1 REFLECT CWEB oUTPUT 1

(Downloaded from |ftps://cs.stanford.edu/ knuth/programs.htm] and typeset on May 28, 2023)

1. This is a quick program to find all canonical forms of reflection networks for small n.

Well, when I wrote that paragraph I believed it, but subsequently I have added lots of bells and whistles
because I wanted to compute more stuff. At present this code determines the number B,, of equivalence classes
of reflection networks (i.e., irredundant primitive sorting networks); also the number of weak equivalence
classes, either with (Cp,41) or without (D,1) anti-isomorphism; and the number of preweak equivalence
classes (Ep+1), which is the number of simple arrangements of n + 1 pseudolines in a projective plane.
For each representative of D,, 1 it also computes the “score,” which is the number of ways to add another
pseudoline crossing the network.

If compiled without the NOPRINT switch, each member of B,, is printed as a string of transposition numbers,
generated in lexicographic order. This is followed by * if the string is also a representative of C), 1 when
prefixed by 01...n. And if the string is also a representative of D, 1, you also get the score in brackets,
followed by # if it is a representative of E, ;. If not a representative of D, 41, the symbol > is printed
followed by the string of an anti-equivalent network.

If compiled with the DEBUG switch, you also get intermediate output about the backtrack tree and the
networks generated while searching for anti-equivalence and preweak equivalence.

I wrote this program to allow n up to 10; but integer overflow will surely occur in Big ~ 2 x 1010, if I ever
get a computer fast enough to run that case. When n = 7, this program took 48 seconds to run, on January
12, 1991; the running time for n = 6 was 1 second, and for n = 8 it was 57 minutes. Therefore I made a
stripped-down version to enumerate only B,, when n = 9.

#include <stdio.h>

2. There’s an array a[l .. n] containing k inversions; an index j showing where we are going to try to
reduce the inversions by swapping a[j] with a[j + 1]; and two arrays for backtracking. At choice-level [we
set ¢[l] to the current j value, and we also set c[l] to 1 if we swapped, 0 if we didn’t.

#define swap(j)

{ int tmp = a[j]; alj] = al[j +1]; alj + 1] = tmp; }
#define npairs 120 /* should be greater than 2(”;1) */
#define ncycle 240 /% should be greater than 4("}") */

(Global variables 2) =
int n; /* number of elements to be reflected */
int a[10]; /x array that shows progress */
int k; /* number of inversions yet to be removed */
int j; /* current place in array */
int [; /* current choice level */
int c[npairs]; /* code for choices made */
int t[npairs|; /x j values where choices were made */
int 4, i1, 4ii; /* general-purpose indices */
int bn, cn, dn, en; /* counters for B,,, C,11, Dpi1, Eng1 */
int smin, smaz; /* counters for “scores” x/
float stot; /* grand total of scores */
See also sections 8 and 13.

This code is used in section 3.

https://cs.stanford.edu/~knuth/programs.html

2 CWEB OUTPUT REFLECT

3. The value of n is supposed to be an argument.
#define abort(s)
{ forintf (stderr,s); exit(1); }
(Global variables 2)
main (argce, argu)
int argc; /* number of args x/
char xxargv; /* the args x/

if (argc #2) abort("Usage: reflect n\n");

§3

if (sscanf (argv[l],"%d",&n) #1Vn <2V n > 10) abort("n,should be in the range 2..10!\n");

(Initialize 4);

(Run through all canonical reflection networks 5);

printf ("B=%d,.C=%d, .D=%d, E=%d\n", bn, cn, dn, en);

printf ("scores min=Y%d, max=%d, mean=%.1f\n", smin, smax, stot /(float) dn);

4. (Initialize 4) =
for (j =1; j <n; ji+) aljl =n+1-j;
k=nx(n-1); k /=2;

c[0] = 0; /* a convenient sentinel */
l=1;

J=mn;

bn = cn = dn = en = smaz = 0;

stot = 0.0;

smin = 1000000000;

This code is used in section 3.

5. (Run through all canonical reflection networks 5) =
moveleft: j—;
loop:
if (j=0) {
if (k=0) (Print a solution 7);
(Backtrack, either going to loop or to finished when all possibilities are exhausted 6);

if (alj] < al[j +1]) goto moveleft;

tl] = J;

c[l++] =0;

goto moveleft;
finished: ;

This code is used in section 3.

86 REFLECT CWEB OUTPUT 3

6. (Backtrack, either going to loop or to finished when all possibilities are exhausted 6) =
while (c[—1]) {
j = tll};
swap (j);

if (++j=n) j—;
goto loop;

This code is used in section 5.

7. (Print a solution 7) =
{

Aifdef DEBUG

for (i =1; i <l i++) putchar(’0’ + c[i]);

putchar(’:?);
#endif
#ifndef NOPRINT

for (i=1; i <l; i++)

if (c[é]) putchar(?0’ — 1+ t[i]);

#endif

(Check if it gives a new CC system on n + 1 elements 9);
#ifndef NOPRINT

putchar(’\n’);
#endif

bn++;

}

This code is used in section 5.

8. Here’s part of the program I wrote after getting the above to work. The idea is to see if the almost-
canonical form for an (n 4 1)-element network is weakly equivalent to any lexicographically smaller almost-
canonical forms. If not, we print an asterisk, because it represents a new weak equivalence class.

The forms are kept in locations r through r 4+ n(n + 1)/2 — 1 of array b, which starts out like ¢ but with
the transpositions 1, 2, ..., n prefaced. End-around shifts are performed (advancing r by 1 each time) until
the original form appears again.

{ Global variables 2) +=

int b[ncyclel; /* larger array used for testing weak equivalence */
int r, rr; /x the first and last active locations in b */
int d[npairs]; /* copy of the present network */

int rrr; /x (M5 x/

4 CWEB OUTPUT REFLECT §9

9. (Check if it gives a new CC system on n + 1 elements 9) =
for (rr =0; m <mn; rr++) blrr] =rr +1;
for (i =1; i <l; i++)
if (cli]) {
blrr] = d[rr] = t[i];
T4

d[rr] = 1; /* sentinel */
T =TT}
r=20;
while (1) {
(Shift the first transposition to the other end 10);
if (b[r] =1) (Test lexicographic order; break if equal or less 11);

This code is used in section 7.

10. (Shift the first transposition to the other end 10) =
Jj=mn—>br++|;
for (i = rr++; b[i — 1] < j; i—) bli] = b[i — 1];
bli| =5+ 1;

This code is used in section 9.
11. (Test lexicographic order; break if equal or less 11) =

b[rr] = 0; /* sentinel, is less than the 1 we put in d */
for (i=r+4n; bi] =d[i —r]; i++) ;
if (b[i] < dfi—1]) {
if G=m) { /* total equality =/
#ifndef NOPRINT
putchar(’*?);
#endif
cnt+;
(Make the big test for pre-weak equivalence 12);
}
break;
}
}

This code is used in section 9.

812 REFLECT CWEB OUTPUT 5

12. Well, after I got that going I couldn’t resist continuing until I had all simple arrangements of pseudolines
enumerated. That requires looking at another ("erl) cases to see if they are weakly equivalent to anything
seen before.

And, surprise, it also meant testing for anti-isomorphism.

(Make the big test for pre-weak equivalence 12) =
(Reset b to a double cycle 14);
(Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case 15);
(Compute the score for this weak equivalence/antiequivalence class rep 22);
for (r=0; r <rrr; r++) {
(Move the “pole” into the cell preceding the first transposition module 20);
for (ref =0; ref <2; ref++) {
if (ref =0)
for (i =0; i < rrr; i++) yli] = z[i];
else (Replace the present = by the reverse of y 16);
(If the new network is weakly equivalent to a lexicographically smaller one, goto done 17);
}

}

#ifndef NOPRINT

putchar (#?); /* a new preweak class, not related to anything earlier */
#endif

en++;
done: ;

This code is used in section 11.

13. For this part of the program we use an array x analogous to b; also variables s and ss analogous to r
and rr; also an array e analogous to d.

(Global variables 2) +=

int z[ncyclel; /* network to be tested for weak equivalence x/

int m; /* largest element in x so far */

int y[npairs]; /* elements to be carried around to the right as z is formed =/
int jj; /* the number of elements in y */

int s, ss; /* the active region of x */

int e[npairs]; /* starting point */

int rep; /* number of repetitions */

int ref; /* number of reflections x/

14. At this point ¢ — r points just past the end of the d data, and the first n entries of b are still equal to

1, 2, ..., n. The network we construct here is not necessarily in canonical form.
(Reset b to a double cycle 14) =
TT=1—r;

for (i =n; i < rr; i++) bli]
for (; i< rr+rr; i++) bi

This code is used in section 12.

dlil;
n+1—">bli—rr];

6 CWEB OUTPUT REFLECT §15

15. One nice thing is that reflection and turning upside down preserve canonicity when we do both
simultaneously.

(Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case 15) =
for (i=0; ¢ <rrr; i++) z[rrr —1—4d =n+1—0bi;
s=0; ss =rrr;
while (z[s] > 1) (End-around shift z 19);
for (i=s4n; i < ss; i++) efi — s] = x[i];
elrrr] = 1; /* another sentinel */
while (1) { z[ss] = 0; /* sentinel */
for (i =s+n; xfi] =d[i — s]; i++) ;
if (i = ss) break; /* anti-isomorphic to itself */
if (z[i] <d[i —s]) { /* anti-isomorphic to previous guy */
#ifndef NOPRINT
putchar(’>?);
for (i =s+n; i < ss; i++) putchar(z[i] +°0° —1);
#endif
goto done;
}

do (End-around shift = 19)
while (z[s] > 1) ;

x[ss] = 0;
for (i =s+n; x[i] =eli — s]; i++) ;
if (i = ss) break; /* anti-isomorphic to some future guy */

}

This code is used in section 12.

16. (Replace the present = by the reverse of y 16) =
{

for (i=0; ¢ <rrr; i++) z[rrr — 1 —d) =n+1—yli];

s=0; ss =rrr;

while (z[s] > 1) (End-around shift z 19);
#ifdef DEBUG

putchar(’/?);

(If debugging, print the active region of z 25);
#endif

}

This code is used in section 12.

17. (If the new network is weakly equivalent to a lexicographically smaller one, goto done 17) =
for (i =s+mn; i < ss; i++) eli — s] = z[i];
while (1) { (If the z network is weakly equivalent to an earlier one, goto done; if weakly equivalent to
the present one, goto okay 18);
do (End-around shift = 19)
while (z[s] > 1) ;
(If debugging, print the active region of x 25);

x[ss] = 0; /x sentinel x/
for (i =s+n; x[i] =eli — s]; i++) ;
if (i = ss) break; /* now z is back to its original state and we found nothing */
}
okay: ;

This code is used in section 12.

818 REFLECT

18. (If the x network is weakly equivalent to an earlier one, goto done; if weakly equivalent to the

present one, goto okay 18) =
x[ss] = 0; /* sentinel */
for (i = s+ n; zfi] =d[i — s]; i++) ;
if (i = ss) goto okay;
if (z[i] < d[i — s]) goto done;

This code is used in section 17.

19. (End-around shift x 19) =
{

j=mn—z[s+];
for (i = ss++; i — 1] <j; i—) «a[i] = =i — 1]
alil =j+1;

This code is used in sections 15, 16, and 17.

CWEB OUTPUT

7

8 CWEB OUTPUT REFLECT §20

20. The only somewhat tricky operation comes in here. We use the fact that the first ‘1’ in a canonical
network is always immediately followed by 2, ..., n; reversing these, decreasing the previous by 1, and
increasing the remaining by 1 takes that line around the pole. This operation might require carrying some
transpositions around from left to right.

(Move the “pole” into the cell preceding the first transposition module 20) =
(If debugging, print the active region of b 24);
s =0; ss = 1rr;
1w =77 =0;
x[0] = m = rep = br];
=71+ 1rrr;
for (i=r+1; i <rr; i++) {
J =0l —1;
(Insert the value j + 1 canonically into x 21);
¥
for (1 =0; @i < rrr —1; i++) {
j=n—1-yli;
(Insert the value j + 1 canonically into x 21);
}
(If debugging, print the active region of x 25);
while (rep—) {
m = 0;
for (i =0; x[i] #1; i++) {
il —;
if (z[i] > m) m = x[d;
}
it =i — 1;
7 =0
for (j=n-1; j>0; j—)
if (j=0Ai=0) {
z[0] =m =1,
iii = 0
}
else (Insert the value j + 1 canonically into x 21);
for (i +=mn; i < rrr; i++) {
J = w[i];
(Insert the value j 4+ 1 canonically into = 21);
}
for (i =0; i < ss —1; i++) {
j=mn—1-yli;
(Insert the value j + 1 canonically into x 21);

}

(If debugging, print the active region of x 25);

}

This code is used in section 12.

621 REFLECT CWEB OUTPUT 9

21. We must carry over items that exceed m, which denotes the maximum value stored so far, because we
want the first element of [0] to remain in place.

(Insert the value j + 1 canonically into = 21) =
if (> m) ylij ++] = js
else {
if (j =m) m++;
for (ii = ++iii; xlii — 1] < j; ii—) z[ii] = z[ii — 1];
xlit] = j 4+ 1;
}

This code is used in section 20.

22. The score is computed in several passes, although I do know how to do it in linear time. Since the z
array is currently unused, I store in z[i] the score for the cell following transposition .
{ Compute the score for this weak equivalence/antiequivalence class rep 22) =
dn++;
= 1rrr + rrr;
for (i =0; i <rr; i++) zfi] = 1;
for (j =2; j <n; j++) (Fill in the cell counts z[i] for cases when b[i] = j 23);
{ register int score = 0;
for (i =0; i <rr; i++)
if (b[i] =n) score += z[il;
stot += (float) score;
if (score > smazx) smax = score;
if (score < smin) smin = score;
#ifndef NOPRINT
printf ("L [%d1", score);
#endif
}

This code is used in section 12.

23. As we fill the cell counts, we assume that z[ii] is the previous cell having b[i] = j. We assume that
bli] =i+ 1for 0 <i<n.
(Fill in the cell counts z[i] for cases when b[i] = j 23) =
{ int acc = 0;
int p; /* most recent x[i] when b[i] =j —1 x/
W= 1r;
for (i =0; i < rr; i++) { register int delta = j — bli];
if (delta =0) {
x[ii] = acc;
Wi = i
acc = p;
}
else if (delta =1) {
p = alil;
acc += p;
}
}
z[ii] = ace + z[rr];
}

This code is used in section 22.

