
§1 RFL CWEB OUTPUT 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on September 17, 2017)

1*. This is a quick program to find all canonical forms of reflection networks for small n.
Well, when I wrote that paragraph I believed it, but subsequently I have added lots of bells and whistles

because I wanted to compute more stuff. At present this code determines the number Bn of equivalence classes
of reflection networks (i.e., irredundant primitive sorting networks); also the number of weak equivalence
classes, either with (Cn+1) or without (Dn+1) anti-isomorphism; and the number of preweak equivalence
classes (En+1), which is the number of simple arrangements of n + 1 pseudolines in a projective plane.
For each representative of Dn+1 it also computes the “score,” which is the number of ways to add another
pseudoline crossing the network.

If compiled without the NOPRINT switch, each member of Bn is printed as a string of transposition numbers,
generated in lexicographic order. This is followed by * if the string is also a representative of Cn+1 when
prefixed by 01 . . . n. And if the string is also a representative of Dn+1, you also get the score in brackets,
followed by # if it is a representative of En+1. If not a representative of Dn+1, the symbol > is printed
followed by the string of an anti-equivalent network.

If compiled with the DEBUG switch, you also get intermediate output about the backtrack tree and the
networks generated while searching for anti-equivalence and preweak equivalence.

I wrote this program to allow n up to 10; but integer overflow will surely occur in B10 ≈ 2× 1010, if I ever
get a computer fast enough to run that case. When n = 7, this program took 48 seconds to run, on January
12, 1991; the running time for n = 6 was 1 second, and for n = 8 it was 57 minutes. Therefore I made
a stripped-down version to enumerate only Bn when n = 9. In fact, this program is that stripped down
version, contrary to what is said above. This program does n = 7 in 4 seconds, n = 8 in 4:42 minutes, and I
think it will do n = 9 in about 10 hours. I tried several experiments for benchmarking, since this program is
clearly compute-bound: Compiling with −g instead of with −O increased the running time for n = 8 to 6:19;
if I also removed the register hints on variables i, ii , iii , j, it went up to 9:09. With optimization and no
register hints it took 6:38. (When I actually computed B9 = 112018190, I used the slowest version, with no
register hints and the −g switch; that took 19:50:37.)

#include <stdio.h>

2*. There’s an array a[1 . . n] containing k inversions; an index j showing where we are going to try to
reduce the inversions by swapping a[j] with a[j + 1]; and two arrays for backtracking. At choice-level l we
set t[l] to the current j value, and we also set c[l] to 1 if we swapped, 0 if we didn’t.

#define swap(j)
{ int tmp = a[j]; a[j] = a[j + 1]; a[j + 1] = tmp ; }

#define npairs 120 /∗ should be greater than 2
(
n+1
2

)
∗/

#define ncycle 240 /∗ should be greater than 4
(
n+1
2

)
∗/

〈Global variables 2* 〉 ≡
int n; /∗ number of elements to be reflected ∗/
int a[10]; /∗ array that shows progress ∗/
int k; /∗ number of inversions yet to be removed ∗/
int l; /∗ current choice level ∗/
int c[npairs]; /∗ code for choices made ∗/
int t[npairs]; /∗ j values where choices were made ∗/
int bn , cn , dn , en ; /∗ counters for Bn, Cn+1, Dn+1, En+1 ∗/
int smin , smax ; /∗ counters for “scores” ∗/
float stot ; /∗ grand total of scores ∗/

See also sections 8 and 13.

This code is used in section 3*.

https://cs.stanford.edu/~knuth/programs.html

2 CWEB OUTPUT RFL §25

3*. The value of n is supposed to be an argument.

#define abort (s)
{ fprintf (stderr , s); exit (1); }

〈Global variables 2* 〉
main (argc , argv)

int argc ; /∗ number of args ∗/
char ∗∗argv ; /∗ the args ∗/

{ register int j; /∗ current place in array ∗/
register int i, ii , iii ; /∗ general-purpose indices ∗/
if (argc 6= 2) abort ("Usage: reflect n\n");
if (sscanf (argv [1], "%d",&n) 6= 1 ∨ n < 2 ∨ n > 10) abort ("n should be in the range 2..10!\n");
〈 Initialize 4 〉;
〈Run through all canonical reflection networks 5* 〉;
printf ("B=%d\n", bn);
}

5*. 〈Run through all canonical reflection networks 5* 〉 ≡
moveleft : j−−;
loop :

if (j ≡ 0) {
if (k ≡ 0)

if ((++bn % 1000000) ≡ 0) {
for (i = 1; i < l; i++)

if (c[i]) putchar (’0’ − 1 + t[i]);
putchar (’\n’);

}
〈Backtrack, either going to loop or to finished when all possibilities are exhausted 6 〉;
}
if (a[j] < a[j + 1]) goto moveleft ;
t[l] = j;
c[l++] = 0;
goto moveleft ;

finished : ;

This code is used in section 3*.

25*. 〈 If debugging, print the active region of x 25* 〉 ≡
#ifdef DEBUG

printf ("\n ");
for (m = s; m < ss ; m++) putchar (x[m] + ’0’ − 1);

#endif

This code is used in sections 16, 17, and 20.

The following sections were changed by the change file: 1, 2, 3, 5, 25.

a: 2*.

abort : 3*.

acc : 23.

argc : 3*.

argv : 3*.

b: 8.

bn : 2*, 3*, 4, 5*, 7.

c: 2*.

cn : 2*, 4, 11.

d: 8.

DEBUG: 1*, 7, 16, 24, 25*.

delta : 23.

dn : 2*, 4, 22.

done : 12, 15, 18.

e: 13.

en : 2*, 4, 12.

§25 RFL CWEB OUTPUT 3

exit : 3*.
finished : 5*, 6.
fprintf : 3*.
i: 3*.
ii : 1*, 3*, 21, 23.
iii : 1*, 3*, 20, 21.
j: 3*.
jj : 13, 20, 21.
k: 2*.
l: 2*.
loop : 5*, 6.
m: 13.
main : 3*.
moveleft : 5*.
n: 2*.
ncycle : 2*, 8, 13.
NOPRINT: 1*, 7, 11, 12, 15, 22.
npairs : 2*, 8, 13.
okay : 17, 18.
p: 23.
printf : 3*, 22, 24, 25*.
putchar : 5*, 7, 11, 12, 15, 16, 24, 25*.
r: 8.
ref : 12, 13.
rep : 13, 20.
rr : 8, 9, 10, 11, 13, 14, 20, 22, 23.
rrr : 8, 9, 12, 15, 16, 20, 22, 24.
s: 13.
score : 22.
smax : 2*, 4, 22.
smin : 2*, 4, 22.
ss : 13, 15, 16, 17, 18, 19, 20, 25*.
sscanf : 3*.
stderr : 3*.
stot : 2*, 4, 22.
swap : 2*, 6.
t: 2*.
tmp : 2*.
x: 13.
y: 13.

4 NAMES OF THE SECTIONS RFL

〈Backtrack, either going to loop or to finished when all possibilities are exhausted 6 〉 Used in section 5*.

〈Check if it gives a new CC system on n + 1 elements 9 〉 Used in section 7.

〈Compute the score for this weak equivalence/antiequivalence class rep 22 〉 Used in section 12.

〈End-around shift x 19 〉 Used in sections 15, 16, and 17.

〈Fill in the cell counts x[i] for cases when b[i] = j 23 〉 Used in section 22.

〈Global variables 2*, 8, 13 〉 Used in section 3*.

〈 If debugging, print the active region of b 24 〉 Used in section 20.

〈 If debugging, print the active region of x 25* 〉 Used in sections 16, 17, and 20.

〈 If the new network is weakly equivalent to a lexicographically smaller one, goto done 17 〉 Used in section 12.

〈 If the x network is weakly equivalent to an earlier one, goto done ; if weakly equivalent to the present one,
goto okay 18 〉 Used in section 17.

〈 Initialize 4 〉 Used in section 3*.

〈 Insert the value j + 1 canonically into x 21 〉 Used in section 20.

〈Make the big test for pre-weak equivalence 12 〉 Used in section 11.

〈Move the “pole” into the cell preceding the first transposition module 20 〉 Used in section 12.

〈Print a solution 7 〉
〈Replace the present x by the reverse of y 16 〉 Used in section 12.

〈Reset b to a double cycle 14 〉 Used in section 12.

〈Run through all canonical reflection networks 5* 〉 Used in section 3*.

〈Shift the first transposition to the other end 10 〉 Used in section 9.

〈Test lexicographic order; break if equal or less 11 〉 Used in section 9.

〈Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case 15 〉 Used in

section 12.

	Names of the sections
	Backtrack, either going to loop or to finished when all possibilities are exhausted
	Check if it gives a new CC system on n+1 elements
	Compute the score for this weak equivalence/antiequivalence class rep
	End-around shift x
	Fill in the cell counts x[i] for cases when b[i]=j
	Global variables
	If debugging, print the active region of b
	If debugging, print the active region of x
	If the new network is weakly equivalent to a lexicographically smaller one, goto done
	If the x network is weakly equivalent to an earlier one, goto done; if weakly equivalent to the present one, goto okay
	Initialize
	Insert the value j+1 canonically into x
	Make the big test for pre-weak equivalence
	Move the ``pole'' into the cell preceding the first transposition module
	Print a solution
	Replace the present x by the reverse of y
	Reset b to a double cycle
	Run through all canonical reflection networks
	Shift the first transposition to the other end
	Test lexicographic order; break if equal or less
	Test the reverse of b for weak equivalence; goto done if weakly equivalent to a previous case

