
§1 PRIME-SIEVE-BOOT INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program constructs segments of the “sieve of Eratosthenes,” and outputs the largest
prime gaps that it finds. More precisely, it works with sets of prime numbers between si and si+1 = si + δ,
represented as an array of bits, and it examines these arrays for t consecutive intervals beginning with si for
i = 0, 1, . . . t− 1. Thus it scans all primes between s0 and st.

Let pk be the kth prime number. The sieve of Eratosthenes determines all primes ≤ N by starting with
the set {2, 3, . . . , N} and striking out the nonprimes: After we know p1 through pk−1, the next remaining
element is pk, and we strike out the numbers p2k, pk(pk + 1), pk(pk + 2), etc. The sieve is complete when
we’ve found the first prime with p2k > N .

In this program it’s convenient to deal with the nonprimes instead of the primes, and to assume that
we already know all of the “small” primes pk for which p2k ≤ st. And of course we might as well restrict
consideration to odd numbers. Thus, we’ll represent the integers between si and si+1 by δ/2 bits; these bits
will appear in δ/128 64-bit numbers sieve [j], where

sieve [j] =

si+128(j+1)∑
n=si+128j

2(n−si−128j−1)/2
[
n is an odd multiple of some odd prime ≤

√
si+1

]
.

We choose the segment size δ to be a multiple of 128. We also assume that s0 is even, and s0 ≥
√
δ. It

follows that si is even for all i, and that (si + 1)2 = s2i + si + si+1 − δ ≥ si + si+1 > si+1. Consequently we
have

sieve [j] =

si+128(j+1)∑
n=si+128j

2(n−si−128j−1)/2
[
n is odd and not prime

]
,

because n appears if and only if it is divisible by some prime p where p ≤
√
si+1 < si + 1 ≤ n.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO PRIME-SIEVE-BOOT §2

2*. The sieve size δ is specified at compile time, but s0 and t are specified on the command line when this
program is run. There also are two additional command-line parameters, which name the input and output
files.

The input file should contain all prime numbers p1, p2, . . . , up to the first prime such that p2k > st; it may
also contain further primes, which are ignored. It is a binary file, with each prime given as an unsigned int.
(There are 203,280,221 primes less than 232, the largest of which is 232 − 5. Thus I’m implicitly assuming
that st < (232 − 5)2 ≈ 1.8× 1019.)

The output file in this “bootstrap” version is a list of all primes ≤ st, in a format suitable for use as the
input file in the regular version.

#define del 100000000LL /∗ the segment size δ, a multiple of 128 ∗/
#define kmax 10000 /∗ an index such that p2kmax > st ∗/
#include <stdio.h>

#include <stdlib.h>

FILE ∗infile , ∗outfile ;
unsigned int prime [kmax]; /∗ prime [k] = pk+1 ∗/
unsigned int start [kmax]; /∗ indices for initializing a segment ∗/
unsigned long long sieve [2 + del /128];
unsigned long long s0 ; /∗ beginning of the first segment ∗/
int tt ; /∗ number of segments ∗/
unsigned long long st ; /∗ ending of the last segment ∗/
unsigned long long lastprime ; /∗ largest prime so far, if any ∗/
int bestgap = 256; /∗ lower bound for gap reporting ∗/
unsigned long long sv [11]; /∗ bit patterns for the smallest primes ∗/
int rem [11]; /∗ shift amounts for the smallest primes ∗/
char nu [#10000]; /∗ table for counting bits ∗/
main (int argc , char ∗argv [])
{

register j, k;
unsigned long long x, y, z, s, ss ;
int d, ii , kk ;

〈 Initialize the bit-counting table 17 〉;
〈Process the command line and input the primes 3* 〉;
〈Get ready for the first segment 7* 〉;
for (ii = 0; ii < tt ; ii ++) 〈Do segment ii 8* 〉;
}

§3 PRIME-SIEVE-BOOT INTRO 3

3*. 〈Process the command line and input the primes 3* 〉 ≡
if (argc 6= 5 ∨ sscanf (argv [1], "%llu",&s0) 6= 1 ∨ sscanf (argv [2], "%d",&tt) 6= 1) {

fprintf (stderr , "Usage: %s s[0] t inputfile outputfile\n", argv [0]);
exit (−1);
}
infile = fopen (argv [3], "rb");
if (¬infile) {

fprintf (stderr , "I can’t open %s for binary input!\n", argv [3]);
exit (−2);
}
outfile = fopen (argv [4], "wb");
if (¬outfile) {

fprintf (stderr , "I can’t open %s for binary output!\n", argv [4]);
exit (−3);
}
st = s0 + tt ∗ del ;
if (st > #ffffffff) {

fprintf (stderr , "Sorry, s[t] = %llu exceeds 32 bits!\n", st);
exit (−69);
}
if (del % 128) {

fprintf (stderr , "Oops: The sieve size %d isn’t a multiple of 128!\n", del);
exit (−4);
}
if (s0 & 1) {

fprintf (stderr , "The starting point %llu isn’t even!\n", s0);
exit (−5);
}
if (s0 ∗ s0 < del) {

fprintf (stderr , "The starting point %llu is less than sqrt(%llu)!\n", s0 , del);
exit (−6);
}
〈 Input the primes 4 〉;
printf ("Sieving between s[0]=%llu and s[t]=%llu:\n", s0 , st);

This code is used in section 2*.

4 INTRO PRIME-SIEVE-BOOT §4

4. 〈 Input the primes 4 〉 ≡
for (k = 0; ; k++) {

if (k ≥ kmax) {
fprintf (stderr , "Oops: Please recompile me with kmax>%d!\n", kmax);
exit (−7);

}
if (fread (&prime [k], sizeof (unsigned int), 1, infile) 6= 1) {

fprintf (stderr , "The input file ended prematurely (%d^2<%llu)!\n", k ? prime [k − 1] : 0, st);
exit (−8);

}
if (k ≡ 0 ∧ prime [0] 6= 2) {

fprintf (stderr , "The input file begins with %d, not 2!\n", prime [0]);
exit (−9);

}
else if (k > 0 ∧ prime [k] ≤ prime [k − 1]) {

fprintf (stderr , "The input file has consecutive entries %d,%d!\n", prime [k − 1], prime [k]);
exit (−10);

}
if (((unsigned long long) prime [k]) ∗ prime [k] > st) break;
}
printf ("%d primes successfully loaded from %s\n", k, argv [3]);

This code is used in section 3*.

§5 PRIME-SIEVE-BOOT SIEVING 5

5. Sieving. Let’s say that the prime pk is “active” if p2k < si+1. Variable kk is the index of the first
inactive prime. The main task of sieving is to mark the multiples of all active primes in the current segment.

For each active prime pk, let nk be the smallest odd multiple of pk that exceeds si. We let start [k] be
(nk − si − 1)/2, the bit offset of the first such multiple that needs to be marked.

At the beginning, we compute start [k] by division. But we’ll be able to compute start [k] for subsequent
segments as a byproduct of sieving, without division; that’s why we bother to keep start [k] in memory.

〈 Initialize the active primes 5 〉 ≡
for (k = 1; ((unsigned long long) prime [k]) ∗ prime [k] < s0 ; k++) {
j = s0 % prime [k];
if (j & 1) start [k] = prime [k]− ((j + 1)� 1);
else start [k] = (prime [k]− j − 1)� 1;
}
kk = k;
〈 Initialize the tiny active primes 6 〉;

This code is used in section 7*.

6. Primes less than 32 will appear at least twice in every octabyte of the sieve. So we handle them in a
slightly more efficient way, unless they’re initially inactive.

〈 Initialize the tiny active primes 6 〉 ≡
for (k = 1; prime [k] < 32 ∧ k < kk ; k++) {

for (x = 0, y = 1LL � start [k]; x 6= y; x = y, y |= y � prime [k]) ;
sv [k] = x, rem [k] = 64 % prime [k];
}
d = k; /∗ d is the index of the smallest nontiny prime ∗/

This code is used in section 5.

7*. 〈Get ready for the first segment 7* 〉 ≡
〈Output the primes that precede the first segment 20* 〉;
〈 Initialize the active primes 5 〉;
ss = s0 ; /∗ base address of the next segment ∗/
sieve [1 + del /128] = −1; /∗ store a sentinel ∗/

This code is used in section 2*.

8*. 〈Do segment ii 8* 〉 ≡
{
s = ss , ss = s+ del ; /∗ s = si, ss = si+1 ∗/
printf ("Beginning segment %llu\n", s);
〈 Initialize the sieve from the tiny primes 9 〉;
〈Sieve in the previously active primes 10 〉;
〈Sieve in the newly active primes 11 〉;
〈Output the primes in the current segment 21* 〉;
}

This code is used in section 2*.

6 SIEVING PRIME-SIEVE-BOOT §9

9. 〈 Initialize the sieve from the tiny primes 9 〉 ≡
for (j = 0; j < del /128; j++) {

for (z = 0, k = 1; k < d; k++) {
z |= sv [k];
sv [k] = (sv [k]� (prime [k]− rem [k])) | (sv [k]� rem [k]);

}
sieve [j] = z;
}

This code is used in section 8*.

10. Now we want to set 1 bits for every odd multiple of prime [k] in the current segment, whenever prime [k]
is active. The bit for the integer si + 2j + 1 is 1� (j & #3f) in sieve [j � 6], for 0 ≤ j < δ/2.

〈Sieve in the previously active primes 10 〉 ≡
for (k = d; k < kk ; k++) {

for (j = start [k]; j < del /2; j += prime [k]) sieve [j � 6] |= 1LL � (j & #3f);
start [k] = j − del /2;
}

This code is used in section 8*.

11. 〈Sieve in the newly active primes 11 〉 ≡
while (((unsigned long long) prime [k]) ∗ prime [k] < ss) {

for (j = (((unsigned long long) prime [k]) ∗ prime [k]− s− 1)� 1; j < del /2; j += prime [k])
sieve [j � 6] |= 1LL � (j & #3f);

start [k] = j − del /2;
k++;
}
kk = k;

This code is used in section 8*.

§12 PRIME-SIEVE-BOOT PROCESSING GAPS 7

12. Processing gaps. If pk+1− pk ≥ 256, we’re bound to find an octabyte of all 1s in the sieve between
the 0 for pk and the 0 for pk+1. In such cases, we check to see if this gap breaks or ties the current record.

Complications occur if the gap appears at the very beginning or end of a segment, or if an entire segment
is prime-free. I’ve tried to get the logic correct, without slowing the program down. But if any bugs are
present in this code, I suppose they are due to a fallacy in this aspect of my reasoning.

Two sentinels appear at the end of the sieve, in order to speed up loop termination: sieve [del /128] = 0
and sieve [1 + del /128] = −1.

〈Look for large gaps 12 〉 ≡
j = 0;
〈 Identify the first prime in this segment, if necessary 13 〉;
while (1) { /∗ at this point j < del /128 and sieve [j] 6= −1 ∗/

for (j++; sieve [j] 6= −1; j++) ;
if (j < del /128) {
k = j − 1;
for (j++; sieve [j] ≡ −1; j++) ;
if (j ≡ del /128) break;
〈Check for a potentially interesting gap 14 〉;

} else { /∗ j = 1 + del /128 and sieve [del /128− 1] 6= −1 ∗/
k = del /128− 1; break;

}
}
〈Set lastprime to the largest prime in sieve [k] 15 〉;

donewithseg :

13. We don’t need to figure out the exact value of the first prime greater than s unless the present segment
begins with an octabyte of all 1s, or the previous segment ends with such an octabyte, or we’re in the first
segment.

But in any case we’ll want to go immediately to donewithseg if the current segment is entirely prime-free.
And we always want to end this step with j equal to the smallest index such that sieve [j] 6= −1.

〈 Identify the first prime in this segment, if necessary 13 〉 ≡
if (lastprime ≤ s− 128 ∨ sieve [j] ≡ −1) {

for (; sieve [j] ≡ −1; j++) ;
if (j ≡ del /128) goto donewithseg ;
y = ∼sieve [j];
y = y &−y; /∗ extract the rightmost 1 bit ∗/
〈Change y to its binary logarithm 16 〉;
x = s+ (j � 7) + y + y + 1; /∗ this is the first prime of the segment ∗/
if (lastprime) 〈Report a gap, if it’s big enough 18 〉
else {
k = x− s0 ;
fprintf (outfile , "The first prime is %llu = s[0]+%d\n", x, k);
fflush (outfile);

}
}

This code is used in section 12.

8 PROCESSING GAPS PRIME-SIEVE-BOOT §14

14. When sieve [k] 6= −1 and sieve [j] 6= −1 and everything between them is −1 (all ones), there’s a gap of
size g where 128|j − k| − 126 ≤ g ≤ 128|j − k|+ 126.

〈Check for a potentially interesting gap 14 〉 ≡
if (((j − k)� 7) + 126 ≥ bestgap) {
y = ∼sieve [j];
y = y &−y; /∗ extract the rightmost 1 bit ∗/
〈Change y to its binary logarithm 16 〉;
x = s+ (j � 7) + y + y + 1; /∗ this is the first prime after the gap ∗/
〈Set lastprime to the largest prime in sieve [k] 15 〉;
〈Report a gap, if it’s big enough 18 〉;
}

This code is used in section 12.

15. 〈Set lastprime to the largest prime in sieve [k] 15 〉 ≡
for (y = ∼sieve [k], z = y & (y − 1); z; y = z, z = y & (y − 1)) ;
〈Change y to its binary logarithm 16 〉;
lastprime = s+ (k � 7) + y + y + 1;

This code is used in sections 12 and 14.

16. As far as I know, the following method is the fastest way to compute binary logarithms on an Opteron
computer (which is the machine I’m targeting here).

〈Change y to its binary logarithm 16 〉 ≡
y−−;
y = nu [y & #ffff] + nu [(y � 16) & #ffff] + nu [(y � 32) & #ffff] + nu [(y � 48) & #ffff];

This code is used in sections 13, 14, 15, and 21*.

17. With a more extensive table, I could count the 1s in an arbitrary binary word. But seventeen table
entries are sufficient for present purposes.

〈 Initialize the bit-counting table 17 〉 ≡
for (j = 0; j ≤ 16; j++) nu [((1� j)− 1)] = j;

This code is used in section 2*.

18. 〈Report a gap, if it’s big enough 18 〉 ≡
{

if (x− lastprime ≥ bestgap) {
bestgap = x− lastprime ;
fprintf (outfile , "%llu is followed by a gap of length %d\n", lastprime , bestgap);
fflush (outfile);

}
}

This code is used in sections 13 and 14.

19. 〈Report the final prime 19 〉 ≡
if (lastprime) {
k = st − lastprime ;
fprintf (outfile , "The final prime is %llu = s[t]−%d.\n", lastprime , k);
} else fprintf (outfile , "No prime numbers exist between s[0] and s[t].\n");

20*. 〈Output the primes that precede the first segment 20* 〉 ≡
for (k = 0; prime [k] < s0 ; k++) fwrite (&prime [k], sizeof (int), 1, outfile);

This code is used in section 7*.

§21 PRIME-SIEVE-BOOT PROCESSING GAPS 9

21*. 〈Output the primes in the current segment 21* 〉 ≡
for (j = 0; j < del /128; j++) {

for (x = ∼sieve [j]; x; x = x& (x− 1)) {
y = x&−x; /∗ extract the rightmost 1 bit ∗/
〈Change y to its binary logarithm 16 〉;
lastprime = s+ (j � 7) + y + y + 1; /∗ this is the first prime after the gap ∗/
fwrite (&lastprime , sizeof (int), 1, outfile);

}
}

This code is used in section 8*.

10 INDEX PRIME-SIEVE-BOOT §22

22*. Index.

The following sections were changed by the change file: 2, 3, 7, 8, 20, 21, 22.

argc : 2*, 3*.
argv : 2*, 3*, 4.
bestgap : 2*, 14, 18.
d: 2*.
del : 2*, 3*, 7*, 8*, 9, 10, 11, 12, 13, 21*.
donewithseg : 12, 13.
exit : 3*, 4.
fflush : 13, 18.
fopen : 3*.
fprintf : 3*, 4, 13, 18, 19.
fread : 4.
fwrite : 20*, 21*.
ii : 2*.
infile : 2*, 3*, 4.
j: 2*.
k: 2*.
kk : 2*, 5, 6, 10, 11.
kmax : 2*, 4.
lastprime : 2*, 13, 15, 18, 19, 21*.
main : 2*.
nu : 2*, 16, 17.
outfile : 2*, 3*, 13, 18, 19, 20*, 21*.
prime : 2*, 4, 5, 6, 9, 10, 11, 20*.
printf : 3*, 4, 8*.
rem : 2*, 6, 9.
s: 2*.
sieve : 1, 2*, 7*, 9, 10, 11, 12, 13, 14, 15, 21*.
ss : 2*, 7*, 8*, 11.
sscanf : 3*.
st : 2*, 3*, 4, 19.
start : 2*, 5, 6, 10, 11.
stderr : 3*, 4.
sv : 2*, 6, 9.
s0 : 2*, 3*, 5, 7*, 13, 20*.
tt : 2*, 3*.
x: 2*.
y: 2*.
z: 2*.

PRIME-SIEVE-BOOT NAMES OF THE SECTIONS 11

〈Change y to its binary logarithm 16 〉 Used in sections 13, 14, 15, and 21*.

〈Check for a potentially interesting gap 14 〉 Used in section 12.

〈Do segment ii 8* 〉 Used in section 2*.

〈Get ready for the first segment 7* 〉 Used in section 2*.

〈 Identify the first prime in this segment, if necessary 13 〉 Used in section 12.

〈 Initialize the active primes 5 〉 Used in section 7*.

〈 Initialize the bit-counting table 17 〉 Used in section 2*.

〈 Initialize the sieve from the tiny primes 9 〉 Used in section 8*.

〈 Initialize the tiny active primes 6 〉 Used in section 5.

〈 Input the primes 4 〉 Used in section 3*.

〈Look for large gaps 12 〉
〈Output the primes in the current segment 21* 〉 Used in section 8*.

〈Output the primes that precede the first segment 20* 〉 Used in section 7*.

〈Process the command line and input the primes 3* 〉 Used in section 2*.

〈Report a gap, if it’s big enough 18 〉 Used in sections 13 and 14.

〈Report the final prime 19 〉
〈Set lastprime to the largest prime in sieve [k] 15 〉 Used in sections 12 and 14.

〈Sieve in the newly active primes 11 〉 Used in section 8*.

〈Sieve in the previously active primes 10 〉 Used in section 8*.

PRIME-SIEVE-BOOT

Section Page
Intro . 1 1
Sieving . 5 5
Processing gaps . 12 7
Index . 22 10

	Intro
	Sieving
	Processing gaps
	Index
	Names of the sections
	Change y to its binary logarithm
	Check for a potentially interesting gap
	Do segment ii
	Get ready for the first segment
	Identify the first prime in this segment, if necessary
	Initialize the active primes
	Initialize the bit-counting table
	Initialize the sieve from the tiny primes
	Initialize the tiny active primes
	Input the primes
	Look for large gaps
	Output the primes in the current segment
	Output the primes that precede the first segment
	Process the command line and input the primes
	Report a gap, if it's big enough
	Report the final prime
	Set lastprime to the largest prime in sieve[k]
	Sieve in the newly active primes
	Sieve in the previously active primes

