].watch = c;
}

This code is used in section 122.
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124. Putting it all together. Most of the mechanisms that we need to solve a satisfiability problem
are now in place. We just need to set them in motion at the proper times.

〈Solve the problem 124 〉 ≡
〈Finish the initialization 130 〉;

square one : llevel = warmup cycles = 0;
if (sanity checking ) sanity (eptr );
if (verbose & show initial clauses ) print unsat ( );
lptr = 0;

startup : conflict level = 0;
full run = (warmup cycles < warmups ? 1 : 0);

proceed : conflict seen = 0;
〈Complete the current level, or goto confl 127 〉;

newlevel : if (sanity checking ) sanity (eptr );
if (delta ∧ (mems ≥ thresh )) thresh += delta , print state (eptr );
if (mems ≥ timeout ) {

fprintf (stderr , "TIMEOUT!\n"); goto all done ;
}
if (eptr ≡ vars ) {

if (¬conflict level ) goto satisfied ;
〈Finish a full run 133 〉;
goto startup ;
}
if (¬conflict level ) { /∗ no conflicting literals are on the trail ∗/

if (total learned ≥ doomsday ) 〈Call it quits 138 〉;
if (total learned ≥ next recycle ) full run = 1;
else if (total learned ≥ next restart ) 〈Restart unless agility is high 136 〉;
}
llevel += 2;
〈Choose the next decision literal, l 75 〉;
if (verbose & show choices ∧ llevel ≤ show choices max ) fprintf (stderr ,

"Level "O"d, trying "O"s"O".8s ("O"lld mems)\n", llevel � 1, litname (l),mems );
depth per decision += −(depth per decision � 7) + ((ullng) llevel � 24);
trail per decision += −(trail per decision � 7) + ((ullng) eptr � 25);
o, lmem [l].reason = 0;
history [eptr ] = 0;

launch : nodes ++;
o, leveldat [llevel ] = eptr ;
o, trail [eptr ++] = l;
o, vmem [thevar (l)].tloc = lptr ; /∗ lptr = eptr − 1 ∗/
vmem [thevar (l)].value = llevel + (l & 1);
agility −= agility � 13; /∗ use the damping factor 1− 2−13 ∗/
goto proceed ;
〈Resolve the current conflict 125 〉;

This code is used in section 2.
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125. (I should mention somewhere that the updating of agility here, and elsewhere, has a known bug:
Overflow from 232 − 1 to 232 is theoretically possible! However, this will certainly never occur in practice;
and even if it does, it will cause no great harm.)

〈Resolve the current conflict 125 〉 ≡
confl : if (llevel ) {

prep clause : 〈Deal with the conflict clause c 86 〉;
〈Simplify the learned clause 102 〉; /∗ Note: lll is the false literal that will become true ∗/
if (full run ) goto store clause ;
decisionvar = (lmem [bar (lll )].reason ? 0 : 1); /∗ was it first in its level? ∗/
〈Backtrack to jumplev 128 〉;
if (learned size > 1) {
〈Learn the simplified clause 103 〉
if (verbose & (show details + show choices )) {

if ((verbose & show details ) ∨ llevel ≤ show choices max )
fprintf (stderr , "level "O"d, "O"s"O".8s from "O"d\n", llevel � 1, litname (lll ), c);

}
o, lmem [lll ].reason = c;

} else 〈Learn a clause of size 1 126 〉;
o, vmem [thevar (lll )].value = llevel + (lll & 1), vmem [thevar (lll )].tloc = eptr ;
history [eptr ] = (decisionvar ? 2 : 6);
o, trail [eptr ++] = lll ;
agility −= agility � 13; /∗ use the damping factor 1− 2−13 ∗/
agility += 1� 19; /∗ “bug” ∗/
〈Bump the bumps 82 〉;
if (sanity checking ) sanity (eptr );
goto proceed ;
}

unsat : if (1) {
printf ("~\n"); /∗ the formula was unsatisfiable ∗/
if (verbose & show basics ) fprintf (stderr , "UNSAT\n");
} else {
satisfied : if (verbose & show basics ) fprintf (stderr , "!SAT!\n");
〈Print the solution found 129 〉;
}

This code is used in section 124.

126. 〈Learn a clause of size 1 126 〉 ≡
{

if (verbose & (show details + show choices ))
fprintf (stderr , "level 0, learned "O"s"O".8s\n", litname (lll ));

if (learned file ) {
fprintf (learned file , " "O"s"O".8s\n", litname (lll ));
fflush (learned file );
learned out ++;

}
}

This code is used in section 125.
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127. 〈Complete the current level, or goto confl 127 〉 ≡
ebptr = eptr ; /∗ binary implications needn’t be checked after this point ∗/
while (lptr < eptr ) {
o, lt = trail [lptr ++];
if (lptr ≤ ebptr ) {
o, lat = lmem [lt ].bimp end ;
if (lat ) {
l = lt ;
〈Propagate binary implications of l; goto confl if a conflict arises 58 〉;

}
}
〈Propagate nonbinary implications of lt ; goto confl if there’s a conflict 60 〉;
}

This code is used in section 124.

128. 〈Backtrack to jumplev 128 〉 ≡
{
o, k = leveldat [jumplev + 2];
while (eptr > k) {
o, l = trail [−−eptr ], v = thevar (l);
oo , vmem [v].oldval = vmem [v].value ;
o, vmem [v].value = unset ;
o, lmem [l].reason = 0;
if (eptr < lptr ∧ (o, vmem [v].hloc < 0)) 〈Put v into the heap 74 〉;

}
lptr = eptr ;
if (sanity checking ) {

while (llevel > jumplev ) leveldat [llevel ] = −1, llevel −= 2;
} else llevel = jumplev ;
}

This code is used in sections 125, 133, 134, and 137.

129. 〈Print the solution found 129 〉 ≡
for (k = 0; k < vars ; k++) {
o, printf (" "O"s"O".8s", litname (trail [k]));
}
printf ("\n");
if (out file ) {

for (k = 0; k < vars ; k++) {
o, fprintf (out file , " "O"s"O".8s", litname (bar (trail [k])));

}
fprintf (out file , "\n");
fprintf (stderr , "Solution−avoiding clause written to file ‘"O"s’.\n", out name );
}

This code is used in section 125.
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130. 〈Finish the initialization 130 〉 ≡
if (rand prob ≥ 1.0) rand prob thresh = #80000000;
else rand prob thresh = (int)(rand prob ∗ 2147483648.0);
var bump factor = 1.0/(double) var rho ;
clause bump factor = 1.0/clause rho ;
show choices max �= 1; /∗ double the level-oriented parameters ∗/
next recycle = recycle bump ;
if (next recycle > doomsday ) next recycle = doomsday ;
restart psi = two to the 32 ∗ (double) restart psi fraction ;
restart u = restart v = next restart = 1;
if (verbose & show details ) {

for (k = 0; k < eptr ; k++) fprintf (stderr , ""O"s"O".8s is given\n", litname (trail [k]));
}
for (k = 0; k < vars ; k++) o, leveldat [k + k] = −1, leveldat [k + k + 1] = 0;

This code is used in section 124.

131. 〈Schedule the next restart 131 〉 ≡
if ((restart u &−restart u ) ≡ restart v ) restart u ++, restart v = 1, restart thresh = restart psi ;
else restart v �= 1, restart thresh += restart thresh � 4;
next restart = total learned + restart v ;
if (next restart > doomsday ) next restart = doomsday ;

This code is used in section 136.

132. 〈Schedule the next recycling pass 132 〉 ≡
recycle bump += recycle inc ;
next recycle = total learned + recycle bump ;
if (next recycle > doomsday ) next recycle = doomsday ;

This code is used in section 133.
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133. After a full cycle has assigned values to all the variables, we go back and learn clauses from each of
the recorded conflicts.

If clause ci is learned at level li, it tells us that some literal ui that was set false at li can now be set to
true at some previous level l′i < li. We want to backtrack to the minimum of those levels l′i, which we’ll call
minjumplev .

〈Finish a full run 133 〉 ≡
if (total learned ≥ next recycle ) {

if (verbose & (show details + show gory details + show recycling + show recycling details ))
fprintf (stderr , "Preparing to recycle ("O"llu conflicts, "O"llu mems)\n", total learned ,

mems );
〈Compute ranges for clause recycling 112 〉;
} else {

warmup cycles ++;
if (verbose & (show choices + show details + show gory details + show warmlearn ))

fprintf (stderr , "Finishing warmup round "O"d:\n",warmup cycles );
}
o, leveldat [llevel + 2] = eptr ;
minjumplev = max lit ; /∗ an “infinite” level ∗/
for ( ; conflict level ; ) 〈Learn from the conflict at conflict level 134 〉;
if (recycle point ) jumplev = 0;
else jumplev = minjumplev ;
〈Backtrack to jumplev 128 〉;
trail marker = eptr ;
if (jumplev ≡ minjumplev ) 〈Place the literals learned at minjumplev at the end of the trail 135 〉;
〈Bump the bumps 82 〉;
if (recycle point ) {
〈Recycle half of the learned clauses 113 〉;
if (sanity checking ) sanity (eptr );
〈Schedule the next recycling pass 132 〉;
}

This code is used in section 124.
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134. Trivial clauses that arise during a full run are ignored, unless they are on the first conflict level,
because they are never applicable at higher levels.

Several different literals ui might all turn to be learned at minjumplev . Therefore we keep track of them
on a stack within the conflictdat array. The top item on this stack is accessed via next learned .

〈Learn from the conflict at conflict level 134 〉 ≡
{
o, jumplev = conflict level , conflict level = conflictdat [conflict level ];
〈Backtrack to jumplev 128 〉;
o, c = leveldat [llevel + 1];
if (c < 0) o, l = −c, ll = conflictdat [llevel + 1];
goto prep clause ;

store clause : /∗ apology: these goto’s are because of goto’s in simplification ∗/
/∗ now lll is a false literal that will become true at jumplev ∗/

if (trivial learning ∧ conflict level ) {
cells prelearned −= prelearned size ;
cells learned −= learned size , total learned −−, trivials−−;

} else {
if (jumplev ≤ minjumplev ) {

if (jumplev < minjumplev ) minjumplev = jumplev ,next learned = 0;
o, conflictdat [llevel ] = next learned , conflictdat [llevel + 1] = lll ;
next learned = llevel ;

}
if (learned size ≡ 1) {
o, leveldat [llevel + 1] = 0;
if (learned file ) {

fprintf (learned file , " "O"s"O".8s\n", litname (lll ));
fflush (learned file );
learned out ++;
}
if (verbose & show warmlearn )

fprintf (stderr , "(learned unit clause "O"s"O".8s)\n", litname (lll ));
} else {
〈Learn the simplified clause 103 〉;
o, leveldat [llevel + 1] = c;
if (verbose & show warmlearn )

fprintf (stderr , "(learned clause "O"d of size "O"d)\n", c, learned size );
}

}
}

This code is used in section 133.
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135. 〈Place the literals learned at minjumplev at the end of the trail 135 〉 ≡
while (next learned ) {
o, lll = conflictdat [next learned + 1];
o, c = leveldat [next learned + 1];
next learned = conflictdat [next learned ];
if (verbose & (show details + show choices )) {

if ((verbose & show details ) ∨ llevel ≤ show choices max ) {
if (c) fprintf (stderr , "level "O"d, "O"s"O".8s from "O"d\n", llevel � 1, litname (lll ), c);
else fprintf (stderr , "level 0, "O"s"O".8s\n", litname (lll ));

}
}
o, vmem [thevar (lll )].value = llevel + (lll & 1), vmem [thevar (lll )].tloc = eptr ;
o, lmem [lll ].reason = c;
o, history [eptr ] = 4, trail [eptr ++] = lll ;
}

This code is used in section 133.

136. Following the advice of Armin Biere [Lecture Notes in Computer Science 4996 (2008), 28–33], I
disable restarts when there’s lots of agility (recent flips of variables). The threshold is higher when the time
to next restart is longer.

〈Restart unless agility is high 136 〉 ≡
{
〈Schedule the next restart 131 〉;
if (agility ≤ restart thresh ) 〈Flush literals 137 〉
else if (verbose & show restarts )

fprintf (stderr , "No restart ("O"llu conflicts, "O"llu mems, agility "O".2f)\n",
total learned ,mems , (double) agility/two to the 32 );

}
This code is used in section 124.
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137. Instead of restarting completely, by backing up all the way to level 0, we follow the advice of
van der Tak, Ramos, and Heule [Journal on Satisfiability, Boolean Modeling and Computation 7 (2011),
133–138]: We return to the first level for which a new variable will be injected into the trail. (That new
variable will be the one with maximum activity, among all that are currently unset.) Sometimes that will
not require backtracking at all.

(I’ve lately decided to call this “flushing,” not “restarting,” in my book.)

〈Flush literals 137 〉 ≡
{

actual restarts ++;
if (verbose & (show details + show choices + show restarts ))

fprintf (stderr , "Restarting ("O"llu conflicts, "O"llu mems, agility "O".2f)\n",
total learned ,mems , (double) agility/two to the 32 );

if (llevel ) {
while (1) {
o, v = heap [0];
if (o, vmem [v].value ≡ unset ) break;
〈Delete v from the heap 77 〉;

}
o, av = vmem [v].activity ;
for (jumplev = 0; jumplev < llevel ; jumplev += 2) {

oo , v = thevar (trail [leveldat [jumplev + 2]]); /∗ a decision variable ∗/
if (o, vmem [v].activity < av ) break; /∗ new guy will replace v ∗/

}
if (jumplev < llevel ) 〈Backtrack to jumplev 128 〉;

}
trail marker = eptr ;
warmup cycles = 0;
goto startup ;
}

This code is used in section 136.
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138. Well, we didn’t solve the problem. Too bad. At least we can report what progress was made.

〈Call it quits 138 〉 ≡
{

if (verbose & show basics )
fprintf (stderr , "Timeout: Terminating an incomplete run (level "O"d).\n", llevel � 1);

print state (eptr );
if (polarity outfile ) {

for (k = 0; k < eptr ; k++) {
o, l = trail [k];
fprintf (polarity outfile , " "O"s"O".8s", litname (l));
o, vmem [thevar (l)].oldval = unset ;

}
fprintf (polarity outfile , "\n");
for (v = 1; v ≤ vars ; v++)

if (o, vmem [v].oldval 6= unset )
fprintf (polarity outfile , ""O"s"O".8s\n", vmem [v].oldval & 1 ? "~" : "", vmem [v].name .ch8 );

fprintf (stderr , "Polarity data written to file ‘"O"s’.\n", polarity out name );
}
if (restart file ) {

for (o, k = 0; k < leveldat [2]; k++) /∗ print unit clauses learned ∗/
o, fprintf (restart file , " "O"s"O".8s\n", litname (trail [k]));

for (c = first learned ; c < max learned ; c = kk + learned extra ) {
for (o, k = c, kk = c+ size (c); k < kk ; k++)
o, fprintf (restart file , " "O"s"O".8s", litname (mem [k].lit ));

fprintf (restart file , "\n");
}
fprintf (stderr , "Current learned clauses written to file ‘"O"s’.\n", restart name );

}
goto all done ;
}

This code is used in section 124.

139. 〈Debugging fallbacks 139 〉 ≡
void confusion (char ∗id )
{ /∗ an assertion has failed ∗/

fprintf (stderr , "This can’t happen ("O"s)!\n", id );
exit (−666);
}
void debugstop(int foo)
{ /∗ can be inserted as a special breakpoint ∗/

fprintf (stderr , "You rang("O"d)?\n", foo);
}

This code is used in section 2.
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140. 〈Global variables 4 〉 +≡
int full run ; /∗ are we making a pass to gather data on all variables? ∗/
int conflict seen ; /∗ have we seen a conflict at the current level? ∗/
int decisionvar ; /∗ does the learned clause involve the decision literal? ∗/
int prev learned ; /∗ number of the clause most recently learned ∗/
int warmup cycles ; /∗ this many warmups have been done since restart ∗/
int next learned ; /∗ top of stack of literals learned at minjumplev ∗/
int restart u , restart v ; /∗ generators for the reluctant doubling sequence ∗/
ullng restart thresh ; /∗ agility threshold for restarting ∗/
int trail marker ; /∗ position of the latest restart or full run pass ∗/
int minjumplev ; /∗ level to which we’ll return after a full run ∗/
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141. Index.
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new vchunk : 16.
newlevel : 124.
next : 9, 20, 79.
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next recycle : 4, 124, 130, 132, 133.
next restart : 4, 124, 130, 131.
next wa : 59, 60, 106.
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octa: 9, 29.
old chunk : 23.
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oldval : 29, 58, 65, 75, 78, 79, 128, 138.
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oo : 2, 49, 51, 60, 61, 62, 74, 77, 91, 98, 100, 102,
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out file : 4, 5, 8, 129.
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polarity infile : 4, 5, 8, 45, 79.
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print bimp : 31.
print clause : 33.
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print unsat : 44, 124.
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range : 28, 110, 114, 117, 120.
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rangedist : 109, 110, 111, 114, 115.
reason : 30, 37, 43, 49, 58, 65, 93, 100, 101, 104,
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recycle bump : 3, 4, 5, 116, 130, 132.
recycle inc : 3, 4, 5, 6, 132.
recycle point : 111, 112, 113, 114, 117, 120, 133.
redundant : 100, 102.
res per confl : 39, 40, 41.
resols : 40, 86, 90, 93.
restart file : 4, 5, 8, 138.
restart name : 4, 5, 138.
restart psi : 4, 130, 131.
restart psi fraction : 3, 4, 5, 130.
restart thresh : 131, 136, 140.
restart u : 130, 131, 140.

restart v : 130, 131, 140.
s: 2.
sanity : 34, 124, 125, 133.
sanity checking : 34, 124, 125, 128, 133.
satisfied : 124, 125.
serial : 9, 20, 50, 79.
short per confl : 39, 40, 41.
show basics : 2, 4, 7, 125, 138.
show choices : 2, 3, 4, 121, 124, 125, 126, 133,

135, 137.
show choices max : 4, 5, 124, 125, 130, 135.
show details : 2, 48, 58, 65, 66, 67, 121, 125, 126,

130, 133, 135, 137.
show experiments : 2.
show gory details : 2, 86, 93, 95, 102, 105, 107, 133.
show initial clauses : 2, 124.
show recycling : 2, 114, 133.
show recycling details : 2, 114, 121, 133.
show restarts : 2, 136, 137.
show warmlearn : 2, 133, 134.
show watches : 2, 62, 98.
sign bit : 28, 33, 35, 44, 61, 84, 98, 112, 114,

117, 120, 122.
single tiny : 84.
size : 28, 33, 35, 44, 49, 60, 61, 84, 87, 93, 98, 100,

105, 107, 110, 112, 114, 117, 120, 121, 122, 138.
square one : 124.
sscanf : 5.
stack : 96, 97, 100, 101.
stackptr : 97, 100, 101.
stamp : 9, 15, 20, 21, 29, 54, 86, 87, 88, 91, 92,

93, 94, 95, 100, 101, 105, 107.
startup : 124, 137.
stderr : 3, 5, 6, 7, 12, 13, 14, 16, 17, 19, 22, 25,

35, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49,
55, 56, 57, 58, 62, 65, 66, 67, 71, 72, 86, 89,
93, 95, 96, 98, 102, 104, 105, 107, 109, 114,
116, 121, 124, 125, 126, 129, 130, 133, 134,
135, 136, 137, 138, 139.

stdin : 1, 11, 13.
store clause : 125, 134.
strlen : 13.
subsumptions : 4, 7, 98.
t: 2, 76.
test : 100.
test1 : 100.
thevar : 29, 37, 43, 52, 58, 60, 65, 70, 86, 87, 88,

92, 93, 94, 95, 98, 100, 101, 102, 104, 105, 107,
110, 114, 121, 124, 125, 128, 135, 137, 138.

thresh : 4, 5, 124.
timeout : 3, 4, 5, 124.
tiny : 83.
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tl : 86, 87, 88, 90, 92, 93.
tloc : 29, 37, 46, 52, 58, 65, 79, 87, 88, 121,

124, 125, 135.
tmp var: 9, 10, 11, 12, 15, 50, 79.
tmp var struct: 9.
total learned : 4, 7, 102, 124, 131, 132, 133,

134, 136, 137.
trail : 27, 37, 42, 43, 47, 52, 58, 65, 86, 92, 93, 107,

121, 124, 125, 127, 128, 129, 130, 135, 137, 138.
trail marker : 42, 133, 137, 140.
trail per decision : 39, 41, 124.
trivial learning : 40, 90, 102, 104, 107, 134.
trivial limit : 3, 4, 5, 6, 102.
trivials : 4, 7, 102, 134.
true prob : 3, 4, 5, 6, 78, 79.
true prob thresh : 4, 78, 79.
two to the 31 : 75, 76.
two to the 32 : 39, 41, 130, 136, 137.
u: 2, 34.
uint: 2, 4, 9, 11, 27, 28, 29, 30, 31, 32, 33, 34, 41,

42, 46, 47, 56, 59, 89, 90, 96, 97, 105, 114.
ullng: 2, 4, 9, 11, 15, 28, 40, 41, 48, 50, 111,

115, 116, 124, 140.
unaries : 11, 14, 48.
unsat : 52, 121, 125.
unset : 29, 38, 46, 52, 75, 104, 114, 128, 137, 138.
u2 : 9.
v: 2, 34, 83.
vals : 34, 38.
value : 29, 37, 38, 43, 46, 52, 58, 60, 65, 75, 87,

95, 98, 100, 102, 104, 105, 107, 110, 114, 121,
124, 125, 128, 135, 137.

var : 9, 16, 24, 55.
var bump : 70, 80, 82, 83.
var bump factor : 80, 82, 130.
var rho : 3, 4, 5, 6, 80, 130.
variable: 27, 29, 46.
vars : 11, 13, 20, 25, 38, 43, 46, 47, 54, 56, 57, 72,

78, 79, 83, 89, 91, 96, 112, 124, 129, 130, 138.
vars per vchunk : 9, 16, 24.
vchunk: 9, 11, 16, 24.
vchunk struct: 9.
verbose : 2, 4, 5, 7, 48, 58, 62, 65, 66, 67, 86, 93,

95, 98, 102, 105, 107, 114, 121, 124, 125, 126,
130, 133, 134, 135, 136, 137, 138.

vmem : 27, 29, 37, 38, 43, 46, 52, 54, 58, 60, 65,
70, 71, 72, 73, 74, 75, 77, 78, 79, 83, 86, 87, 88,
91, 92, 93, 94, 95, 98, 100, 101, 102, 104, 105,
107, 110, 114, 121, 124, 125, 128, 135, 137, 138.

w: 2.
wa : 59, 60, 61, 62, 63, 64, 65, 67, 69, 106.
warmup cycles : 124, 133, 137, 140.

warmups : 3, 4, 5, 124.
watch : 30, 32, 36, 49, 60, 62, 64, 98, 106,

107, 122, 123.
watches : 34, 36.
x: 2.
xnew : 86, 88, 90, 92, 93, 95.
y: 2.
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〈Allocate the auxiliary arrays 57, 89, 96, 109, 116 〉 Used in section 45.

〈Allocate the other main arrays 47, 56 〉 Used in section 45.

〈Allocate vmem and heap 46 〉 Used in section 45.

〈Backtrack to jumplev 128 〉 Used in sections 125, 133, 134, and 137.

〈Bump the bumps 82 〉 Used in sections 125 and 133.

〈Bump curstamp to a new value 91 〉 Used in section 86.

〈Bump c’s activity 81 〉 Used in sections 87 and 93.

〈Bump l’s activity 70 〉 Used in sections 87, 88, and 95.

〈Call it quits 138 〉 Used in section 124.

〈Check all clauses for spurious data 35 〉 Used in section 34.

〈Check consistency 55 〉 Used in section 45.

〈Check the sanity of the heap 72 〉 Used in section 34.

〈Check the trail 37 〉 Used in section 34.

〈Check the variables 38 〉 Used in section 34.

〈Check the watch lists 36 〉 Used in section 34.

〈Choose the next decision literal, l 75 〉 Used in section 124.

〈Clear the stack 101 〉 Used in section 100.

〈Close the files 8 〉 Used in section 2.

〈Complete the current level, or goto confl 127 〉 Used in section 124.

〈Compress the database 114 〉 Used in section 113.

〈Compute ranges for clause recycling 112 〉 Used in section 133.

〈Compute the scaled range of c 110 〉 Used in section 112.

〈Copy all the temporary cells to the mem and bmem and trail arrays in proper format 49 〉 Used in

section 45.

〈Copy all the temporary variable nodes to the vmem array in proper format 54 〉 Used in section 45.

〈Deal with a binary conflict 66 〉 Used in section 58.

〈Deal with a nonbinary conflict 67 〉 Used in section 65.

〈Deal with the conflict clause c 86 〉 Used in section 125.

〈Debugging fallbacks 139 〉 Used in section 2.

〈Define mem [c].lit at level 0 52 〉 Used in section 51.

〈Delete l from clause wa 61 〉 Used in section 60.

〈Delete v from the heap 77 〉 Used in sections 75 and 137.

〈Determine the address, c, for the learned clause 104 〉 Used in section 103.

〈Discard clause prev learned if it is subsumed by the current learned clause 105 〉 Used in section 104.

〈Do special things for unary and binary clauses 51 〉 Used in section 49.

〈Establish heap order in the clause heap 118 〉 Used in section 115.

〈Figure out how big mem ought to be 48 〉 Used in section 47.

〈Find cur tmp var~name in the hash table at p 20 〉 Used in section 15.

〈Finish a full run 133 〉 Used in section 124.

〈Finish the initialization 130 〉 Used in section 124.

〈Flush literals 137 〉 Used in section 136.

〈Force a new value, if appropriate, or goto confl 65 〉 Used in section 60.

〈Global variables 4, 11, 27, 41, 59, 80, 90, 97, 111, 140 〉 Used in section 2.

〈Handle a duplicate literal 21 〉 Used in section 15.

〈 If l̄ is redundant, goto redundant 100 〉 Used in section 102.

〈 If clause wa is satisfied by ll , keep wa on the watch list and continue 63 〉 Used in section 60.

〈 If there’s a problem, print a message about Usage: and exit 6 〉 Used in section 3.

〈 Increase the range of t clauses from j to j + 1 120 〉 Used in section 115.

〈 Initialize a binary conflict 88 〉 Used in section 86.

〈 Initialize a nonbinary conflict 87 〉 Used in section 86.

〈 Initialize everything 12, 18 〉 Used in section 2.

〈 Initialize the heap from a file 79 〉 Used in section 45.
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〈 Initialize the heap randomly 78 〉 Used in section 45.

〈 Input the clause in buf 14 〉 Used in section 13.

〈 Input the clauses 13 〉 Used in section 2.

〈 Insert the cells for the literals of clause c 50 〉 Used in section 49.

〈 Install a new chunk 17 〉 Used in section 15.

〈 Install a new vchunk 16 〉 Used in section 15.

〈Keep wa on the watch list 64 〉 Used in sections 60 and 63.

〈Learn a clause of size 1 126 〉 Used in section 125.

〈Learn from the conflict at conflict level 134 〉 Used in section 133.

〈Learn the simplified clause 103 〉 Used in sections 125 and 134.

〈Move cur cell backward to the previous cell 23 〉 Used in sections 22 and 50.

〈Move cur tmp var backward to the previous temporary variable 24 〉 Used in section 54.

〈Output c to the file of learned clauses 108 〉 Used in section 103.

〈Place the literals learned at minjumplev at the end of the trail 135 〉 Used in section 133.

〈Print farewell messages 7 〉 Used in section 2.

〈Print the solution found 129 〉 Used in section 125.

〈Process the command line 3 〉 Used in section 2.

〈Propagate binary implications of l; goto confl if a conflict arises 58 〉 Used in sections 65 and 127.

〈Propagate nonbinary implications of lt ; goto confl if there’s a conflict 60 〉 Used in section 127.

〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 19 〉 Used

in sections 15 and 79.

〈Put jj entries of range j into the clause heap 117 〉 Used in section 115.

〈Put v into the heap 74 〉 Used in section 128.

〈Recompute all the watch lists 122 〉 Used in section 113.

〈Record a binary conflict 68 〉 Used in section 66.

〈Record a nonbinary conflict 69 〉 Used in section 67.

〈Recycle half of the learned clauses 113 〉 Used in section 133.

〈Reduce xnew to zero 92 〉 Used in section 86.

〈Reformat the binary implications 53 〉 Used in section 49.

〈Remove all variables of the current clause 22 〉 Used in section 14.

〈Remove c from l’s watch list 106 〉 Used in sections 98 and 105.

〈Remove t = s− budget clauses at the threshold 115 〉 Used in section 114.

〈Report the successful completion of the input phase 25 〉 Used in section 2.

〈Rescale all clause activities 84 〉 Used in section 81.

〈Rescale all variable activities 83 〉 Used in section 70.

〈Resolve the current conflict 125 〉 Used in section 124.

〈Resolve with binary reason 94 〉 Used in section 93.

〈Resolve with the reason of l 93 〉 Used in section 92.

〈Respond to a command-line option, setting k nonzero on error 5 〉 Used in section 3.

〈Restart unless agility is high 136 〉 Used in section 124.

〈Scan and record a variable; negate it if i ≡ 1 15 〉 Used in section 14.

〈Schedule the next recycling pass 132 〉 Used in section 133.

〈Schedule the next restart 131 〉 Used in section 136.

〈Set up the main data structures 45 〉 Used in section 2.

〈Set h to a random integer less than hn 76 〉 Used in sections 75 and 78.

〈Sift accum into the clause heap at p 119 〉 Used in sections 118 and 120.

〈Sift v up in the heap 73 〉 Used in sections 70 and 74.

〈Simplify the learned clause 102 〉 Used in section 125.

〈Solve the problem 124 〉 Used in section 2.

〈Stamp l as part of the conflict clause milieu 95 〉 Used in sections 87, 93, and 94.

〈Store the learned clause c 107 〉 Used in section 103.

〈Subroutines 31, 32, 33, 34, 39, 42, 43, 44, 71 〉 Used in section 2.
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〈Subsume c by removing its first literal 98 〉 Used in section 93.

〈Swap wa to the watch list of l and continue 62 〉 Used in section 60.

〈Type definitions 9, 10, 28, 29, 30 〉 Used in section 2.

〈Update the smoothed-average stats after a clause has been learned 40 〉 Used in section 102.

〈Watch the first two literals of c 123 〉 Used in section 122.

〈Wrap up clause cc 121 〉 Used in section 114.
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