81 RAN-PRIM PRIMITIVE SORTING NETWORKS AT RANDOM 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Primitive sorting networks at random. This program is a quick-and-dirty implementation of the
random process studied in exercise 5.3.4-40: Start with the permutation n ... 21 and randomly interchange
adjacent elements that are out of order, until reaching 12 ...n. I want to know if the upper bound of 4n?
steps, proved in that exercise, is optimum.

This Monte Carlo program computes a number ¢ such that ¢(n — 1) random adjacent comparators would
have sufficed to complete the sorting. This number is the sum of 1/t; during the (g) steps of sorting, where
t is the number of adjacent out-of-order pairs before the kth step. If ¢ is consistently less than 4n, the
exercise’s upper bound is too high.

In fact, ten experiments with n = 10000 all gave 19904 < ¢ < 20017; hence it is extremely likely that the
true asymptotic behavior is ~ 2n2.

#include <stdio.h>

#include <math.h>
#include "gb_flip.h"

int xperm;

int xlist;

int seed; /* random number seed */
int n; /* this many elements x*/

main (argc, argu)
int argc;
char xargv|];
{
register int 4,5, k,t,z,y;
register double s;
(Scan the command line 2);
(Initialize everything 3);
while (¢t) (Move 4);
(Print the results 5);

}

2. (Scan the command line 2) =
if (arge # 3V sscanf (argv[1],"%hd", &n) # 1V sscanf (argv[2], "%hd", &seed) # 1) {
forintf (stderr, "Usage: u%hsun,seed\n", argv[0]);
exit(—1);
}

This code is used in section 1.

3. We maintain the following invariants: the indices i where perm[i] > perm]i+ 1] are list[j] for 0 < j < t.
(Initialize everything 3) =

gb_init_rand (seed);

perm = (int) malloc(4 * (n + 2));

list = (int *) malloc(4 * (n — 1));

for (k=1; k<n; k++) perm[k] =n+1—k;

perm[0] = 0; permn+ 1] =n+1;

for (k=1; k <n; k++) listlk — 1] = k;

t=n—1;

s =0.0;

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 PRIMITIVE SORTING NETWORKS AT RANDOM RAN-PRIM 84
4. (Move 4) =

s +=1.0/(double) t;

j = gb_unif-rand (t);

1 = list[j];

t—;

list[j] = listt];

x = perm[i]; y = perm[i + 1];

perm[i] = y; perm[i+ 1] = x;

if (perm[i —1] >y Aperm[i — 1] < x) lst[t++] =i — 1;
if (permli+2] <x Apermli+2] >y) listt++] =i+ 1;

}

This code is used in section 1.

5. Is this program simple, or what?
(Print the results 5) =
printf ("hgu=uhen\n", s, s/(double) n);

This code is used in section 1.

86 RAN-PRIM

6. Index.
arge: 1, 2.
argv: 1, 2.
exit: 2.
forintf: 2.
gb_init_rand: 3.

gb_unif-rand: 4.

i
VE
k:
list: 1, 3, 4.
main: 1.
malloc: 3.

n: 1.

perm: 1, 3, 4.
printf: 5.

s 1.

seed: 1, 2, 3.
sscanf: 2.
stderr: 2.

t: 1.

x:
y:

L

1
1

INDEX

3

4 NAMES OF THE SECTIONS RAN-PRIM

(Initialize everything 3) Used in section 1.

{ Move 4> Used in section 1.

(Print the results 5) Used in section 1.

(Scan the command line 2) Used in section 1.

RAN-PRIM

Section Page
Primitive sorting networks at random 1 1
ndex .o 6 3

	Primitive sorting networks at random
	Index
	Names of the sections
	Initialize everything
	Move
	Print the results
	Scan the command line

