81 REDRECT-DLX INTRO 1

1. Intro. This program generates DLX3 data that finds all “reduced dissections” of an m x n rectangle
into subrectangles.

The allowable subrectangles [a..b] x [c..d] have 0 < a < b < m, 0 < ¢ < d < n; so there are (m2+1) . (”;1)
possibilities.

Furthermore we require that every x € (0..m) occurs at least once among the a’s; also that every
y € (0..n) occurs at least once among the ¢’s. (Otherwise the dissection could be collapsed into a smaller
one, by leaving out that coordinate value.)

[I hacked this program from MOTLEY-DLX, because I thought of that one first — although logically
speaking, this one is simpler and I probably should have considered it earlier.]

#define mazd 36 /* maximum value for m or n */
#define encode(v) ((v) <107 (v)+°0’:(v)—10+ ’a’) /* encoding for values < 36 */
#include <stdio.h>
#include <stdlib.h>
int m,n; /+ command-line parameters */

main (int argc, char xargv|])
{

register int a,b,c,d, j, k;

(Process the command line 2);

(Output the first line 3);

for (a =0; a <m; a++)

for (b=a+1; b<m; b++) {
for (¢c=0; ¢ <n; ct++)
for (d=c+1; d <n; d++) {(Output the line for [a..b] x [c..d] 4)}

2. (Process the command line 2) =
if (arge # 3V sscanf (argv[1],"%hd", &m) # 1V sscanf (argv[2], "%d",&n) # 1) {
forintf (stderr, "Usage: hsumun\n", argv[0]);
exit (—1);
}

if (m > mazd Vn > mazd) {
forintf (stderr, "Sorry, m_and_ n must be at most_%d!\n", mazd);
exit (—2);

}

printf (" | redrect-dlx,%d, %d\n", m,n);

This code is used in section 1.

2 INTRO REDRECT-DLX 83

3. The main primary columns jk ensure that cell (j, k) is covered, for 0 < j < m and 0 < k < n. And
there are primary columns xa and yc for the at-least-once conditions.

I also include primary columns xab and ycd; these are unrestricted, so they don’t affect the number of
solutions. They are, however, useful for compressing the output because they name the subrectangles of a
solution.

(Output the first line 3) =
for (j =0; j <m; j++)
for (k=0; k <n; k++) printf ("Lhche", encode(j), encode (k));
for (a =1; a <m; a++) printf ("L1:%dx%e", n, encode(a));
for (c=1; ¢ < n; c++) printf ("ul:%dly%he", m, encode(c));
for (a =0; a <m; a++)
for (b=a+1; b <m; b++) printf ("L0:%d|x%che", n, encode(a), encode (b));
for (c=0; ¢ <n; ct++)
for (d=c+1; d <n; d++) printf ("Lu0:%d|y%hche", m, encode(c), encode (d));
printf ("\n");

This code is used in section 1.

4. (Output the line for [a..b] X [c..d] 4) =
for (j=a; j <b; j++)
for (k=c; k <d; k++) printf ("uhche", encode(j), encode (k));
if (a) printf ("ux%he", encode(a));
if (¢) printf ("uy%hc", encode(c));
printf ("uxhcheuyhehe\n", encode (a), encode (b), encode(c), encode(d));

This code is used in section 1.

85 REDRECT-DLX INDEX 3

5. Index.

a: 1.
arge:
argu:
b:
c:
d:
encode: 1, 3, 4.
exit: 2.
forintf: 2.

L2
1, 2.

)

[—= ==

Ve
k:
m:

= 1= =

main: 1.
mazxd: 1, 2.
n: 1.
printf: 2, 3, 4.
sscanf: 2.
stderr: 2.

4 NAMES OF THE SECTIONS REDRECT-DLX

{Output the first line 3) Used in section 1.
(Output the line for [a..b] X [c..d] 4) Used in section 1.
(Process the command line 2) Used in section 1.

REDRECT-DLX

Section Page

	Intro
	Index
	Names of the sections
	Output the first line
	Output the line for [ab][cd]
	Process the command line

