81 SAT12-ERP INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program is sort of a reverse of the preprocessor SAT12: Suppose F' is a set of clauses for
a satisfiability problem, and SAT12 transforms F' to F’ and outputs the file /tmp/erp. Then if some other
program finds a solution to F’, this program inputs that solution (in stdin) together with /tmp/erp and
outputs a solution to F'.

The reader is supposed to be familiar with SAT12, or at least with those parts of SAT12 where the input
format and the erp file format are specified.

(T hacked this program in a big hurry. It has nothing complicated to do.)

Note: The standard UNIX pipes aren’t versatile enough to use this program without auxiliary intermediate
files. For instance,
satl2 < foo.dat | satllk | satl2-pre

does not work; sat12-pre will start to read file /tmp/erp before sat12 has written it! Instead, you must
say something like

satl2 < foo.dat >! /tmp/bar.dat; satlik < /tmp/bar.dat | satl2-pre

or
satl2 < foo.dat | satllk >! /tmp/bar.sol; satl2-pre < /tmp/bar.sol

to get the list of satisfying literals. The second alternative is generally better, because /tmp/bar.sol is a
one-line file with at most as many literals as there are variables in the reduced clauses, while /tmp/bar.dat
has the full set of those clauses.

I could probably get around this problem by using named pipes. But I don’t want to go to the trouble of
creating and destroying them.

#define O ") /* used for percent signs in format strings */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /* ditto */

(Type definitions 4);
(Global variables 2);
(Subroutines 29);

main (int argc, char xargv|])
{
register uint c, h,4, 5, k, kk, 1, p,v, vv;
(Process the command line 3);
(Initialize everything 7);
(Input the erp file 8);
if (—clauses) fprintf (stderr," (The erp,file_ is empty!)\n");
(Input the solution 21);
(Check input anomalies 10);
(Output the new solution 22);

https://cs.stanford.edu/~knuth/programs.html

2 INTRO SAT12-ERP §2

2. Here I'm mostly copying miscellaneous lines of code from SAT12, editing it lightly, and keeping more of
it than actually necessary.

(Global variables 2) =
int random_seed = 0; /* seed for the random words of gb_rand =/
int hbits = §; /* logarithm of the number of the hash lists */
int buf size = 1024; /+ must exceed the length of the longest erp input line */
FILE xerp_file; /x file to allow reverse preprocessing */
char erp_file_name[100] = "/tmp/erp"; /* its name x/
See also sections 6 and 24.

This code is used in section 1.

3. On the command line one can specify nondefault values for any of the following parameters:

‘h(positive integer)’ to adjust the hash table size.

‘b(positive integer)’ to adjust the size of the input buffer.

‘s(integer)’ to define the seed for any random numbers that are used.
‘e(filename)’ to change the name of the erp output file.

-~~~ e & o o

Process the command line 3) =
for (j = arge — 1,k =0; j; j—)

switch (argv[j][0]) {
case *h’: k |= (sscanf (argv[j] + 1,""O"d", &hbits) — 1); break;
case ’b’: k |= (sscanf (argv[j] +1,""O"d", &buf-size) — 1); break;
case ’s’: k |= (sscanf (argv[j] +1,""O"d", &random_seed) — 1); break;
case ’e’: sprintf (erp_file_name,""O".99s", argv[j] + 1); break;
default: k£ =1; /* unrecognized command-line option */

if (kV hbits < 0V hbits > 30 V buf-size < 11) {
forintf (stderr, "Usage:," O"sy [v<n>], [h<n>], [b<n>], [s<n>] [efoo.erpl, [m<n>]1", argv|0]);
forintf (stderr, ", [c<n>] < foo.dat\n");
exit(—1);

if (—(erp_file = fopen(erp_file_name,"r"))) {
forintf (stderr, "I couldn’t open file,"O"s for reading!\n", erp_file_name);
exit(—16);

}

This code is used in section 1.

§4 SATI12-ERP THE I/O WRAPPER 3

4. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I've tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232 —1 = 4,294,967,295 occurrences
of literals in clauses, or more than 23! — 1 = 2,147,483,647 variables or clauses.

In these temporary tables, each variable is represented by four things: its unique name; its serial number;
the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars_per_vchunk 341 /* preferably (2 —1)/3 for some k */
(Type definitions 4) =
typedef union {

char ch8[8];
uint u2[2];
ullng Ing;
} octa;
typedef struct tmp_var_struct {
octa name; /+ the name (one to eight ASCII characters) */
uint serial; /* 0 for the first variable, 1 for the second, etc. */
int stamp; /* m if positively in clause m; —m if negatively there x/
struct tmp_var_struct *next; /* pointer for hash list */
} tmp_var;
typedef struct vchunk_struct {
struct vchunk_struct xprev; /* previous chunk allocated (if any) */
tmp_var var[vars_per_vchunk];
} vchunk;

See also section 5.

This code is used in section 1.

5. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp_var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.
#define cells_per_chunk 511 /* preferably 2% — 1 for some k */
{ Type definitions 4) +=

typedef struct chunk_struct {

struct chunk_struct *prev; /* previous chunk allocated (if any) x*/

tmp_var xcell|[cells_per_chunk];
} chunk;

4 THE I/O WRAPPER SAT12-ERP §6

6. (Global variables 2) +=
char xbuf; /* buffer for reading the lines (clauses) of erp_file */
tmp_var xxhash; /* heads of the hash lists */
uint hash_bits[93][8]; /* random bits for universal hash function */
vchunk *cur_vchunk; /* the vchunk currently being filled */
tmp_var xcur_tmp_var; /* current place to create new tmp_var entries */
tmp_var xbad_tmp_var; /* the cur_tmp_var when we need a new vchunk x/
chunk xcur_chunk; /* the chunk currently being filled */
tmp_var sxcur_cell; /* current place to create new elements of a clause x/
tmp_var xxbad_cell; /* the cur_cell when we need a new chunk x/
ullng vars; /* how many distinct variables have we seen? x/
ullng clauses; /* how many clauses have we seen? */
ullng cells; /* how many occurrences of literals in clauses? x*/
int kkk; /+ how many clauses should follow the current erp file group */

7. (Initialize everything 7) =
gb_init_rand (random_seed);
buf = (char =) malloc(buf_size * sizeof (char));
if (~buf) {
forintf (stderr, "Couldn’t allocate the_ input buffer (buf_size="0"d) '\n", buf size);
exit (—2);
}
hash = (tmp_var *x) malloc(sizeof (tmp_var) < hbits);
if (—hash) {
forintf (stderr, "Couldn’t allocate " O"d hash list heads (hbits="0"d)'\n", 1 < hbits, hbits);
exit (—3);
¥
for (h=0; h <1 < hbits; h++) hash[h] = A;
See also section 15.

This code is used in section 1.

8. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits. Thus the average number of variables per hash list is n/2" when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)

All the hashing takes place at the very beginning, and the hash tables are actually recycled before any
SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

(Input the erp file 8) =
while (1) {
k = fscanf (erp_file, "" O"10s,<-"O"ad", buf , &kkk);
if (k # 2) break;

clauses ++;
(Input one literal 20);
*(cur_cell — 1) = hack_in (x(cur_cell — 1),4); /x special marker */

if (—fgets(buf, buf size, erp_file) V buf[0] # ’\n’) confusion("erp_group intro line_ format");
(Input kkk clauses 9);

}

This code is used in section 1.

§9 SATI2-ERP THE I/O WRAPPER 5

9. (Input kkk clauses 9) =
for (kk = 0; kk < kkk; kk++) {

if (—fgets(buf, buf_size, erp_file)) break;

clauses ++;

if (buf [strien(buf) — 1] # *\n’) {
fprintf (stderr, "The,clause on line ,"O"11d,,("O".20s...) is too long for me;\n", clauses,

buf);

forintf (stderr, " my_buf_size is only " O"d!\n", buf_size);
fprintf (stderr, "Please juse the command-line option b<newsize>.\n");
exit (—4);

(Input the clause in buf 11);
}
if (kk < kkk) {
forintf (stderr, "file. " O"s ended prematurely: "O"d clauses missing!\n", erp_file_name,
kkk — kk);
exit (—667);
}

This code is used in section 8.

10. (Check input anomalies 10) =
if ((vars > hbits) > 10) {
forintf (stderr, "There are,"O"11d, variables but_only,"O"d hash tables;\n",vars,1 < hbits);
while ((vars > hbits) > 10) hbits++;
forintf (stderr, " maybe you should use command-line option h"O"d?\n", hbits);
¥
if (clauses =0) {
forintf (stderr, "No_clauses_ were input!\n");
exit (—77);
}
if (vars > #80000000) {
forintf (stderr, "Whoa, the_ input had " O"1llu variables!\n", vars);
exit (—664);

if (clauses > #80000000) {
forintf (stderr, "Whoa, the_ input had " O"1llu clauses!\n", clauses);
exit (—665);

if (cells > #100000000) {
forintf (stderr, "Whoa, the_ input had,,"O"1lu occurrences_of literals!\n", cells);
exit (—666);

}

This code is used in section 1.

6 THEI/O WRAPPER SAT12-ERP §11

11. (Input the clause in buf 11) =
for (j=k=0;;) {

while (buf[j] = ’1’) j++; /* scan to nonblank x/

if (buf[j] = ’\n’) break;

if (buf] < 70’ v buf [j) > 277) {
fprintf (stderr,"I1legal character(code #"O"x)_ in the clause on line,"O"11d!\n",

buf [j], clauses);

exit (—5);

if (buf[j]=>"") i=1,j++;
else i = 0;
(Scan and record a variable; negate it if i = 1 12);

}

if (k=0) {
forintf (stderr, "Empty line.,"O"11d,,in file " O"s!\n", clauses, erp_file_name);
exit (—663);

cells +=k;

This code is used in section 9.

12. We need a hack to insert the bit codes 1, 2, and/or 4 into a pointer value.
#define hack_in(q,t) (tmp-var *)(¢t | (ullng) q)

(Scan and record a variable; negate it if i =1 12) =

{

register tmp_var xp;

if (cur_tmp_var = bad_tmp_var) (Install a new vchunk 13);
(Put the variable name beginning at buf [j] in cur_tmp_var-name and compute its hash code h 16);
(Find cur_tmp_var-name in the hash table at p 17);
if (pstamp = clauses V p~stamp = —clauses) {
fprintf (stderr, "Duplicate literal encountered on,line ,"O"11d!\n", clauses);
exit (—669);
} else {
pstamp = (i 7 —clauses : clauses);
if (cur_cell = bad_cell) (Install a new chunk 14);
xcur_cell = p;
if (i =1) xcur_cell = hack_in(xcur_cell,1);
if (k=0) *cur_cell = hack_in(xcur_cell,2);
cur_cell ++, k++;

}
}

This code is used in sections 11 and 20.

§13 SATI2-ERP THE I/O WRAPPER 7

13. (Install a new vchunk 13) =

{

register vchunk snew_vchunk;

new_vchunk = (vchunk x) malloc(sizeof (vchunk));

if (—new_vchunk) {
fprintf (stderr, "Can’t,allocate a new vchunk!\n");
exit(—6);

}

new_vchunk-prev = cur_vchunk, cur_vchunk = new_vchunk;

cur_tmp_var = &new_vchunk-var|0];

bad_tmp_var = &new_vchunk-var[vars_per_vchunk];

}

This code is used in section 12.

14. (Install a new chunk 14) =

{

register chunk xnew_chunk;

new_chunk = (chunk =) malloc(sizeof (chunk));
if (—new_chunk) {
fprintf (stderr, "Can’t,allocate a_new chunk!\n");

exit (—7);

new_chunk-prev = cur_chunk, cur_chunk = new_chunk;
cur_cell = &new_chunk~cell[0];
bad_cell = &new_chunk-cell|[cells_per_chunk];

}

This code is used in section 12.

15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.
(Initialize everything 7) 4=
for (j =92; j; j—)
for (k=0; k <8; k++) hash_bits[j]|[k] = gb_next_rand();

8 THE I/O WRAPPER SAT12-ERP §16

16. (Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 16) =
cur_tmp_var-name.lng = 0;
for (h=101=0; buf[j+1] > '’ Abuf[j+1] <’77; I++) {
if (I1>7){
forintf (stderr, "Variable name ,"O".9s...,in the clause on line.,"O"11d, is too long!\n",
buf + j, clauses);
exit (—8);
}
h @®= hash_bits[buf [j + 1] — >’][I];
cur_tmp_var-name.ch8[l] = buf [j +1;
}
if 1=0) {
forintf (stderr, "I1legal appearance of,~on line,,"O"11d!\n", clauses);
exit (—668);
¥

=1
h &= (1 < hbits) — 1;

This code is used in section 12.

17. (Find cur_tmp_var-name in the hash table at p 17) =
for (p = hash[h]; p; p = pneat)
if (p~name.lng = cur_tmp_var-name.lng) break;
if (—p) { /* new variable found =/
p = cur_tmp_var ++;
p~next = hash[h], hash[h] = p;
pserial = vars++;
prstamp = 0;

}

This code is used in section 12.

18. (Move cur_cell backward to the previous cell 18) =
if (cur_cell > &cur_chunk-cell[0]) cur_cell —;
else {
register chunk xold_chunk = cur_chunk;

cur_chunk = old_chunk-prev; free(old_chunk);
bad_cell = & cur_chunk-cell|cells_per_chunk];
cur_cell = bad_cell — 1;

}

This code is used in sections 26 and 27.

19. (Move cur_tmp_var backward to the previous temporary variable 19) =
if (cur_tmp_var > &cur_vchunk-var[0]) cur_tmp_var —;
else {
register vchunk xold_vchunk = cur_vchunk;

cur_vchunk = old_vchunk-prev; free(old_vchunk);
bad_tmp_var = & cur_vchunk-var [vars_per_vchunk];
cur_tmp_var = bad_tmp_var — 1,

}

This code is used in section 25.

§20 SATI12-ERP THE I/O WRAPPER 9

20. (Input one literal 20) =
if (bufl0]=""7)i=j=1;
else i =5 =0;
(Scan and record a variable; negate it if i =1 12);

This code is used in sections 8 and 21.

21. (Input the solution 21) =
clauses ++;
k=0;
while (1) {
if (scanf(""O"10s", buf) # 1) break;
if (bufl0]=""7 Abuf[1]=0) {
printf (""\n"); /* it was unsatisfiable */
exit (0);
}

(Input one literal 20);

}

This code is used in section 1.

10 DOING IT SAT12-ERP §22

22. Doing it. When the input phase is done, k literals will have been stored as if they are one huge
clause. They are preceded by other groups of clauses, where each group begins with a literal-to-be-defined,
identified by a hacked-in 4 bit.

We unwind that data, seeing it backwards as in other programs of this series. Two trivial data structures
make the process easy: One for the names of the variables, and one for the current values of the literals.

(Output the new solution 22) =
(Allocate the main arrays 23);
for (I =2; | < vars + vars + 2; l++) Imem|[l] = unknown;
(Copy all the temporary variable nodes to the vmem array in proper format 25);
if (k) (Absorb and echo the literals of the given solution 26);
(Use the erp data to compute the rest of the solution 27);
(Check consistency 28);
printf ("\n");

This code is used in section 1.

23. A single octa is enough information for each variable, and a single char is (more than) enough for
each literal.

#define true 1

#define false —1

#define unknown 0

#define thevar(l) ((1)>1)

#define bar(l) ((I)®1) /* the complement of [*/

#define litname(l) (1) & 17 "~" :"" vmem|[thevar(l)].ch8 /* used in printouts */

(Allocate the main arrays 23) =
vmem = (octa *) malloc((vars 4+ 1) * sizeof (octa));
if (—omem) {
forintf (stderr, "Oops, I can’t allocate the vmem array!\n");
exit (—10);
}

Imem = (char x) malloc((vars 4+ vars + 2) = sizeof (char));
if (—lmem) {
forintf (stderr, "Qops, I can’t allocate the lmem array!\n");

This code is used in section 22.

24. (Global variables 2) +=
octa xvmem; /* array of variable names */
char xlmem; /* array of literal values x/

25. (Copy all the temporary variable nodes to the vmem array in proper format 25) =
for (c =wvars; ¢; c—) {
(Move cur_tmp_var backward to the previous temporary variable 19);
vmem|[c].lng = cur_tmp_var-name.lng;

This code is used in section 22.

826 SATI12-ERP DOING IT 11

26. #define hack-out(q) (((ullng)q) & #7)
#define hack_clean(q) ((tmp_var *)((ullng)q & —8))

(Absorb and echo the literals of the given solution 26)
{
for (i=0;i<2;) {
(Move cur_cell backward to the previous cell 18);
i = hack_out (xcur_cell);
p = hack_clean (xcur_cell)~serial;
p+=p+(i&l)+2;
printf (","O"s"O"s", litname (p));
Imem [p] = true, Imem[bar (p)] = false;
}
}

This code is used in section 22.

27. At last we get to the heart of this program: Clauses are evaluated (in reverse order of their appearance
in the erp file) until we come back to a definition point.

(Use the erp data to compute the rest of the solution 27) =
v = true;
for (¢ = clauses — 1; ¢; ¢—) {
v = false;
for (i=0; i<2;) {
(Move cur_cell backward to the previous cell 18);
i = hack_out (xcur_cell);
p = hack_clean (xcur_cell))~serial;;
p+=p+(i&1)+2;
if (i > 4) break;
if (Imem[p| = unknown) {
printf (","O"s"O"s", litname (p)); /* assign an arbitrary value x/
Imem[p] = true, lmem[bar(p)] = false;

if (Imem/[p] = true) vv = true; /* vv is OR of literals in clause */
}
if (i <4) {

if (vv = false) v = false; /* v is AND of clauses in group */
} else { /* defining an eliminated variable x/

Imem[p] = v, Imem[bar(p)] = —v;

if (’U = true) pr’intf("ullO"SI'O|'S'|, lztname(p)),
else printf (","O"s"O"s", litname(bar(p)));
v = true;
}
}

This code is used in section 22.

28. (Check consistency 28) =
if (cur_cell # &cur_chunk~cell[0] V cur_chunk-prev # AV cur_tmp_var #
& cur_vchunk-var|[0] V cur_vchunk-prev # A) confusion("consistency");
free(cur_chunk); free(cur_vchunk);

This code is used in section 22.

12 DOING IT

29. (Subroutines 29) =
void confusion(char xid)
{ /* an assertion has failed */

forintf (stderr, "This,can’t happen,("O"s) '\n", id);

exit (—69);

}

void debugstop (int foo)

{ /* can be inserted as a special breakpoint */
forintf (stderr, "You,rang("O"d) ?\n", foo);

}

This code is used in section 1.

SAT12-ERP

§29

830 SATI12-ERP

30. Index.
arge: 1, 3.
argv: 1, 3.

bad_cell: 6, 12, 14, 18.

bad_tmp_var: 6, 12, 13, 19.

bar: 23, 26, 27.

buf: 6, 7, 8,9, 11, 16, 20, 21.

buf size: 2, 3, 7, 8, 9.

c: 1.

cell: 5, 14, 18, 28.

cells: 6, 10, 11.

cells_per_chunk: 5, 14, 18.

chunk: 5, 6, 14, 18.

chunk_struct: 5.

ch8: 4, 16, 23.

clauses: 1, 6, 8, 9, 10, 11, 12, 16, 21, 27.
confusion: 8, 28, 29.

cur_cell: 6, 8, 12, 14, 18, 26, 27, 28.
cur_chunk: 6, 14, 18, 28.

cur_tmp_var: 6, 12, 13, 16, 17, 19, 25, 28.
cur_vchunk: 6, 13, 19, 28.

debugstop: 29.

erp_file: 2, 3, 6, 8, 9.

erp_file_name: 2, 3, 9, 11.

exit: 3,7,9,10, 11, 12, 13, 14, 16, 21, 23, 29.
false: 23, 26, 27.

fogets: 8, 9.
foo: 29.
fopen: 3.

forintf: 1, 3,7,9, 10, 11, 12, 13, 14, 16, 23, 29.

free: 18, 19, 28.
fscanf: 8.

gb_init_rand: 7.
gb_next_rand: 15.
gb_rand: 2.

h: 1.

hack_clean: 26, 27.
hack_in: 8, 12.
hack_out: 26, 27.

hash: 6, 7, 17.
hash_bits: 6, 15, 16.
hbits: 2, 3, 7, 8, 10, 16.
i 1.

id: 29.

VE
k:
kk: 1, 9.

kkk: 6, 8, 9.

. 1.

litname: 23, 26, 27.
Ilmem: 22, 23, 24, 26, 27.
Ing: 4, 16, 17, 25.

= I=

INDEX

main: 1.

malloc: 7, 13, 14, 23.
name: 4, 16, 17, 25.
new_chunk: 14.
new_vchunk: 13.

next: 4, 17.

O: 1.

octa: 4, 23, 24.
old_chunk: 18.
old_vchunk: 19.

p: 1, 12.

prev: 4, 5, 13, 14, 18, 19, 28.
printf: 21, 22, 26, 27.
random_seed: 2, 3, T.

scanf: 21.

sertal: 4, 17, 26, 27.

sprintf: 3.

sscanf: 3.

stamp: 4, 12, 17.

stderr: 1,3,7,9,10, 11, 12, 13, 14, 16, 23, 29.
stdin: 1.

strlen: 9.

thevar: 23.

tmp_var: 4, 5, 6, 7, 12, 26.
tmp_var_struct: 4.

true: 23, 26, 27.

uint: 1, 4, 6.

ullng: 1, 4, 6, 12, 26.
unknown: 22, 23, 27.

u2: 4.

v: 1.

var: 4, 13, 19, 28.

vars: 6, 10, 17, 22, 23, 25.
vars_per_vchunk: 4, 13, 19.
vchunk: 4, 6, 13, 19.
vchunk_struct: 4.

vmem: 23, 24, 25.

vo: 1, 27.

14 NAMES OF THE SECTIONS

Absorb and echo the literals of the given solution 26) Used in section 22.
Allocate the main arrays 23) Used in section 22.

Check consistency 28) Used in section 22.

Check input anomalies 10) Used in section 1.

Copy all the temporary variable nodes to the vmem array in proper format 25)
Find cur_tmp_var-name in the hash table at p 17) Used in section 12.

Global variables 2, 6, 24> Used in section 1.

Initialize everything 7, 15) Used in section 1.

Input one literal 20) Used in sections 8 and 21.

Input the erp file 8) Used in section 1.

Input the solution 21) Used in section 1.

Input kkk clauses 9) Used in section 8.

Install a new chunk 14) Used in section 12.

Install a new vchunk 13) Used in section 12.

Move cur_cell backward to the previous cell 18) Used in sections 26 and 27.

SAT12-ERP

Used in section 22.

Move cur_tmp_var backward to the previous temporary variable 19) Used in section 25.

Output the new solution 22) Used in section 1.

(
(
(
(
(
(
(
(
(
(
(Input the clause in buf 11) Used in section 9.
(
(
(
(
(
(
(
(Process the command line 3) Used in section 1.
(

Put the variable name beginning at buf [j] in cur_tmp_var-name and compute its hash code h 16) Used

in section 12.
Scan and record a variable; negate it if ¢ =1 12) Used in sections 11 and 20.
Subroutines 29> Used in section 1.
Type definitions 4, 5) Used in section 1.
Use the erp data to compute the rest of the solution 27) Used in section 22.

o~ o~~~

SAT12-ERP

Section Page

s e X 1 1
The T/O WIAPDETttt e e e e 4 3
DOIIE Tt v veee e e e e e e e e e e 22 10

I .o 30 13

	Intro
	The I/O wrapper
	Doing it
	Index
	Names of the sections
	Absorb and echo the literals of the given solution
	Allocate the main arrays
	Check consistency
	Check input anomalies
	Copy all the temporary variable nodes to the vmem array in proper format
	Find cur_tmp_var->name in the hash table at p
	Global variables
	Initialize everything
	Input one literal
	Input the erp file
	Input the clause in buf
	Input the solution
	Input kkk clauses
	Install a new chunk
	Install a new vchunk
	Move cur_cell backward to the previous cell
	Move cur_tmp_var backward to the previous temporary variable
	Output the new solution
	Process the command line
	Put the variable name beginning at buf[j] in cur_tmp_var->name and compute its hash code h
	Scan and record a variable; negate it if i==1
	Subroutines
	Type definitions
	Use the erp data to compute the rest of the solution

