
§1 REFLECT CWEB OUTPUT 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on May 28, 2023)

1. This is a quick program to find all canonical forms of reflection networks for small n.
Well, when I wrote that paragraph I believed it, but subsequently I have added lots of bells and whistles

because I wanted to compute more stuff. At present this code determines the number Bn of equivalence classes
of reflection networks (i.e., irredundant primitive sorting networks); also the number of weak equivalence
classes, either with (Cn+1) or without (Dn+1) anti-isomorphism; and the number of preweak equivalence
classes (En+1), which is the number of simple arrangements of n + 1 pseudolines in a projective plane.
For each representative of Dn+1 it also computes the “score,” which is the number of ways to add another
pseudoline crossing the network.

If compiled without the NOPRINT switch, each member of Bn is printed as a string of transposition numbers,
generated in lexicographic order. This is followed by * if the string is also a representative of Cn+1 when
prefixed by 01 . . . n. And if the string is also a representative of Dn+1, you also get the score in brackets,
followed by # if it is a representative of En+1. If not a representative of Dn+1, the symbol > is printed
followed by the string of an anti-equivalent network.

If compiled with the DEBUG switch, you also get intermediate output about the backtrack tree and the
networks generated while searching for anti-equivalence and preweak equivalence.

I wrote this program to allow n up to 10; but integer overflow will surely occur in B10 ≈ 2× 1010, if I ever
get a computer fast enough to run that case. When n = 7, this program took 48 seconds to run, on January
12, 1991; the running time for n = 6 was 1 second, and for n = 8 it was 57 minutes. Therefore I made a
stripped-down version to enumerate only Bn when n = 9.

#include <stdio.h>

2. There’s an array a[1 . . n] containing k inversions; an index j showing where we are going to try to
reduce the inversions by swapping a[j] with a[j + 1]; and two arrays for backtracking. At choice-level l we
set t[l] to the current j value, and we also set c[l] to 1 if we swapped, 0 if we didn’t.

#define swap(j)
{ int tmp = a[j]; a[j] = a[j + 1]; a[j + 1] = tmp ; }

#define npairs 120 /∗ should be greater than 2
(
n+1
2

)
∗/

#define ncycle 240 /∗ should be greater than 4
(
n+1
2

)
∗/

〈Global variables 2 〉 ≡
int n; /∗ number of elements to be reflected ∗/
int a[10]; /∗ array that shows progress ∗/
int k; /∗ number of inversions yet to be removed ∗/
int j; /∗ current place in array ∗/
int l; /∗ current choice level ∗/
int c[npairs]; /∗ code for choices made ∗/
int t[npairs]; /∗ j values where choices were made ∗/
int i, ii , iii ; /∗ general-purpose indices ∗/
int bn , cn , dn , en ; /∗ counters for Bn, Cn+1, Dn+1, En+1 ∗/
int smin , smax ; /∗ counters for “scores” ∗/
float stot ; /∗ grand total of scores ∗/

See also sections 8 and 13.

This code is used in section 3.

https://cs.stanford.edu/~knuth/programs.html

2 CWEB OUTPUT REFLECT §3

3. The value of n is supposed to be an argument.

#define abort (s)
{ fprintf (stderr , s); exit (1); }

〈Global variables 2 〉
main (argc , argv)

int argc ; /∗ number of args ∗/
char ∗∗argv ; /∗ the args ∗/

{
if (argc 6= 2) abort ("Usage: reflect n\n");
if (sscanf (argv [1], "%d",&n) 6= 1 ∨ n < 2 ∨ n > 10) abort ("n should be in the range 2..10!\n");
〈 Initialize 4 〉;
〈Run through all canonical reflection networks 5 〉;
printf ("B=%d, C=%d, D=%d, E=%d\n", bn , cn , dn , en);
printf ("scores min=%d, max=%d, mean=%.1f\n", smin , smax , stot/(float) dn);
}

4. 〈 Initialize 4 〉 ≡
for (j = 1; j ≤ n; j++) a[j] = n + 1− j;
k = n ∗ (n− 1); k /= 2;
c[0] = 0; /∗ a convenient sentinel ∗/
l = 1;
j = n;
bn = cn = dn = en = smax = 0;
stot = 0.0;
smin = 1000000000;

This code is used in section 3.

5. 〈Run through all canonical reflection networks 5 〉 ≡
moveleft : j−−;
loop :

if (j ≡ 0) {
if (k ≡ 0) 〈Print a solution 7 〉;
〈Backtrack, either going to loop or to finished when all possibilities are exhausted 6 〉;
}
if (a[j] < a[j + 1]) goto moveleft ;
t[l] = j;
c[l++] = 0;
goto moveleft ;

finished : ;

This code is used in section 3.

§6 REFLECT CWEB OUTPUT 3

6. 〈Backtrack, either going to loop or to finished when all possibilities are exhausted 6 〉 ≡
while (c[−−l]) {
j = t[l];
swap(j);
k++;
}
if (l ≡ 0) goto finished ;
j = t[l];
c[l++] = 1;
swap(j);
k−−;
if (++j ≡ n) j−−;
goto loop ;

This code is used in section 5.

7. 〈Print a solution 7 〉 ≡
{

#ifdef DEBUG

for (i = 1; i < l; i++) putchar (’0’ + c[i]);
putchar (’:’);

#endif
#ifndef NOPRINT

for (i = 1; i < l; i++)
if (c[i]) putchar (’0’ − 1 + t[i]);

#endif
〈Check if it gives a new CC system on n + 1 elements 9 〉;

#ifndef NOPRINT

putchar (’\n’);
#endif

bn ++;
}

This code is used in section 5.

8. Here’s part of the program I wrote after getting the above to work. The idea is to see if the almost-
canonical form for an (n + 1)-element network is weakly equivalent to any lexicographically smaller almost-
canonical forms. If not, we print an asterisk, because it represents a new weak equivalence class.

The forms are kept in locations r through r + n(n + 1)/2− 1 of array b, which starts out like t but with
the transpositions 1, 2, . . . , n prefaced. End-around shifts are performed (advancing r by 1 each time) until
the original form appears again.

〈Global variables 2 〉 +≡
int b[ncycle]; /∗ larger array used for testing weak equivalence ∗/
int r, rr ; /∗ the first and last active locations in b ∗/
int d[npairs]; /∗ copy of the present network ∗/
int rrr ; /∗

(
n+1
2

)
∗/

4 CWEB OUTPUT REFLECT §9

9. 〈Check if it gives a new CC system on n + 1 elements 9 〉 ≡
for (rr = 0; rr < n; rr ++) b[rr] = rr + 1;
for (i = 1; i < l; i++)

if (c[i]) {
b[rr] = d[rr] = t[i];
rr ++;

}
d[rr] = 1; /∗ sentinel ∗/
rrr = rr ;
r = 0;
while (1) {
〈Shift the first transposition to the other end 10 〉;
if (b[r] ≡ 1) 〈Test lexicographic order; break if equal or less 11 〉;
}

This code is used in section 7.

10. 〈Shift the first transposition to the other end 10 〉 ≡
j = n− b[r++];
for (i = rr ++; b[i− 1] < j; i−−) b[i] = b[i− 1];
b[i] = j + 1;

This code is used in section 9.

11. 〈Test lexicographic order; break if equal or less 11 〉 ≡
{
b[rr] = 0; /∗ sentinel, is less than the 1 we put in d ∗/
for (i = r + n; b[i] ≡ d[i− r]; i++) ;
if (b[i] < d[i− r]) {

if (i ≡ rr) { /∗ total equality ∗/
#ifndef NOPRINT

putchar (’*’);
#endif

cn ++;
〈Make the big test for pre-weak equivalence 12 〉;

}
break;

}
}

This code is used in section 9.

§12 REFLECT CWEB OUTPUT 5

12. Well, after I got that going I couldn’t resist continuing until I had all simple arrangements of pseudolines
enumerated. That requires looking at another

(
n+1
2

)
cases to see if they are weakly equivalent to anything

seen before.
And, surprise, it also meant testing for anti-isomorphism.

〈Make the big test for pre-weak equivalence 12 〉 ≡
〈Reset b to a double cycle 14 〉;
〈Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case 15 〉;
〈Compute the score for this weak equivalence/antiequivalence class rep 22 〉;
for (r = 0; r < rrr ; r++) {
〈Move the “pole” into the cell preceding the first transposition module 20 〉;
for (ref = 0; ref < 2; ref ++) {

if (ref ≡ 0)
for (i = 0; i < rrr ; i++) y[i] = x[i];

else 〈Replace the present x by the reverse of y 16 〉;
〈 If the new network is weakly equivalent to a lexicographically smaller one, goto done 17 〉;

}
}

#ifndef NOPRINT

putchar (’#’); /∗ a new preweak class, not related to anything earlier ∗/
#endif

en ++;
done : ;

This code is used in section 11.

13. For this part of the program we use an array x analogous to b; also variables s and ss analogous to r
and rr ; also an array e analogous to d.

〈Global variables 2 〉 +≡
int x[ncycle]; /∗ network to be tested for weak equivalence ∗/
int m; /∗ largest element in x so far ∗/
int y[npairs]; /∗ elements to be carried around to the right as x is formed ∗/
int jj ; /∗ the number of elements in y ∗/
int s, ss ; /∗ the active region of x ∗/
int e[npairs]; /∗ starting point ∗/
int rep ; /∗ number of repetitions ∗/
int ref ; /∗ number of reflections ∗/

14. At this point i− r points just past the end of the d data, and the first n entries of b are still equal to
1, 2, . . . , n. The network we construct here is not necessarily in canonical form.

〈Reset b to a double cycle 14 〉 ≡
rr = i− r;
for (i = n; i < rr ; i++) b[i] = d[i];
for (; i < rr + rr ; i++) b[i] = n + 1− b[i− rr];

This code is used in section 12.

6 CWEB OUTPUT REFLECT §15

15. One nice thing is that reflection and turning upside down preserve canonicity when we do both
simultaneously.

〈Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case 15 〉 ≡
for (i = 0; i < rrr ; i++) x[rrr − 1− i] = n + 1− b[i];
s = 0; ss = rrr ;
while (x[s] > 1) 〈End-around shift x 19 〉;
for (i = s + n; i < ss ; i++) e[i− s] = x[i];
e[rrr] = 1; /∗ another sentinel ∗/
while (1) { x[ss] = 0; /∗ sentinel ∗/
for (i = s + n; x[i] ≡ d[i− s]; i++) ;
if (i ≡ ss) break; /∗ anti-isomorphic to itself ∗/
if (x[i] < d[i− s]) { /∗ anti-isomorphic to previous guy ∗/

#ifndef NOPRINT

putchar (’>’);
for (i = s + n; i < ss ; i++) putchar (x[i] + ’0’ − 1);

#endif
goto done ;
}
do 〈End-around shift x 19 〉
while (x[s] > 1) ;
x[ss] = 0;
for (i = s + n; x[i] ≡ e[i− s]; i++) ;
if (i ≡ ss) break; /∗ anti-isomorphic to some future guy ∗/
}

This code is used in section 12.

16. 〈Replace the present x by the reverse of y 16 〉 ≡
{

for (i = 0; i < rrr ; i++) x[rrr − 1− i] = n + 1− y[i];
s = 0; ss = rrr ;
while (x[s] > 1) 〈End-around shift x 19 〉;

#ifdef DEBUG

putchar (’/’);
〈 If debugging, print the active region of x 25 〉;

#endif
}

This code is used in section 12.

17. 〈 If the new network is weakly equivalent to a lexicographically smaller one, goto done 17 〉 ≡
for (i = s + n; i < ss ; i++) e[i− s] = x[i];
while (1) { 〈 If the x network is weakly equivalent to an earlier one, goto done ; if weakly equivalent to

the present one, goto okay 18 〉;
do 〈End-around shift x 19 〉
while (x[s] > 1) ;
〈 If debugging, print the active region of x 25 〉;
x[ss] = 0; /∗ sentinel ∗/
for (i = s + n; x[i] ≡ e[i− s]; i++) ;
if (i ≡ ss) break; /∗ now x is back to its original state and we found nothing ∗/
}

okay : ;

This code is used in section 12.

§18 REFLECT CWEB OUTPUT 7

18. 〈 If the x network is weakly equivalent to an earlier one, goto done ; if weakly equivalent to the
present one, goto okay 18 〉 ≡

x[ss] = 0; /∗ sentinel ∗/
for (i = s + n; x[i] ≡ d[i− s]; i++) ;
if (i ≡ ss) goto okay ;
if (x[i] < d[i− s]) goto done ;

This code is used in section 17.

19. 〈End-around shift x 19 〉 ≡
{
j = n− x[s++];
for (i = ss ++; x[i− 1] < j; i−−) x[i] = x[i− 1];
x[i] = j + 1;
}

This code is used in sections 15, 16, and 17.

8 CWEB OUTPUT REFLECT §20

20. The only somewhat tricky operation comes in here. We use the fact that the first ‘1’ in a canonical
network is always immediately followed by 2, . . . , n; reversing these, decreasing the previous by 1, and
increasing the remaining by 1 takes that line around the pole. This operation might require carrying some
transpositions around from left to right.

〈Move the “pole” into the cell preceding the first transposition module 20 〉 ≡
〈 If debugging, print the active region of b 24 〉;
s = 0; ss = rrr ;
iii = jj = 0;
x[0] = m = rep = b[r];
rr = r + rrr ;
for (i = r + 1; i < rr ; i++) {
j = b[i]− 1;
〈 Insert the value j + 1 canonically into x 21 〉;
}
for (i = 0; iii < rrr − 1; i++) {
j = n− 1− y[i];
〈 Insert the value j + 1 canonically into x 21 〉;
}
〈 If debugging, print the active region of x 25 〉;
while (rep −−) {
m = 0;
for (i = 0; x[i] 6= 1; i++) {

x[i]−−;
if (x[i] > m) m = x[i];

}
iii = i− 1;
jj = 0;
for (j = n− 1; j ≥ 0; j−−)

if (j ≡ 0 ∧ i ≡ 0) {
x[0] = m = 1;
iii = 0;
}
else 〈 Insert the value j + 1 canonically into x 21 〉;

for (i += n; i < rrr ; i++) {
j = x[i];
〈 Insert the value j + 1 canonically into x 21 〉;

}
for (i = 0; iii < ss − 1; i++) {
j = n− 1− y[i];
〈 Insert the value j + 1 canonically into x 21 〉;

}
〈 If debugging, print the active region of x 25 〉;
}

This code is used in section 12.

§21 REFLECT CWEB OUTPUT 9

21. We must carry over items that exceed m, which denotes the maximum value stored so far, because we
want the first element of x[0] to remain in place.

〈 Insert the value j + 1 canonically into x 21 〉 ≡
if (j > m) y[jj ++] = j;
else {

if (j ≡ m) m++;
for (ii = ++iii ; x[ii − 1] < j; ii −−) x[ii] = x[ii − 1];
x[ii] = j + 1;
}

This code is used in section 20.

22. The score is computed in several passes, although I do know how to do it in linear time. Since the x
array is currently unused, I store in x[i] the score for the cell following transposition i.

〈Compute the score for this weak equivalence/antiequivalence class rep 22 〉 ≡
dn ++;
rr = rrr + rrr ;
for (i = 0; i < rr ; i++) x[i] = 1;
for (j = 2; j ≤ n; j++) 〈Fill in the cell counts x[i] for cases when b[i] = j 23 〉;
{ register int score = 0;

for (i = 0; i < rr ; i++)
if (b[i] ≡ n) score += x[i];

stot += (float) score ;
if (score > smax) smax = score ;
if (score < smin) smin = score ;

#ifndef NOPRINT

printf (" [%d]", score);
#endif
}

This code is used in section 12.

23. As we fill the cell counts, we assume that x[ii] is the previous cell having b[i] = j. We assume that
b[i] ≡ i + 1 for 0 ≤ i < n.

〈Fill in the cell counts x[i] for cases when b[i] = j 23 〉 ≡
{ int acc = 0;

int p; /∗ most recent x[i] when b[i] = j − 1 ∗/
ii = rr ;
for (i = 0; i < rr ; i++) { register int delta = j − b[i];

if (delta ≡ 0) {
x[ii] = acc ;
ii = i;
acc = p;

}
else if (delta ≡ 1) {

p = x[i];
acc += p;

}
}
x[ii] = acc + x[rr];
}

This code is used in section 22.

