
§1 RANDOM-TERNARY-QUADS INTRO 1

1*. Intro. Here’s an implementation of the Panholzer–Prodinger algorithm, which generates a uniformly
random “decorated” ternary tree. (It generalizes the binary method of Rémy, Algorithm 7.2.1.6R, and solves
exercise 7.2.1.6–65.) They presented it in Discrete Mathematics 250 (2002), 181–195, but without spelling
out an efficient implementation.

Although the algorithm is short, it is not easy to discover; the reader who thinks otherwise is invited to
invent it before reading further.

I’m using a linked structure as in the presentation of in Rémy’s method in Volume 4A: There are 3n + 1
links L0, L1, . . . , L3n, which are a permutation of the integers {0, 1, . . . , 3n}. Internal (branch) nodes have
numbers congruent to 2 (mod 3). The root is node number L0; the descendants of branch 3k − 1 are the
nodes numbered L3k−2, L3k−1, L3k. For example, if n = 3 and (L0, L1, . . . , L9) = (5, 0, 1, 3, 2, 6, 7, 8, 4, 9),
the root is node 5 (a branch node); its left child is node 2 (another branch), its middle child is node 6
(external), and its right child is node 8 (yet another branch).

I also maintain the inverse permutation (P0, . . . , P3n), so that we can determine the parent of each node.

#define nmax 1000

#include <stdio.h>

#include <stdlib.h>

#include "gb_flip.h" /∗ random number generator from the Stanford GraphBase ∗/
int nn , seed ; /∗ command-line parameters ∗/
int L[nmax], P [nmax]; /∗ the links and their inverses ∗/
main (int argc , char ∗argv [])
{

register int i, j, k, n,nnn , p, q, r, x;

〈Process the command line 2 〉;
for (n = L[0] = P [0] = 0; n < nn ;)
〈Extend a solution for n to a solution for n + 1, and increase n 3 〉;

〈Print the answer in ‘quad’ format 7* 〉;
}

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3 ∨ sscanf (argv [1], "%d",&nn) 6= 1 ∨ sscanf (argv [2], "%d",&seed) 6= 1) {
fprintf (stderr , "Usage: %s n seed\n", argv [0]);
exit (−1);
}
gb init rand (seed);

This code is used in section 1*.

2 INTRO RANDOM-TERNARY-QUADS §3

3. #define sanity checking 1

〈Extend a solution for n to a solution for n + 1, and increase n 3 〉 ≡
{
n++;
nnn = 3 ∗ n;
x = gb unif rand (3 ∗ (nnn − 1) ∗ (nnn − 2));
p = nnn − (x % 3);
q = nnn − ((x + 1) % 3);
r = nnn − ((x + 2) % 3);
k = ((int)(x/3)) % (nnn − 2);
j = (int)(x/(9 ∗ n− 6));
L[p] = nnn , P [nnn] = p;
L[q] = L[k], P [L[k]] = q, L[k] = nnn − 1, P [nnn − 1] = k;
〈Do the magic switcheroo 5 〉;
if (sanity checking) {

for (i = 0; i ≤ nnn ; i++)
if (P [L[i]] 6= i) {
fprintf (stderr , "(whoa−−−the links are fouled up!)\n");
exit (−2);
}

}
}

This code is used in section 1*.

4. Variables j and Lk correspond to P-and-P’s nodes y and x; they are random integers with 0 ≤ j ≤ 3n+1
and 0 ≤ k ≤ 3n. The basic idea is to insert a new branch node (node number 3n− 1) in place of node Lk;
but this new node has the old node Lk as one of its children (pointed to by Lq), so we haven’t really lost
anything. Another child, pointed to by Lp, is the leaf 3n. The third child, pointed to by Lr, has to somehow
encode the fact that we also need to place the leaf 3n− 2 while maintaining randomness.

There are two main cases, depending on whether node number y is a proper ancestor of node number x.
The crucial point, proved in the paper, is that we can recover x, y, and p by looking at the switched links.

5. 〈Do the magic switcheroo 5 〉 ≡
for (i = k + 1− ((k + 2) % 3); i > 0 ∧ i 6= j; i = P [i] + 1− ((P [i] + 2) % 3)) ;
if (i > 0) 〈Do the harder case 6 〉
else {

if (j ≡ L[q]) { /∗ y = x ∗/
L[r] = L[q], P [L[q]] = r, L[q] = nnn − 2, P [nnn − 2] = q;

} else if (j ≡ nnn − 2) { /∗ y is the special leaf ∗/
L[r] = nnn − 2, P [nnn − 2] = r;

} else L[P [j]] = nnn − 2, P [nnn − 2] = P [j], L[r] = j, P [j] = r;
}

This code is used in section 3.

6. The “harder case” isn’t really hard for the computer; it’s just harder for a human being to visualize.

〈Do the harder case 6 〉 ≡
{
L[k] = nnn − 2, P [nnn − 2] = k;
i = P [j]; /∗ the link to y ∗/
L[i] = nnn − 1, P [nnn − 1] = i, L[r] = j, P [j] = r;
}

This code is used in section 5.

§7 RANDOM-TERNARY-QUADS INTRO 3

7*. This version outputs the tree in the format accepted as command-line arguments to the program SKEW-

TERNARY-CALC-RAW (which see).

〈Print the answer in ‘quad’ format 7* 〉 ≡
for (k = 1; k ≤ nn ; k++) {
printf (" %c", ’@’ + k);
for (j = −2; j ≤ 0; j++) i = L[3 ∗ k + j], printf ("%c", (i + 1) % 3 ? ’−’ : ’@’ + (int)(i + 1)/3);
}

This code is used in section 1*.

4 INDEX RANDOM-TERNARY-QUADS §8

8*. Index.

The following sections were changed by the change file: 1, 7, 8.

argc : 1*, 2.
argv : 1*, 2.
exit : 2, 3.
fprintf : 2, 3.
gb init rand : 2.
gb unif rand : 3.
i: 1*.
j: 1*.
k: 1*.
L: 1*.
main : 1*.
n: 1*.
nmax : 1*.
nn : 1*, 2, 7*.
nnn : 1*, 3, 5, 6.
P : 1*.
p: 1*.
printf : 7*.
q: 1*.
r: 1*.
sanity checking : 3.
seed : 1*, 2.
sscanf : 2.
stderr : 2, 3.
x: 1*.

RANDOM-TERNARY-QUADS NAMES OF THE SECTIONS 5

〈Do the harder case 6 〉 Used in section 5.

〈Do the magic switcheroo 5 〉 Used in section 3.

〈Extend a solution for n to a solution for n + 1, and increase n 3 〉 Used in section 1*.

〈Print the answer in ‘quad’ format 7* 〉 Used in section 1*.

〈Process the command line 2 〉 Used in section 1*.

RANDOM-TERNARY-QUADS

Section Page
Intro . 1 1
Index . 8 4

	Intro
	Index
	Names of the sections
	Do the harder case
	Do the magic switcheroo
	Extend a solution for n to a solution for n+1, and increase n
	Print the answer in `quad' format
	Process the command line

