
§1 SAT0 INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.

Indeed, this is the first of the series — more precisely the zero-th. I’ve tried to write it as a primitive
baseline against which I’ll be able to measure various technical improvements that have been discovered in
recent years. This version represents what I think I would have written in the 1960s, when I knew how
to do basic backtracking with classical data structures (but very little else). I have intentionally written it
before having read any of the literature about modern SAT-solving techniques; in other words I’m starting
with a personal “tabula rasa.” My plan is to write new versions as I read the literature, in more-or-less
historical order. The only thing that currently distinguishes me from a programmer of forty years ago,
SAT-solving-wise, is the knowledge that better methods almost surely do exist.

[Note: The present code is slightly modified from the original SAT0. It now corresponds to what has
become Algorithm 7.2.2.2A, so that I can make the quantitative experiments recorded in the book.]

Although this is the zero-level program, I’m taking care to adopt conventions for input and output that
will be essentially the same in all of the fancier versions that are to come.

The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals
separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~ are ignored (treated as comments). The output will be ‘~’ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘~x1 ~x2 x3’, in some
order, possibly together with either x4 or ~x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.

The running time in “mems” is also reported, together with the approximate number of bytes needed for
data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)

https://cs.stanford.edu/~knuth/programs.html

2 INTRO SAT0 §2

2. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 5 〉;
〈Global variables 3 〉;
〈Subroutines 27 〉;
main (int argc , char ∗argv [])
{

register uint c, h, i, j, k, l, p, q, r, level , parity ;

〈Process the command line 4 〉;
〈 Initialize everything 8 〉;
〈 Input the clauses 9 〉;
if (verbose & show basics) 〈Report the successful completion of the input phase 21 〉;
〈Set up the main data structures 30 〉;
imems = mems ,mems = 0;
〈Solve the problem 39 〉;

done : if (verbose & show basics) fprintf (stderr ,
"Altogether %llu+%llu mems, %llu bytes, %llu nodes.\n", imems ,mems , bytes ,nodes);

}

3. #define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
〈Global variables 3 〉 ≡

int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics ; /∗ level of verbosity ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
ullng imems ,mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/

See also sections 7 and 26.

This code is used in section 2.

§4 SAT0 INTRO 3

4. On the command line one can say

• ‘v〈 integer 〉’ to enable various levels of verbose output on stderr ;
• ‘c〈positive integer 〉’ to limit the levels on which clauses are shown;
• ‘h〈positive integer 〉’ to adjust the hash table size;
• ‘b〈positive integer 〉’ to adjust the size of the input buffer;
• ‘s〈 integer 〉’ to define the seed for any random numbers that are used; and/or
• ‘d〈 integer 〉’ to set delta for periodic state reports.
• ‘T〈 integer 〉’ to set timeout : This program will abruptly terminate, when it discovers that mems > timeout .

〈Process the command line 4 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, "%d",&verbose)− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, "%d",&show choices max)− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, "%d",&hbits)− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, "%d",&buf size)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, "%d",&random seed)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, "%lld",&delta)− 1); thresh = delta ; break;
case ’T’: k |= (sscanf (argv [j] + 1, "%lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0) {
fprintf (stderr , "Usage: %s [v<n>] [c<n>] [h<n>] [b<n>] [s<n>] [d<n>] [T<n>] < foo.sat\n",

argv [0]);
exit (−1);
}

This code is used in section 2.

4 THE I/O WRAPPER SAT0 §5

5. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.

In these temporary tables, each variable is represented by four things: its unique name; its serial number;
the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/
〈Type definitions 5 〉 ≡

typedef union {
char ch8 [8];
uint u2 [2];
long long lng ;
} octa;
typedef struct tmp var struct {

octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/
} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk];
} vchunk;

See also sections 6, 23, 24, and 25.

This code is used in section 2.

6. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/
〈Type definitions 5 〉 +≡

typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk];
} chunk;

§7 SAT0 THE I/O WRAPPER 5

7. 〈Global variables 3 〉 +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/

8. 〈 Initialize everything 8 〉 ≡
gb init rand (random seed);
buf = (char ∗) malloc(buf size ∗ sizeof (char));
if (¬buf) {

fprintf (stderr , "Couldn’t allocate the input buffer (buf_size=%d)!\n", buf size);
exit (−2);
}
hash = (tmp var ∗∗) malloc(sizeof (tmp var)� hbits);
if (¬hash) {

fprintf (stderr , "Couldn’t allocate %d hash list heads (hbits=%d)!\n", 1� hbits , hbits);
exit (−3);
}
for (h = 0; h < 1� hbits ; h++) hash [h] = Λ;

See also section 14.

This code is used in section 2.

6 THE I/O WRAPPER SAT0 §9

9. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)

All the hashing takes place at the very beginning, and the hash tables are actually recycled before any
SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

〈 Input the clauses 9 〉 ≡
while (1) {

if (¬fgets (buf , buf size , stdin)) break;
clauses ++;
if (buf [strlen (buf)− 1] 6= ’\n’) {

fprintf (stderr , "The clause on line %lld (%.20s...) is too long for me;\n", clauses , buf);
fprintf (stderr , " my buf_size is only %d!\n", buf size);
fprintf (stderr , "Please use the command−line option b<newsize>.\n");
exit (−4);

}
〈 Input the clause in buf 10 〉;
}
if ((vars � hbits) ≥ 10) {

fprintf (stderr , "There are %lld variables but only %d hash tables;\n", vars , 1� hbits);
while ((vars � hbits) ≥ 10) hbits ++;
fprintf (stderr , " maybe you should use command−line option h%d?\n", hbits);
}
clauses −= nullclauses ;
if (clauses ≡ 0) {

fprintf (stderr , "No clauses were input!\n");
exit (−77);
}
if (vars ≥ #80000000) {

fprintf (stderr , "Whoa, the input had %llu variables!\n", vars);
exit (−664);
}
if (clauses ≥ #80000000) {

fprintf (stderr , "Whoa, the input had %llu clauses!\n", clauses);
exit (−665);
}
if (cells ≥ #100000000) {

fprintf (stderr , "Whoa, the input had %llu occurrences of literals!\n", cells);
exit (−666);
}

This code is used in section 2.

§10 SAT0 THE I/O WRAPPER 7

10. 〈 Input the clause in buf 10 〉 ≡
for (j = k = 0; ;) {

while (buf [j] ≡ ’ ’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’ ’ ∨ buf [j] > ’~’) {

fprintf (stderr , "Illegal character (code #%x) in the clause on line %lld!\n", buf [j],
clauses);

exit (−5);
}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
〈Scan and record a variable; negate it if i ≡ 1 11 〉;
}
if (k ≡ 0) {

fprintf (stderr , "(Empty line %lld is being ignored)\n", clauses);
nullclauses ++; /∗ strictly speaking it would be unsatisfiable ∗/
}
goto clause done ;

empty clause : 〈Remove all variables of the current clause 18 〉;
clause done : cells += k;

This code is used in section 9.

11. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)

〈Scan and record a variable; negate it if i ≡ 1 11 〉 ≡
{

register tmp var ∗p;

if (cur tmp var ≡ bad tmp var) 〈 Install a new vchunk 12 〉;
〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 15 〉;
〈Find cur tmp var~name in the hash table at p 16 〉;
if (p~stamp ≡ clauses ∨ p~stamp ≡ −clauses) 〈Handle a duplicate literal 17 〉
else {
p~stamp = (i ? −clauses : clauses);
if (cur cell ≡ bad cell) 〈 Install a new chunk 13 〉;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

This code is used in section 10.

8 THE I/O WRAPPER SAT0 §12

12. 〈 Install a new vchunk 12 〉 ≡
{

register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc(sizeof (vchunk));
if (¬new vchunk) {

fprintf (stderr , "Can’t allocate a new vchunk!\n");
exit (−6);

}
new vchunk~prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk~var [0];
bad tmp var = &new vchunk~var [vars per vchunk];
}

This code is used in section 11.

13. 〈 Install a new chunk 13 〉 ≡
{

register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc(sizeof (chunk));
if (¬new chunk) {

fprintf (stderr , "Can’t allocate a new chunk!\n");
exit (−7);

}
new chunk~prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk~cell [0];
bad cell = &new chunk~cell [cells per chunk];
}

This code is used in section 11.

14. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

〈 Initialize everything 8 〉 +≡
for (j = 92; j; j−−)

for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ();

15. 〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 15 〉 ≡
cur tmp var~name .lng = 0;
for (h = l = 0; buf [j + l] > ’ ’ ∧ buf [j + l] ≤ ’~’; l++) {

if (l > 7) {
fprintf (stderr , "Variable name %.9s... in the clause on line %lld is too long!\n",

buf + j, clauses);
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var~name .ch8 [l] = buf [j + l];
}
if (l ≡ 0) goto empty clause ; /∗ ‘~’ by itself is like ‘true’ ∗/
j += l;
h &= (1� hbits)− 1;

This code is used in section 11.

§16 SAT0 THE I/O WRAPPER 9

16. 〈Find cur tmp var~name in the hash table at p 16 〉 ≡
for (p = hash [h]; p; p = p~next)

if (p~name .lng ≡ cur tmp var~name .lng) break;
if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p~next = hash [h], hash [h] = p;
p~serial = vars ++;
p~stamp = 0;
}

This code is used in section 11.

17. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

〈Handle a duplicate literal 17 〉 ≡
{

if ((p~stamp > 0) ≡ (i > 0)) goto empty clause ;
}

This code is used in section 11.

18. An input line that begins with ‘~ ’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

〈Remove all variables of the current clause 18 〉 ≡
while (k) {
〈Move cur cell backward to the previous cell 19 〉;
k−−;
}
if ((buf [0] 6= ’~’) ∨ (buf [1] 6= ’ ’))

fprintf (stderr , "(The clause on line %lld is always satisfied)\n", clauses);
nullclauses ++;

This code is used in section 10.

19. 〈Move cur cell backward to the previous cell 19 〉 ≡
if (cur cell > &cur chunk~cell [0]) cur cell −−;
else {

register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk~prev ; free (old chunk);
bad cell = &cur chunk~cell [cells per chunk];
cur cell = bad cell − 1;
}

This code is used in sections 18 and 33.

20. 〈Move cur tmp var backward to the previous temporary variable 20 〉 ≡
if (cur tmp var > &cur vchunk~var [0]) cur tmp var −−;
else {

register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk~prev ; free (old vchunk);
bad tmp var = &cur vchunk~var [vars per vchunk];
cur tmp var = bad tmp var − 1;
}

This code is used in section 37.

10 THE I/O WRAPPER SAT0 §21

21. 〈Report the successful completion of the input phase 21 〉 ≡
fprintf (stderr , "(%lld variables, %lld clauses, %llu literals successfully read)\n", vars ,

clauses , cells);

This code is used in section 2.

§22 SAT0 SAT SOLVING, VERSION 0 11

22. SAT solving, version 0. OK, now comes my hypothetical recreation of a 1960s-style SAT-solver.
I knew about doubly linked lists, way back then; but I hadn’t yet realized the power of “dancing links.”
This program does invoke a mild form of the dancing-links principle, because I think I probably would
have discovered it if I’d actually worked on satisfiability in those days. (The slightly modified program
SAT0-NODANCE shows what my method would have been if I hadn’t foreseen dancing links so early.)

The algorithm below essentially tries to solve a satisfiability problem on n variables by first setting the nth
variable to its most plausible value, then using the same idea recursively on the remaining (n− 1)-variable
problem. If this doesn’t work, we try the other possibility for the nth variable, and the result will either
succeed or fail.

Data structures to support that method should allow us to do the following things easily:

• Know, for each variable, the clauses in which that variable occurs, and in how many of them it occurs
positively or negatively (two counts).

• Know, for each clause, the literals that it currently contains.
• Delete literals from clauses when they don’t satisfy it.
• Delete clauses that have already been satisfied.
• Insert deleted literals and/or clauses when backing up to reconsider previous choices.

The original clause sizes are known in advance. Therefore we can use a combination of sequential and linked
memory to accomplish all of these goals.

23. The basic unit in our data structure is called a cell. There’s one cell for each literal in each clause, and
there also are 2n special cells explained below. Each cell belongs to a doubly linked list for the corresponding
literal, as well as to a sequential list for the relevant clause. It also “knows” the number of its clause and
the number of its literal (which is 2k or 2k + 1 for the positive and negative versions of variable k).

Each link is a 32-bit integer. (I don’t use C pointers in the main data structures, because they occupy 64
bits and clutter up the caches.) The integer is an index into a monolithic array of cells called mem .

#define listsize owner /∗ alternative name for the owner field ∗/
〈Type definitions 5 〉 +≡

typedef struct {
uint flink , blink ; /∗ forward and backward links for this literal ∗/
uint owner ; /∗ clause number, or size in the special list-head cells ∗/
uint litno ; /∗ literal number ∗/
} cell;

24. Each clause is represented by a pointer to its first cell and by its current size. My first draft of this
program also included links to the preceding and following clauses, in a doubly linked cyclic list of all the
active clauses that are currently active; but later I realized that such a list is irrelevant, so it might as well
be immaterial.

〈Type definitions 5 〉 +≡
typedef struct {

uint start ; /∗ the address in mem where the cells for this clause start ∗/
uint size ; /∗ the current number of literals in this clause ∗/
} clause;

12 SAT SOLVING, VERSION 0 SAT0 §25

25. If there are n variables, there are 2n possible literals. Hence we reserve 2n special cells at the beginning
of mem , for the heads of the lists that link all occurrences of the same literal together.

(Added later: Well, I now actually reserve 2n+2 special cells, in order to be consistent with the exposition
in TAOCP, where it was found “friendlier” to speak of x1 through xn instead of x0 through xn−1 in the
introductory examples.)

The lists for variable k begin in locations 2k and 2k + 1, corresponding to its positive and negative
incarnations, for 1 ≤ k ≤ n. The owner field in the list head tells the total size of the list.

A variable is also represented by its name, for purposes of output. The name appears in a separate array
vmem of vertex nodes.

〈Type definitions 5 〉 +≡
typedef struct {

octa name ; /∗ the variable’s symbolic name ∗/
} variable;

26. 〈Global variables 3 〉 +≡
cell ∗mem ; /∗ the master array of cells ∗/
uint nonspec ; /∗ address in mem of the first non-special cell ∗/
clause ∗cmem ; /∗ the master array of clauses ∗/
variable ∗vmem ; /∗ the master array of variables ∗/
char ∗move ; /∗ the stack of choices made so far ∗/
uint active ; /∗ the total number of active clauses ∗/

27. Here is a subroutine that prints a clause symbolically. It illustrates some of the conventions of the
data structures that have been explained above. I use it only for debugging.

Incidentally, the clause numbers reported to the user after the input phase may differ from the line numbers
reported during the input phase, when nullclauses > 0.

〈Subroutines 27 〉 ≡
void print clause (uint c)
{

register uint k, l;

printf ("%d:", c); /∗ show the clause number ∗/
for (k = 0; k < cmem [c].size ; k++) {
l = mem [cmem [c].start + k].litno ;
printf (" %s%.8s", l & 1 ? "~" : "", vmem [l� 1].name .ch8); /∗ kth literal ∗/

}
printf ("\n");
}

See also sections 28 and 29.

This code is used in section 2.

28. Similarly we can print out all of the clauses that use (or originally used) a particular literal.

〈Subroutines 27 〉 +≡
void print clauses for (int l)
{

register uint p;

for (p = mem [l].flink ; p ≥ nonspec ; p = mem [p].flink) print clause (mem [p].owner);
}

§29 SAT0 SAT SOLVING, VERSION 0 13

29. In long runs it’s helpful to know how far we’ve gotten.

〈Subroutines 27 〉 +≡
void print state (int l)
{

register int k;

fprintf (stderr , " after %lld mems:",mems);
for (k = 1; k ≤ l; k++) fprintf (stderr , "%c",move [k] + ’0’);
fprintf (stderr , "\n");
fflush (stderr);
}

14 INITIALIZING THE REAL DATA STRUCTURES SAT0 §30

30. Initializing the real data structures. Okay, we’re ready now to convert the temporary chunks
of data into the form we want, and to recycle those chunks. The code below is intended to be a prototype
for similar tasks in later programs of this series.

〈Set up the main data structures 30 〉 ≡
〈Allocate the main arrays 31 〉;
〈Copy all the temporary cells to the mem and cmem arrays in proper format 32 〉;
〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉;
〈Check consistency 38 〉;

This code is used in section 2.

31. The backtracking routine uses a small array called move to record its choices-so-far. We don’t count
the space for move in bytes , because each variable entry has a spare byte that could have been used.

〈Allocate the main arrays 31 〉 ≡
free (buf); free (hash); /∗ a tiny gesture to make a little room ∗/
nonspec = vars + vars + 2;
if (nonspec + cells ≥ #100000000) {

fprintf (stderr , "Whoa, nonspec+cells is too big for me!\n");
exit (−667);
}
mem = (cell ∗) malloc((nonspec + cells) ∗ sizeof (cell));
if (¬mem) {

fprintf (stderr , "Oops, I can’t allocate the big mem array!\n");
exit (−10);
}
bytes = (nonspec + cells) ∗ sizeof (cell);
cmem = (clause ∗) malloc((clauses + 1) ∗ sizeof (clause));
if (¬cmem) {

fprintf (stderr , "Oops, I can’t allocate the cmem array!\n");
exit (−11);
}
bytes += (clauses + 1) ∗ sizeof (clause);
vmem = (variable ∗) malloc((vars + 1) ∗ sizeof (variable));
if (¬vmem) {

fprintf (stderr , "Oops, I can’t allocate the vmem array!\n");
exit (−12);
}
bytes += (vars + 1) ∗ sizeof (variable);
move = (char ∗) malloc((vars + 1) ∗ sizeof (char));
if (¬move) {

fprintf (stderr , "Oops, I can’t allocate the move array!\n");
exit (−13);

}
This code is used in section 30.

§32 SAT0 INITIALIZING THE REAL DATA STRUCTURES 15

32. 〈Copy all the temporary cells to the mem and cmem arrays in proper format 32 〉 ≡
for (j = 0; j < nonspec ; j++) o,mem [j].flink = 0;
for (c = clauses ; c; c−−) {
o, cmem [c].start = j, cmem [c].size = 0;
〈 Insert the cells for the literals of clause c 33 〉;
}
active = clauses ;
〈Fix up the blink fields and compute the list sizes 34 〉;
〈Sort the literals within each clause 35 〉;

This code is used in section 30.

33. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

〈 Insert the cells for the literals of clause c 33 〉 ≡
for (i = 0; i < 2; j++) {
〈Move cur cell backward to the previous cell 19 〉;
i = hack out (∗cur cell);
p = hack clean (∗cur cell)~serial ;
p += p + (i & 1) + 2;
ooo ,mem [j].flink = mem [p].flink ,mem [p].flink = j;
o,mem [j].owner = c,mem [j].litno = p;
}

This code is used in section 32.

34. 〈Fix up the blink fields and compute the list sizes 34 〉 ≡
for (k = 2; k < nonspec ; k++) {

for (o, i = 0, q = k, p = mem [k].flink ; p ≥ nonspec ; i++, q = p, o, p = mem [p].flink)
o,mem [p].blink = q;

oo ,mem [k].blink = q,mem [q].flink = k;
o,mem [k].listsize = i,mem [k].litno = k;
}

This code is used in section 32.

35. The backtracking scheme we will use works nicely when the literals of a clause are arranged so that
the first one to be tried comes last. Then a false literal is removed from its clause simply by decreasing the
clause’s size field.

This program tries variable 0 first, then variable 1, etc.; so we want the literals of each clause to be in
decreasing order.

The following sorting scheme takes linear time, in the number of cells, because of the characteristics of
our data structures. The size field of each clause is initially zero.

〈Sort the literals within each clause 35 〉 ≡
for (k = nonspec − 1; k ≥ 2; k−−)

for (o, j = mem [k].flink ; j ≥ nonspec ; o, j = mem [j].flink) {
o, c = mem [j].owner ;
o, i = cmem [c].size , p = cmem [c].start + i;
if (j 6= p) 〈Swap cell j with cell p 36 〉;
o, cmem [c].size = i + 1;

}
This code is used in section 32.

16 INITIALIZING THE REAL DATA STRUCTURES SAT0 §36

36. Sometimes doubly linked lists make me feel good, even when spending 11 mems. (For mem computa-
tion, flink and blink are assumed to be stored in a single 64-bit word.)

〈Swap cell j with cell p 36 〉 ≡
{
o, q = mem [p].flink , r = mem [p].blink ;
oo ,mem [p].flink = mem [j].flink ,mem [p].blink = mem [j].blink ;
oo ,mem [mem [j].flink].blink = mem [mem [j].blink].flink = p;
o,mem [j].flink = q,mem [j].blink = r;
oo ,mem [q].blink = j,mem [r].flink = j;
oo ,mem [j].litno = mem [p].litno ;
o,mem [p].litno = k;
j = p;
}

This code is used in section 35.

37. 〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉 ≡
for (c = vars ; c; c−−) {
〈Move cur tmp var backward to the previous temporary variable 20 〉;
o, vmem [c].name .lng = cur tmp var~name .lng ;
}

This code is used in section 30.

38. We should now have unwound all the temporary data chunks back to their beginnings.

〈Check consistency 38 〉 ≡
if (cur cell 6= &cur chunk~cell[0] ∨ cur chunk~prev 6= Λ ∨ cur tmp var 6=

&cur vchunk~var [0] ∨ cur vchunk~prev 6= Λ) {
fprintf (stderr , "This can’t happen (consistency check failure)!\n");
exit (−14);
}
free (cur chunk); free (cur vchunk);

This code is used in section 30.

§39 SAT0 DOING IT 17

39. Doing it. Now comes ye olde basic backtrack.
A choice is recorded in the move array, as the number 0 or 1 if we’re trying first to set the current variable

true or false, respectively; it is 3 or 2 if that move failed and we’re trying the other alternative.
One slightly nontrivial point arises here: If we can satisfy all of the remaining clauses at some level of the

computation, we can do it with our first choice for the relevant variable, because the other choice satisfies
at most as many clauses. Thus the test for success doesn’t need to be redone at label try again below.

Furthermore, if the complement of our first choice doesn’t appear in any active clause, we need not try it.
(In other words, a “pure literal” can be assumed to be true. I didn’t know about pure literals when I first
wrote SAT0, but I’ve put that knowledge into Algorithm 7.2.2.2A.) Such cases are encoded as moves 4 and 5
instead of 0 and 1.

〈Solve the problem 39 〉 ≡
level = 1; /∗ I used to start at level 0, but Algorithm 7.2.2.2A does this ∗/

newlevel : ooo ,move [level] = (mem [level + level].listsize ≤ mem [level + level + 1].listsize);
if ((verbose & show choices) ∧ level ≤ show choices max) {

fprintf (stderr , "Level %d, trying %s%.8s", level ,move [level] ? "~" : "", vmem [level].name .ch8);
if (verbose & show details) fprintf (stderr , " (%d:%d, %d active, %lld mems)",

mem [level + level].listsize ,mem [level + level + 1].listsize , active ,mems);
fprintf (stderr , "\n");
}
parity = move [level] & 1;
if (mem [level + level + 1− parity].listsize ≡ 0) move [level] += 4; /∗ pure literal; see above ∗/
else nodes ++;
if (delta ∧ (mems ≥ thresh)) thresh += delta , print state (level);
if (active ≡ mem [level + level + parity].listsize) goto satisfied ; /∗ success! ∗/
if (mems > timeout) {

fprintf (stderr , "TIMEOUT!\n");
goto done ;
}

tryit : parity = move [level] & 1;
〈Remove variable level from the clauses in the non-chosen list; goto try again if that would make a

clause empty 40 〉;
〈 Inactivate all clauses of the chosen list 41 〉;
level ++; goto newlevel ;

try again : if (o,move [level] < 2) {
o,move [level] = 3−move [level];
if ((verbose & show choices) ∧ level ≤ show choices max) {

fprintf (stderr , "Level %d, trying again", level);
if (verbose & show details) fprintf (stderr , " (%d active, %lld mems)\n", active ,mems);
else fprintf (stderr , "\n");

}
goto tryit ;
}
if (level > 1) 〈Backtrack to the previous level 42 〉;
if (1) {

printf ("~\n"); /∗ the formula was unsatisfiable ∗/
if (verbose & show basics) fprintf (stderr , "UNSAT\n");
} else {
satisfied : if (verbose & show basics) fprintf (stderr , "!SAT!\n");
〈Print the solution found 45 〉;
}

This code is used in section 2.

18 DOING IT SAT0 §40

40. Here’s where the fact that clauses are sorted really pays off.

〈Remove variable level from the clauses in the non-chosen list; goto try again if that would make a clause
empty 40 〉 ≡

for (o, k = mem [level + level + 1− parity].flink ; k ≥ nonspec ; o, k = mem [k].flink) {
oo , c = mem [k].owner , i = cmem [c].size ;
if (i ≡ 1) {

if (verbose & show details) fprintf (stderr , "(Clause %d now unsatisfied)\n", c);
for (o, k = mem [k].blink ; k ≥ nonspec ; o, k = mem [k].blink) {

oo , c = mem [k].owner , i = cmem [c].size ;
o, cmem [c].size = i + 1;

}
goto try again ;

}
o, cmem [c].size = i− 1;
}

This code is used in section 39.

41. The links dance a little here.

〈 Inactivate all clauses of the chosen list 41 〉 ≡
for (o, k = mem [level + level + parity].flink ; k ≥ nonspec ; o, k = mem [k].flink) {

oo , c = mem [k].owner , i = cmem [c].size , j = cmem [c].start ;
for (p = j; p < j + i− 1; p++) {
o, q = mem [p].flink , r = mem [p].blink ;
oo ,mem [q].blink = r,mem [r].flink = q;
ooo ,mem [mem [p].litno].listsize −−;

}
}
o, active −= mem [k].listsize ;

This code is used in section 39.

42. 〈Backtrack to the previous level 42 〉 ≡
{

level −−;
〈Reactivate all clauses of the chosen list 43 〉;
〈Put variable level back into all clauses on the non-chosen list 44 〉;
goto try again ;
}

This code is used in section 39.

§43 SAT0 DOING IT 19

43. Here the dancing links protocol requires us to traverse the list in the reverse direction from what we
had before.

〈Reactivate all clauses of the chosen list 43 〉 ≡
o, parity = move [level] & 1;
for (o, k = mem [level + level + parity].blink ; k ≥ nonspec ; o, k = mem [k].blink) {

oo , c = mem [k].owner , i = cmem [c].size , j = cmem [c].start ;
for (p = j; p < j + i− 1; p++) {
o, q = mem [p].flink , r = mem [p].blink ;
oo ,mem [q].blink = p,mem [r].flink = p;
ooo ,mem [mem [p].litno].listsize ++;

}
}
o, active += mem [k].listsize ;

This code is used in section 42.

44. 〈Put variable level back into all clauses on the non-chosen list 44 〉 ≡
for (o, k = mem [level + level + 1− parity].flink ; k ≥ nonspec ; o, k = mem [k].flink) {

oo , c = mem [k].owner , i = cmem [c].size ;
o, cmem [c].size = i + 1;
}

This code is used in section 42.

45. 〈Print the solution found 45 〉 ≡
for (k = 1; k ≤ level ; k++) printf (" %s%.8s",move [k] & 1 ? "~" : "", vmem [k].name .ch8);
printf ("\n");

This code is used in section 39.

20 INDEX SAT0 §46

46. Index.

active : 26, 32, 39, 41, 43.
argc : 2, 4.
argv : 2, 4.
bad cell : 7, 11, 13, 19.
bad tmp var : 7, 11, 12, 20.
blink : 23, 34, 36, 40, 41, 43.
buf : 7, 8, 9, 10, 15, 18, 31.
buf size : 3, 4, 8, 9.
bytes : 2, 3, 31.
c: 2, 27.
cell: 6, 13, 19, 23, 26, 31, 38.
cells : 7, 9, 10, 21, 31.
cells per chunk : 6, 13, 19.
chunk: 6, 7, 13, 19.
chunk struct: 6.
ch8 : 5, 15, 27, 39, 45.
clause: 24, 26, 31.
clause done : 10.
clauses : 7, 9, 10, 11, 15, 18, 21, 31, 32.
cmem : 26, 27, 31, 32, 35, 40, 41, 43, 44.
cur cell : 7, 11, 13, 19, 33, 38.
cur chunk : 7, 13, 19, 38.
cur tmp var : 7, 11, 12, 15, 16, 20, 37, 38.
cur vchunk : 7, 12, 20, 38.
delta : 3, 4, 39.
done : 2, 39.
empty clause : 10, 15, 17.
exit : 4, 8, 9, 10, 12, 13, 15, 31, 38.
fflush : 29.
fgets : 9.
flink : 23, 28, 32, 33, 34, 35, 36, 40, 41, 43, 44.
fprintf : 2, 4, 8, 9, 10, 12, 13, 15, 18, 21, 29,

31, 38, 39, 40.
free : 19, 20, 31, 38.
gb init rand : 8.
gb next rand : 14.
gb rand : 3.
h: 2.
hack clean : 33.
hack in : 11.
hack out : 33.
hash : 7, 8, 16, 31.
hash bits : 7, 14, 15.
hbits : 3, 4, 8, 9, 15.
i: 2.
imems : 2, 3.
j: 2.
k: 2, 27, 29.
l: 2, 27, 28, 29.
level : 2, 39, 40, 41, 42, 43, 44, 45.
listsize : 23, 34, 39, 41, 43.

litno : 23, 27, 33, 34, 36, 41, 43.
lng : 5, 15, 16, 37.
main : 2.
malloc : 8, 12, 13, 31.
mem : 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35,

36, 39, 40, 41, 43, 44.
mems : 2, 3, 4, 29, 39.
move : 26, 29, 31, 39, 43, 45.
name : 5, 15, 16, 25, 27, 37, 39, 45.
new chunk : 13.
new vchunk : 12.
newlevel : 39.
next : 5, 16.
nodes : 2, 3, 39.
nonspec : 26, 28, 31, 32, 34, 35, 40, 41, 43, 44.
nullclauses : 7, 9, 10, 18, 27.
o: 2.
octa: 5, 25.
old chunk : 19.
old vchunk : 20.
oo : 2, 34, 36, 40, 41, 43, 44.
ooo : 2, 33, 39, 41, 43.
owner : 23, 25, 28, 33, 35, 40, 41, 43, 44.
p: 2, 11, 28.
parity : 2, 39, 40, 41, 43, 44.
prev : 5, 6, 12, 13, 19, 20, 38.
print clause : 27, 28.
print clauses for : 28.
print state : 29, 39.
printf : 27, 39, 45.
q: 2.
r: 2.
random seed : 3, 4, 8.
satisfied : 39.
serial : 5, 16, 33.
show basics : 2, 3, 39.
show choices : 3, 39.
show choices max : 3, 4, 39.
show details : 3, 39, 40.
size : 24, 27, 32, 35, 40, 41, 43, 44.
sscanf : 4.
stamp : 5, 11, 16, 17.
start : 24, 27, 32, 35, 41, 43.
stderr : 2, 4, 8, 9, 10, 12, 13, 15, 18, 21, 29,

31, 38, 39, 40.
stdin : 1, 7, 9.
strlen : 9.
thresh : 3, 4, 39.
timeout : 3, 4, 39.
tmp var: 5, 6, 7, 8, 11, 33.
tmp var struct: 5.

§46 SAT0 INDEX 21

try again : 39, 40, 42.
tryit : 39.
uint: 2, 5, 7, 23, 24, 26, 27, 28.
ullng: 2, 3, 7, 11, 33.
u2 : 5.
var : 5, 12, 20, 38.
variable: 25, 26, 31.
vars : 7, 9, 16, 21, 31, 37.
vars per vchunk : 5, 12, 20.
vchunk: 5, 7, 12, 20.
vchunk struct: 5.
verbose : 2, 3, 4, 39, 40.
vmem : 25, 26, 27, 31, 37, 39, 45.

22 NAMES OF THE SECTIONS SAT0

〈Allocate the main arrays 31 〉 Used in section 30.

〈Backtrack to the previous level 42 〉 Used in section 39.

〈Check consistency 38 〉 Used in section 30.

〈Copy all the temporary cells to the mem and cmem arrays in proper format 32 〉 Used in section 30.

〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉 Used in section 30.

〈Find cur tmp var~name in the hash table at p 16 〉 Used in section 11.

〈Fix up the blink fields and compute the list sizes 34 〉 Used in section 32.

〈Global variables 3, 7, 26 〉 Used in section 2.

〈Handle a duplicate literal 17 〉 Used in section 11.

〈 Inactivate all clauses of the chosen list 41 〉 Used in section 39.

〈 Initialize everything 8, 14 〉 Used in section 2.

〈 Input the clause in buf 10 〉 Used in section 9.

〈 Input the clauses 9 〉 Used in section 2.

〈 Insert the cells for the literals of clause c 33 〉 Used in section 32.

〈 Install a new chunk 13 〉 Used in section 11.

〈 Install a new vchunk 12 〉 Used in section 11.

〈Move cur cell backward to the previous cell 19 〉 Used in sections 18 and 33.

〈Move cur tmp var backward to the previous temporary variable 20 〉 Used in section 37.

〈Print the solution found 45 〉 Used in section 39.

〈Process the command line 4 〉 Used in section 2.

〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 15 〉 Used

in section 11.

〈Put variable level back into all clauses on the non-chosen list 44 〉 Used in section 42.

〈Reactivate all clauses of the chosen list 43 〉 Used in section 42.

〈Remove all variables of the current clause 18 〉 Used in section 10.

〈Remove variable level from the clauses in the non-chosen list; goto try again if that would make a clause
empty 40 〉 Used in section 39.

〈Report the successful completion of the input phase 21 〉 Used in section 2.

〈Scan and record a variable; negate it if i ≡ 1 11 〉 Used in section 10.

〈Set up the main data structures 30 〉 Used in section 2.

〈Solve the problem 39 〉 Used in section 2.

〈Sort the literals within each clause 35 〉 Used in section 32.

〈Subroutines 27, 28, 29 〉 Used in section 2.

〈Swap cell j with cell p 36 〉 Used in section 35.

〈Type definitions 5, 6, 23, 24, 25 〉 Used in section 2.

SAT0

Section Page
Intro . 1 1
The I/O wrapper . 5 4
SAT solving, version 0 . 22 11
Initializing the real data structures . 30 14
Doing it . 39 17
Index . 46 20

	Intro
	The I/O wrapper
	SAT solving, version 0
	Initializing the real data structures
	Doing it
	Index
	Names of the sections
	Allocate the main arrays
	Backtrack to the previous level
	Check consistency
	Copy all the temporary cells to the mem and cmem arrays in proper format
	Copy all the temporary variable nodes to the vmem array in proper format
	Find cur_tmp_var->name in the hash table at p
	Fix up the blink fields and compute the list sizes
	Global variables
	Handle a duplicate literal
	Inactivate all clauses of the chosen list
	Initialize everything
	Input the clause in buf
	Input the clauses
	Insert the cells for the literals of clause c
	Install a new chunk
	Install a new vchunk
	Move cur_cell backward to the previous cell
	Move cur_tmp_var backward to the previous temporary variable
	Print the solution found
	Process the command line
	Put the variable name beginning at buf[j] in cur_tmp_var->name and compute its hash code h
	Put variable level back into all clauses on the non-chosen list
	Reactivate all clauses of the chosen list
	Remove all variables of the current clause
	Remove variable level from the clauses in the non-chosen list; goto try_again if that would make a clause empty
	Report the successful completion of the input phase
	Scan and record a variable; negate it if i==1
	Set up the main data structures
	Solve the problem
	Sort the literals within each clause
	Subroutines
	Swap cell j with cell p
	Type definitions

