
§1 PRIME-SIEVE-SPARSE INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program constructs segments of the “sieve of Eratosthenes,” and outputs the largest
prime gaps that it finds. More precisely, it works with sets of prime numbers between si and si+1 = si + δ,
represented as an array of bits, and it examines these arrays for t consecutive intervals beginning with si for
i = 0, 1, . . . t− 1. Thus it scans all primes between s0 and st.

Let pk be the kth prime number. The sieve of Eratosthenes determines all primes ≤ N by starting with
the set {2, 3, . . . , N} and striking out the nonprimes: After we know p1 through pk−1, the next remaining
element is pk, and we strike out the numbers p2k, pk(pk + 1), pk(pk + 2), etc. The sieve is complete when
we’ve found the first prime with p2k > N .

In this program it’s convenient to deal with the nonprimes instead of the primes, and to assume that
we already know all of the “small” primes pk for which p2k ≤ st. And of course we might as well restrict
consideration to odd numbers. Thus, we’ll represent the integers between si and si+1 by δ/2 bits; these bits
will appear in δ/128 64-bit numbers sieve [j], where

sieve [j] =

si+128(j+1)∑
n=si+128j

2(n−si−128j−1)/2
[
n is an odd multiple of some odd prime ≤

√
si+1

]
.

We choose the segment size δ to be a multiple of 128. We also assume that s0 is even, and s0 ≥
√
δ. It

follows that si is even for all i, and that (si + 1)2 = s2i + si + si+1 − δ ≥ si + si+1 > si+1. Consequently we
have

sieve [j] =

si+128(j+1)∑
n=si+128j

2(n−si−128j−1)/2
[
n is odd and not prime

]
,

because n appears if and only if it is divisible by some prime p where p ≤
√
si+1 < si + 1 ≤ n.

In this “sparse” version I actually consider only integers of the form 4m+1, and I require δ to be a multiple
of 256. I also require s0 to be a multiple of 4. Thus the sieve now contains δ/256 octabytes. Reason: A gap
of size g between ordinary primes implies a gap of size ≥ g between primes of the form 4m+ 1. If g ≥ 1000,
such gaps are sufficiently rare that I think it’s faster to check their true size by brute force, because we save
a factor of two with the sparse sieve.

“Brute force” in the previous paragraph means actually a pseudoprime test, using Miller and Rabin’s
method. If that test passes, the probability exceeds 1 − 2−64 that I’ve incorrectly classified a composite
number as a prime.

Although I haven’t had much time to experiment with this program, limited experience has shown that
the cache size of the host computer has a significant effect on speed. Therefore — counterintuitively — it
proves to be best to work with rather small segments. In fact, for numbers in the range of current interest
to me (say 4× 1017, most of the primes may well exceed 50δ.

So this program uses an idea that I found on Tomás Oliveira e Silva’s web site: There’s a cyclic queue of
size q, with lists of the primes that become relevant in each future segment and their starting places.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO PRIME-SIEVE-SPARSE §2

2. The sieve size δ and queue size q are specified at compile time. They are preferably powers of two,
because we’ll want to divide by δ and compute remainders modulo q.

The other fundamental parameters s0 and t are specified on the command line when this program is run.
And there are two additional command-line parameters, which name the input and output files.

The input file should contain all prime numbers p1, p2, . . . , up to the first prime such that p2k > st; it may
also contain further primes, which are ignored. It is a binary file, with each prime given as an unsigned int.
(There are 203,280,221 primes less than 232, the largest of which is 232 − 5. Thus I’m implicitly assuming
that st < (232 − 5)2 ≈ 1.8× 1019.)

The output file is a short text file that reports large gaps. Whenever the program discovers consecutive
primes for which the gap pk+1 − pk is greater than or equal to all previously seen gaps, this gap is output
(unless it is smaller than 256). The smallest and largest primes between s0 and st are also output, so that
we can keep track of gaps between primes that are found by different instances of this program.

The compile-time parameter lsize is somewhat delicate. We need 8qsize × lsize bytes of RAM, so we don’t
want lsize to be too large. On the other hand lsize has to be large enough to to accommodate the queue
lists as the program runs. A large lsize might force qsize to be small, and that will slow things down because
primes will be before they’re needed.

#define del ((long long)(1� 23)) /∗ the segment size δ, a multiple of 256 ∗/
#define qsize (1� 7) /∗ the queue size q ∗/
#define kmax 35000000 /∗ an index such that p2kmax > st ∗/
#define ksmall 156000 /∗ an index such that pksmall > δ/4 ∗/
#define bestgap 1000 /∗ lower bound for gap reporting, ≥ 512, a multiple of 4 ∗/
#define lsize (1� 20) /∗ size of queue lists, hopefully big enough ∗/
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

FILE ∗infile , ∗outfile ;
unsigned int prime [kmax]; /∗ prime [k] = pk+1 ∗/
unsigned int start [ksmall]; /∗ indices for initializing a segment ∗/
unsigned int plist [qsize][lsize]; /∗ primes queued for a segment ∗/
unsigned int slist [qsize][lsize]; /∗ their relative starting points ∗/
int count [qsize]; /∗ number of entries in queue lists ∗/
int countmax ; /∗ the largest count we’ve needed so far ∗/
unsigned long long sieve [2 + del /256];
unsigned long long s0 ; /∗ beginning of the first segment ∗/
int tt ; /∗ number of segments ∗/
unsigned long long st ; /∗ ending of the last segment ∗/
unsigned long long lastprime ; /∗ largest prime so far, if any ∗/
unsigned long long sv [11]; /∗ bit patterns for the smallest primes ∗/
int rem [11]; /∗ shift amounts for the smallest primes ∗/
char nu [#10000]; /∗ table for counting bits ∗/
int timer , starttime ;

〈Subroutines 22 〉
main (int argc , char ∗argv [])
{

register j, jj , k;
unsigned long long x, xx , y, z, s, ss ;
int d, dd , ii , kk , qq ;

starttime = timer = time (0);
〈 Initialize the bit-counting table 18 〉;
〈 Initialize the random number generator 24 〉;
〈Process the command line and input the primes 3 〉;

§2 PRIME-SIEVE-SPARSE INTRO 3

〈Get ready for the first segment 7 〉;
for (ii = 0; ii < tt ; ii ++) 〈Do segment ii 8 〉;
〈Report the final prime 21 〉;
printf ("(Finished; the last segment took %d sec; total time %.6g hours.)\n",

time (0)− timer , ((double)(time (0)− starttime))/3600.0);
printf ("(The maximum list size needed was %d.)\n", countmax);
}

3. 〈Process the command line and input the primes 3 〉 ≡
if (argc 6= 5 ∨ sscanf (argv [1], "%llu",&s0) 6= 1 ∨ sscanf (argv [2], "%d",&tt) 6= 1) {

fprintf (stderr , "Usage: %s s[0] t inputfile outputfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [3], "rb");
if (¬infile) {

fprintf (stderr , "I can’t open %s for binary input!\n", argv [3]);
exit (−2);
}
outfile = fopen (argv [4], "w");
if (¬outfile) {

fprintf (stderr , "I can’t open %s for text output!\n", argv [4]);
exit (−3);
}
st = s0 + tt ∗ del ;
if (del % 256) {

fprintf (stderr , "Oops: The sieve size %d isn’t a multiple of 256!\n", del);
exit (−4);
}
if (s0 & 3) {

fprintf (stderr , "The starting point %llu isn’t a multiple of 4!\n", s0);
exit (−5);
}
if (s0 ∗ s0 < del) {

fprintf (stderr , "The starting point %llu is less than sqrt(%llu)!\n", s0 , del);
exit (−6);
}
〈 Input the primes 4 〉;
printf ("Sieving between s[0]=%llu and s[t]=%llu:\n", s0 , st);

This code is used in section 2.

4 INTRO PRIME-SIEVE-SPARSE §4

4. Primes are divided into three classes: small, medium, and large. The small primes (actually “tiny”) are
less than 32; they appear at least twice in every octabyte of the sieve. The large primes are greater than
δ/4; they appear at most once in every segment of the sieve.

Since our sieve represents integers of the form 4k + 1, every segment consists of δ/256 octabytes.

#define ddel (del /4) /∗ number of bits per segment ∗/
〈 Input the primes 4 〉 ≡

for (k = 0; ; k++) {
if (k ≥ kmax) {

fprintf (stderr , "Oops: Please recompile me with kmax>%d!\n", kmax);
exit (−7);

}
if (fread (&prime [k], sizeof (unsigned int), 1, infile) 6= 1) {

fprintf (stderr , "The input file ended prematurely (%d^2<%llu)!\n", k ? prime [k − 1] : 0, st);
exit (−8);

}
if (k ≡ 0 ∧ prime [0] 6= 2) {

fprintf (stderr , "The input file begins with %d, not 2!\n", prime [0]);
exit (−9);

}
else if (k > 0 ∧ prime [k] ≤ prime [k − 1]) {

fprintf (stderr , "The input file has consecutive entries %d,%d!\n", prime [k − 1], prime [k]);
exit (−10);

}
if (prime [k] < ddel) {

if (k ≥ ksmall) {
fprintf (stderr , "Oops: Please recompile me with ksmall>%d!\n", ksmall);
exit (−11);

}
dd = k + 1; /∗ dd will be the index of the first large prime ∗/

}
if (((unsigned long long) prime [k]) ∗ prime [k] > st) break;
}
printf ("%d primes successfully loaded from %s\n", k, argv [3]);

This code is used in section 3.

§5 PRIME-SIEVE-SPARSE SIEVING 5

5. Sieving. Let’s say that the prime pk is “active” if p2k < si+1. Variable kk is the index of the first
inactive prime. The main task of sieving is to mark the multiples of all active primes in the current segment.

For each active prime pk, let nk be the smallest multiple of pk that exceeds si and is congruent to 1
modulo 4. We let start [k] be (nk−si−1)/4, the bit offset of the first such multiple that needs to be marked.

At the beginning, we compute start [k] by division. But we’ll be able to compute start [k] for subsequent
segments as a byproduct of sieving, without division; that’s why we bother to keep start [k] in memory.

(Actually start [k] is computed explicitly only for the small and medium-sized primes. An equivalent
starting point for each large active prime is recorded in its appropriate queue list.)

〈 Initialize the active primes 5 〉 ≡
for (k = 1; ((unsigned long long) prime [k]) ∗ prime [k] < s0 ; k++) {
j = (((long long)(prime [k] & 3) ∗ prime [k])� 2)− (long long)((s0 � 2) % prime [k]);
if (j < 0) j += prime [k];
if (k < dd) start [k] = j;
else {

jj = (j/ddel) % qsize ;
if (count [jj] ≡ countmax) {

countmax ++;
if (countmax ≥ lsize) {

fprintf (stderr , "Oops: Please recompile me with lsize>%d!\n", lsize);
exit (−12);
}

}
plist [jj][count [jj]] = prime [k];
slist [jj][count [jj]] = j;
count [jj]++;

}
}
kk = k;
〈 Initialize the tiny active primes 6 〉;

This code is used in section 7.

6. Primes less than 32 will appear at least twice in every octabyte of the sieve. So we handle them in a
slightly more efficient way, unless they’re initially inactive.

〈 Initialize the tiny active primes 6 〉 ≡
for (k = 1; prime [k] < 32 ∧ k < kk ; k++) {

for (x = 0, y = 1LL � start [k]; x 6= y; x = y, y |= y � prime [k]) ;
sv [k] = x, rem [k] = 64 % prime [k];
}
d = k; /∗ d is the smallest nontiny prime ∗/

This code is used in section 5.

7. 〈Get ready for the first segment 7 〉 ≡
〈 Initialize the active primes 5 〉;
ss = s0 ; /∗ base address of the next segment ∗/
sieve [1 + del /256] = −1; /∗ store a sentinel ∗/

This code is used in section 2.

6 SIEVING PRIME-SIEVE-SPARSE §8

8. 〈Do segment ii 8 〉 ≡
{
s = ss , ss = s+ del , qq = ii % qsize ; /∗ s = si, ss = si+1 ∗/
if (qq ≡ 0) {
j = time (0);
printf ("Beginning segment %llu (after %d sec)\n", s, j − timer);
fflush (stdout);
timer = j;

}
〈 Initialize the sieve from the tiny primes 9 〉;
〈Sieve in the previously active primes 10 〉;
〈Sieve in the newly active primes 12 〉;
〈Look for large gaps 13 〉;
}

This code is used in section 2.

9. 〈 Initialize the sieve from the tiny primes 9 〉 ≡
for (j = 0; j < del /256; j++) {

for (z = 0, k = 1; k < d; k++) {
z |= sv [k];
sv [k] = (sv [k]� (prime [k]− rem [k])) | (sv [k]� rem [k]);

}
sieve [j] = z;
}

This code is used in section 8.

10. Now we want to set 1 bits for every odd multiple of prime [k] in the current segment, whenever prime [k]
is active. The bit for the integer si + 4j + 1 is 1� (j & #3f) in sieve [j � 6], for 0 ≤ j < δ/4.

〈Sieve in the previously active primes 10 〉 ≡
if (dd ≥ kk) { /∗ no large primes are active ∗/

for (k = d; k < kk ; k++) {
for (j = start [k]; j < ddel ; j += prime [k]) sieve [j � 6] |= 1LL � (j & #3f);
start [k] = j − ddel ;

}
} else {

for (k = d; k < dd ; k++) {
for (j = start [k]; j < ddel ; j += prime [k]) sieve [j � 6] |= 1LL � (j & #3f);
start [k] = j − ddel ;

}
〈Sieve in the enqueued large primes 11 〉;
}

This code is used in section 8.

§11 PRIME-SIEVE-SPARSE SIEVING 7

11. Each slist entry is an offset relative to the beginning of the previous segment with qq = 0. Thus, for
example, slist [1] holds numbers of the form ddel + x, ddel ∗ (1 + qsize) + x, ddel ∗ (1 + 2 ∗ qsize) + x, etc.,
where 0 ≤ x < ddel .

〈Sieve in the enqueued large primes 11 〉 ≡
for (j = k = 0; k < count [qq]; k++) {

if (slist [qq][k] ≥ (qq + 1) ∗ ddel) /∗ big big prime has “looped” the queue ∗/
plist [qq][j] = plist [qq][k], slist [qq][j] = slist [qq][k]− qsize ∗ ddel , j++;

else {
register unsigned int nstart ;

jj = slist [qq][k] % ddel ;
sieve [jj � 6] |= 1LL � (jj & #3f);
nstart = slist [qq][k] + plist [qq][k];
jj = (nstart/ddel) % qsize ; /∗ possibly jj = qq ; that’s no problem ∗/
if (count [jj] ≡ countmax) {

countmax ++;
if (countmax ≥ lsize) {

fprintf (stderr , "Oops: Please recompile me with lsize>%d!\n", lsize);
exit (−13);
}

}
plist [jj][count [jj]] = plist [qq][k];
slist [jj][count [jj]] = (jj ≥ qq ? nstart : nstart − qsize ∗ ddel);
count [jj]++;

}
}
count [qq] = j;

This code is used in section 10.

12. The test here is ‘jj > qq ’ when we construct an slist entry, not ‘jj ≥ qq ’ as before. Do you see why?

〈Sieve in the newly active primes 12 〉 ≡
for (k = kk ; ((unsigned long long) prime [k]) ∗ prime [k] < ss ; k++) {

for (j = (((unsigned long long) prime [k]) ∗ prime [k]− s− 1)� 2; j < ddel ; j += prime [k])
sieve [j � 6] |= 1LL � (j & #3f);

if (k < dd) start [k] = j − ddel ;
else {
j += qq ∗ ddel ;
jj = (j/ddel) % qsize ; /∗ possibly jj = qq ; that’s no problem ∗/
if (count [jj] ≡ countmax) {

countmax ++;
if (countmax ≥ lsize) {

fprintf (stderr , "Oops: Please recompile me with lsize>%d!\n", lsize);
exit (−14);
}

}
plist [jj][count [jj]] = prime [k];
slist [jj][count [jj]] = (jj > qq ? j : j − qsize ∗ ddel);
count [jj]++;

}
}
kk = k;

This code is used in section 8.

8 PROCESSING GAPS PRIME-SIEVE-SPARSE §13

13. Processing gaps. If pk+1− pk ≥ 512, we’re bound to find an octabyte of all 1s in the sieve between
the 0 for pk and the 0 for pk+1. In such cases, we check for a potential “kilogap” (a gap of length 1000 or
more).

Complications occur if the gap appears at the very beginning or end of a segment, or if an entire segment
is prime-free. Further complications arise because our sieve contains only half of the potential primes. I’ve
tried to get the logic correct, without slowing the program down. But if any bugs are present in this code, I
suppose they are due to a fallacy in this aspect of my reasoning.

Two sentinels appear at the end of the sieve, in order to speed up loop termination: sieve [del /256] = 0
and sieve [1 + del /256] = −1.

〈Look for large gaps 13 〉 ≡
j = 0, k = −100;
while (1) {

for (; sieve [j] ≡ −1; j++) ;
if (j ≡ del /256) x = ss ;
else 〈Set x to the smallest prime in sieve [j] 15 〉;
if (k ≥ 0) 〈Set lastprime to the largest prime in sieve [k] 16 〉
else if (lastprime ≡ 0) 〈Set lastprime to the smallest prime ≥ s0 14 〉;
〈Look for and report any large gaps between lastprime and x 19 〉;
if (j ≡ del /256) break;
for (j++; sieve [j] 6= −1; j++) ;
if (j < del /256) k = j − 1;
else { /∗ j = 1 + del /256 and sieve [del /256− 1] 6= −1 ∗/
k = del /256− 1;
〈Set lastprime to the largest prime in sieve [k] 16 〉;
break;

}
}
for (z = ss − 1; z > lastprime ; z −= 4)

if (isprime (z)) {
lastprime = z; break;

}
donewithseg :

This code is used in section 8.

14. 〈Set lastprime to the smallest prime ≥ s0 14 〉 ≡
{

for (z = s+ 3; z < x; z += 4)
if (isprime (z)) {

lastprime = z; goto got it ;
}

if (x ≡ ss) goto donewithseg ; /∗ no primes at all below ss ! ∗/
lastprime = x;

got it : fprintf (outfile , "The first prime is %llu = s[0]+%d\n", lastprime , lastprime − s0);
fflush (outfile);
}

This code is used in section 13.

§15 PRIME-SIEVE-SPARSE PROCESSING GAPS 9

15. 〈Set x to the smallest prime in sieve [j] 15 〉 ≡
{
y = ∼sieve [j];
y = y &−y; /∗ extract the rightmost 1 bit ∗/
〈Change y to its binary logarithm 17 〉;
x = s+ (j � 8) + (y � 2) + 1; /∗ this upperbounds the first prime after a gap ∗/
}

This code is used in section 13.

16. 〈Set lastprime to the largest prime in sieve [k] 16 〉 ≡
{

for (y = ∼sieve [k], z = y & (y − 1); z; y = z, z = y & (y − 1)) ; /∗ the leftmost 1 bit ∗/
〈Change y to its binary logarithm 17 〉;
lastprime = s+ (k � 8) + (y � 2) + 1;
}

This code is used in section 13.

17. As far as I know, the following method is the fastest way to compute binary logarithms on an Opteron
computer (which is the machine I’m targeting here).

〈Change y to its binary logarithm 17 〉 ≡
y−−;
y = nu [y & #ffff] + nu [(y � 16) & #ffff] + nu [(y � 32) & #ffff] + nu [(y � 48) & #ffff];

This code is used in sections 15 and 16.

18. With a more extensive table, I could count the 1s in an arbitrary binary word. But seventeen table
entries are sufficient for present purposes.

〈 Initialize the bit-counting table 18 〉 ≡
for (j = 0; j ≤ 16; j++) nu [((1� j)− 1)] = j;

This code is used in section 2.

10 PROCESSING GAPS PRIME-SIEVE-SPARSE §19

19. When sieve [k] 6= −1 and sieve [j] 6= −1 and everything between them is −1 (all ones), there’s a gap of
size g where 256|j − k| − 126 ≤ g ≤ 256|j − k|+ 126.

If k < 0 and lastprime 6= 0, there are no primes between lastprime and s.
Two or more large gaps may actually be present, in a long interval where the only primes are of the form

4m+ 3. (I doubt if this actually occurs until the numbers get much larger than I can handle, but I’m trying
to make the program correct.)

〈Look for and report any large gaps between lastprime and x 19 〉 ≡
if (j ≥ k + bestgap/256) {

xx = x;
zloop : if (x− lastprime < bestgap) goto done here ;
y = (k ≥ 0 ? lastprime : s);
for (z = ((lastprime &∼2) + bestgap − 2); z > y; z −= 4)

if (isprime (z)) {
lastprime = z, k = 0; goto zloop ;

}
z = (lastprime &∼2) + bestgap + 2;
if (z < s) z = s+ 3;
for (; z < x; z += 4)

if (isprime (z)) {
x = z; break;

}
if (x ≡ ss) goto donewithseg ; /∗ lastprime is the largest prime less than x ∗/
〈Report a gap, if it’s big enough 20 〉;
lastprime = x, x = xx ; goto zloop ;
}

done here :

This code is used in section 13.

20. 〈Report a gap, if it’s big enough 20 〉 ≡
{

if (x− lastprime ≥ bestgap) {
fprintf (outfile , "%llu is followed by a gap of length %d\n", lastprime , x− lastprime);
fflush (outfile);

}
}

This code is used in section 19.

21. 〈Report the final prime 21 〉 ≡
if (lastprime) {

fprintf (outfile , "The final prime is %llu = s[t]−%d.\n", lastprime , st − lastprime);
} else fprintf (outfile , "No prime numbers exist between s[0] and s[t].\n");

This code is used in section 2.

§22 PRIME-SIEVE-SPARSE RANDOM NUMBERS 11

22. Random numbers. The following code comes directly from rng.c, the random number generator
in Section 3.6.

#define KK 100 /∗ the long lag ∗/
#define LL 37 /∗ the short lag ∗/
#define MM (1L � 30) /∗ the modulus ∗/
#define mod diff (x, y) (((x)− (y)) & (MM − 1)) /∗ subtraction mod MM ∗/
〈Subroutines 22 〉 ≡

long ran x [KK]; /∗ the generator state ∗/
void ran array (long aa [], int n)
{

register int i, j;

for (j = 0; j < KK; j++) aa [j] = ran x [j];
for (; j < n; j++) aa [j] = mod diff (aa [j − KK], aa [j − LL]);
for (i = 0; i < LL; i++, j++) ran x [i] = mod diff (aa [j − KK], aa [j − LL]);
for (; i < KK; i++, j++) ran x [i] = mod diff (aa [j − KK], ran x [i− LL]);
}

See also sections 23, 25, 26, and 27.

This code is used in section 2.

12 RANDOM NUMBERS PRIME-SIEVE-SPARSE §23

23. #define QUALITY 1009 /∗ recommended quality level for high-res use ∗/
#define TT 70 /∗ guaranteed separation between streams ∗/
#define is odd (x) ((x) & 1) /∗ units bit of x ∗/
〈Subroutines 22 〉 +≡

long ran arr buf [QUALITY];
long ran arr dummy = −1, ran arr started = −1;
long ∗ran arr ptr = &ran arr dummy ; /∗ the next random number, or -1 ∗/
void ran start (long seed)
{

register int t, j;
long x[KK + KK − 1]; /∗ the preparation buffer ∗/
register long ss = (seed + 2) & (MM − 2);

for (j = 0; j < KK; j++) {
x[j] = ss ; /∗ bootstrap the buffer ∗/
ss �= 1;
if (ss ≥ MM) ss −= MM − 2; /∗ cyclic shift 29 bits ∗/

}
x[1]++; /∗ make x[1] (and only x[1]) odd ∗/
for (ss = seed & (MM − 1), t = TT − 1; t;) {

for (j = KK − 1; j > 0; j−−) x[j + j] = x[j], x[j + j − 1] = 0; /∗ ”square” ∗/
for (j = KK + KK − 2; j ≥ KK; j−−)
x[j − (KK − LL)] = mod diff (x[j − (KK − LL)], x[j]), x[j − KK] = mod diff (x[j − KK], x[j]);

if (is odd (ss)) { /∗ ”multiply by z” ∗/
for (j = KK; j > 0; j−−) x[j] = x[j − 1];
x[0] = x[KK]; /∗ shift the buffer cyclically ∗/
x[LL] = mod diff (x[LL], x[KK]);

}
if (ss) ss �= 1;
else t−−;

}
for (j = 0; j < LL; j++) ran x [j + KK − LL] = x[j];
for (; j < KK; j++) ran x [j − LL] = x[j];
for (j = 0; j < 10; j++) ran array (x, KK + KK − 1); /∗ warm things up ∗/
ran arr ptr = &ran arr started ;
}

24. 〈 Initialize the random number generator 24 〉 ≡
ran start (314159L);

This code is used in section 2.

25. After calling ran start , we get new randoms by saying “x = ran arr next ()”.

#define ran arr next () (∗ran arr ptr ≥ 0 ? ∗ran arr ptr ++ : ran arr cycle ())

〈Subroutines 22 〉 +≡
long ran arr cycle ()
{

if (ran arr ptr ≡ &ran arr dummy) ran start (314159L); /∗ the user forgot to initialize ∗/
ran array (ran arr buf , QUALITY);
ran arr buf [KK] = −1;
ran arr ptr = ran arr buf + 1;
return ran arr buf [0];
}

§26 PRIME-SIEVE-SPARSE DOUBLE PRECISION MULTIPLICATION 13

26. Double precision multiplication. We’ll need a subroutine that computes the 128-bit product of
two 64-bit integers. The product goes into acc hi and acc lo .

〈Subroutines 22 〉 +≡
unsigned long long acc hi , acc lo ;

void mult (unsigned long long x,unsigned long long y)
{

register unsigned int xhi , xlo , yhi , ylo ;
unsigned long long t;

xhi = x� 32, xlo = x& #ffffffff;
yhi = y � 32, ylo = y & #ffffffff;
t = ((unsigned long long) xlo) ∗ ylo , acc lo = t& #ffffffff;
t = ((unsigned long long) xhi) ∗ ylo + (t� 32), acc hi = t� 32;
t = ((unsigned long long) xlo) ∗ yhi + (t& #ffffffff);
acc hi += ((unsigned long long) xhi) ∗ yhi + (t� 32);
acc lo += (t& #ffffffff)� 32;
}

14 PRIME TESTING PRIME-SIEVE-SPARSE §27

27. Prime testing. I’ve saved the most interesting part of this program for last. It’s a subroutine that
tries to decide whether a given long long number z is prime. In the experiments I’m doing, z lies between
258 and 259 (but the program does not require that z be in this range).

If it’s easy to determine that z is definitely not prime, the subroutine returns 0.
But if z passes the Miller–Rabin test for 32 different random witnesses, the subroutine returns 1.
A nonprime number almost never returns 1. In fact, a nonprime number that passes the test even once is

sufficiently interesting that I’m printing it out.
Here I implement Algorithm 4.5.4P, using the fact that z mod 4 = 3, and using “Montgomery multiplica-

tion” for speed (exercise 4.3.1–41).

〈Subroutines 22 〉 +≡
int isprime (unsigned long long z)
{

register int k, lgz , rep ;
long long x, y, q;
unsigned long long m, zp , goal ;

〈 If z is divisible by a prime ≤ 53, return 0 32 〉;
〈Get ready for Montgomery’s method 28 〉;
for (rep = 0; rep < 32; rep ++) {
P1: x = ran arr next ();
P2: q = z � 1;

for (y = x,m = 1LL � (lgz − 2); m; m�= 1) {
〈Set y ← (y2/264) mod z 30 〉;
if (m& q) 〈Set y ← (xy/264) mod z 31 〉;

}
if (y 6= goal ∧ y 6= z − goal) {

if (rep) {
fprintf (outfile , "(%lld is a pseudoprime of rank %d)\n", z, rep);
fflush (outfile);
}
return 0;

}
}
return 1;
}

28. Miller and Rabin’s algorithm is based on the fact that xq ≡ ±1 (modulo z) when z is prime and
q = (z−1)/2. The loop above actually computes (264(x/264)q) mod z, so the result should be (±264) mod z.

Montgomery’s method also needs the constant z′ such that zz′ ≡ 1 (modulo 264).

〈Get ready for Montgomery’s method 28 〉 ≡
for (lgz = 63,m = #8000000000000000; (m& z) ≡ 0; m�= 1, lgz −−) ;
for (k = lgz , goal = m; k < 64; k++) {

goal += goal ;
if (goal ≥ z) goal −= z;
} /∗ now goal = 264 mod z ∗/
〈Set zp to the inverse of z modulo 264 29 〉;

This code is used in section 27.

§29 PRIME-SIEVE-SPARSE PRIME TESTING 15

29. Here I’m using “Newton’s method.” (If z mod 4 = 1, the first step should be changed to zp = (z& 4 ?
z ⊕ 8 : z).)

〈Set zp to the inverse of z modulo 264 29 〉 ≡
{

zp = (z & 4 ? z : z ⊕ 8); /∗ zz′ ≡ 1 (modulo 24), because z mod 4 = 3 ∗/
zp = (2− zp ∗ z) ∗ zp ; /∗ now zz′ ≡ 1 (modulo 28) ∗/
zp = (2− zp ∗ z) ∗ zp ; /∗ now zz′ ≡ 1 (modulo 216) ∗/
zp = (2− zp ∗ z) ∗ zp ; /∗ now zz′ ≡ 1 (modulo 232) ∗/
zp = (2− zp ∗ z) ∗ zp ; /∗ now zz′ ≡ 1 (modulo 264) ∗/
}

This code is used in section 28.

30. To compute xy/264 mod z, we compute the 128-bit product xy = 264t1 + t0, then subtract (z′t0 mod
264)z and return the leading 64 bits.

〈Set y ← (y2/264) mod z 30 〉 ≡
{

mult (y, y);
y = acc hi ;
mult (zp ∗ acc lo , z);
if (y < acc hi) y += z − acc hi ;
else y −= acc hi ;
}

This code is used in section 27.

31. 〈Set y ← (xy/264) mod z 31 〉 ≡
{

mult (x, y);
y = acc hi ;
mult (zp ∗ acc lo , z);
if (y < acc hi) y += z − acc hi ;
else y −= acc hi ;
}

This code is used in section 27.

32. The following simple test for nonprimality will rule out most cases before we need to resort to the
Miller–Rabin scheme. Algorithm 4.5.2B is a nice divisionless method to use here. (Note that the product
3 · 5 · . . . · 53 is between 263 and 264, so it would be considered “negative” as a long long.)

#define magic
((3LL ∗5LL ∗7LL ∗11LL ∗13LL ∗17LL ∗19LL ∗23LL ∗29LL ∗31LL ∗37LL ∗41LL ∗43LL ∗47LL ∗(unsigned

long long) 53)� 1)

〈 If z is divisible by a prime ≤ 53, return 0 32 〉 ≡
{

long long u, v, t;

t = magic − (z � 1);
v = z;

B4: while ((t& 1) ≡ 0) t�= 1;
B5: if (t > 0) u = t; else v = −t;
B6: t = (u− v)/2;

if (t) goto B4;
if (u > 1) return 0;
}

This code is used in section 27.

16 INDEX PRIME-SIEVE-SPARSE §33

33. Index.

aa : 22.
acc hi : 26, 30, 31.
acc lo : 26, 30, 31.
argc : 2, 3.
argv : 2, 3, 4.
bestgap : 2, 19, 20.
B4: 32.
B5: 32.
B6: 32.
count : 2, 5, 11, 12.
countmax : 2, 5, 11, 12.
d: 2.
dd : 2, 4, 5, 10, 12.
ddel : 4, 5, 10, 11, 12.
del : 2, 3, 4, 7, 8, 9, 13.
done here : 19.
donewithseg : 13, 14, 19.
exit : 3, 4, 5, 11, 12.
fflush : 8, 14, 20, 27.
fopen : 3.
fprintf : 3, 4, 5, 11, 12, 14, 20, 21, 27.
fread : 4.
goal : 27, 28.
got it : 14.
i: 22.
ii : 2, 8.
infile : 2, 3, 4.
is odd : 23.
isprime : 13, 14, 19, 27.
j: 2, 22, 23.
jj : 2, 5, 11, 12.
k: 2, 27.
kk : 2, 5, 6, 10, 12.
KK: 22, 23, 25.
kmax : 2, 4.
ksmall : 2, 4.
lastprime : 2, 13, 14, 16, 19, 20, 21.
lgz : 27, 28.
LL: 22, 23.
lsize : 2, 5, 11, 12.
m: 27.
magic : 32.
main : 2.
MM: 22, 23.
mod diff : 22, 23.
mult : 26, 30, 31.
n: 22.
nstart : 11.
nu : 2, 17, 18.
outfile : 2, 3, 14, 20, 21, 27.
plist : 2, 5, 11, 12.

prime : 2, 4, 5, 6, 9, 10, 12.
printf : 2, 3, 4, 8.
P1: 27.
P2: 27.
q: 27.
qq : 2, 8, 11, 12.
qsize : 2, 5, 8, 11, 12.
QUALITY: 23, 25.
ran arr buf : 23, 25.
ran arr cycle : 25.
ran arr dummy : 23, 25.
ran arr next : 25, 27.
ran arr ptr : 23, 25.
ran arr started : 23.
ran array : 22, 23, 25.
ran start : 23, 24, 25.
ran x : 22, 23.
rem : 2, 6, 9.
rep : 27.
s: 2.
seed : 23.
sieve : 1, 2, 7, 9, 10, 11, 12, 13, 15, 16, 19.
slist : 2, 5, 11, 12.
ss : 2, 7, 8, 12, 13, 14, 19, 23.
sscanf : 3.
st : 2, 3, 4, 21.
start : 2, 5, 6, 10, 12.
starttime : 2.
stderr : 3, 4, 5, 11, 12.
stdout : 8.
sv : 2, 6, 9.
s0 : 2, 3, 5, 7, 14.
t: 23, 26, 32.
time : 2, 8.
timer : 2, 8.
tt : 2, 3.
TT: 23.
u: 32.
v: 32.
x: 2, 23, 26, 27.
xhi : 26.
xlo : 26.
xx : 2, 19.
y: 2, 26, 27.
yhi : 26.
ylo : 26.
z: 2, 27.
zloop : 19.
zp : 27, 29, 30, 31.

PRIME-SIEVE-SPARSE NAMES OF THE SECTIONS 17

〈Change y to its binary logarithm 17 〉 Used in sections 15 and 16.

〈Do segment ii 8 〉 Used in section 2.

〈Get ready for Montgomery’s method 28 〉 Used in section 27.

〈Get ready for the first segment 7 〉 Used in section 2.

〈 If z is divisible by a prime ≤ 53, return 0 32 〉 Used in section 27.

〈 Initialize the active primes 5 〉 Used in section 7.

〈 Initialize the bit-counting table 18 〉 Used in section 2.

〈 Initialize the random number generator 24 〉 Used in section 2.

〈 Initialize the sieve from the tiny primes 9 〉 Used in section 8.

〈 Initialize the tiny active primes 6 〉 Used in section 5.

〈 Input the primes 4 〉 Used in section 3.

〈Look for and report any large gaps between lastprime and x 19 〉 Used in section 13.

〈Look for large gaps 13 〉 Used in section 8.

〈Process the command line and input the primes 3 〉 Used in section 2.

〈Report a gap, if it’s big enough 20 〉 Used in section 19.

〈Report the final prime 21 〉 Used in section 2.

〈Set y ← (xy/264) mod z 31 〉 Used in section 27.

〈Set y ← (y2/264) mod z 30 〉 Used in section 27.

〈Set lastprime to the largest prime in sieve [k] 16 〉 Used in section 13.

〈Set lastprime to the smallest prime ≥ s0 14 〉 Used in section 13.

〈Set x to the smallest prime in sieve [j] 15 〉 Used in section 13.

〈Set zp to the inverse of z modulo 264 29 〉 Used in section 28.

〈Sieve in the enqueued large primes 11 〉 Used in section 10.

〈Sieve in the newly active primes 12 〉 Used in section 8.

〈Sieve in the previously active primes 10 〉 Used in section 8.

〈Subroutines 22, 23, 25, 26, 27 〉 Used in section 2.

PRIME-SIEVE-SPARSE

Section Page
Intro . 1 1
Sieving . 5 5
Processing gaps . 13 8
Random numbers . 22 11
Double precision multiplication . 26 13
Prime testing . 27 14
Index . 33 16

	Intro
	Sieving
	Processing gaps
	Random numbers
	Double precision multiplication
	Prime testing
	Index
	Names of the sections
	Change y to its binary logarithm
	Do segment ii
	Get ready for Montgomery's method
	Get ready for the first segment
	If z is divisible by a prime <=53, return 0
	Initialize the active primes
	Initialize the bit-counting table
	Initialize the random number generator
	Initialize the sieve from the tiny primes
	Initialize the tiny active primes
	Input the primes
	Look for and report any large gaps between lastprime and x
	Look for large gaps
	Process the command line and input the primes
	Report a gap, if it's big enough
	Report the final prime
	Set y(xy/2^64)z
	Set y(y^2/2^64)z
	Set lastprime to the largest prime in sieve[k]
	Set lastprime to the smallest prime >=s_0
	Set x to the smallest prime in sieve[j]
	Set zp to the inverse of z modulo 2^64
	Sieve in the enqueued large primes
	Sieve in the newly active primes
	Sieve in the previously active primes
	Subroutines

