
§1 POLYSLAVE-RESTART INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program obediently carries out the wishes of POLYNUM, which has compiled a
set of one-byte and four-byte instructions for us to interpret.

But instead of producing high-precision output, it does all its arithmetic modulo a given number m ≤ 256.
That trick keeps memory usage small; it allows the user to reconstruct true answers of almost unlimited
size just by trying sufficiently many different values of m. And if anybody is concerned about bits getting
clobbered by cosmic radiation, they can gain additional confidence in the accuracy by running the calculations
for more moduli than strictly necessary.

#include <stdio.h>

#include <setjmp.h>

jmp buf restart point ;

〈Type definitions 2 〉
〈Global variables 5 〉
〈Subroutines 3 〉
main (int argc , char ∗argv [])
{
〈Local variables 6 〉;
〈Scan the command line 4* 〉;
setjmp(restart point); /∗ longjmp will return here if necessary ∗/
〈 Initialize 15 〉;
〈 Interpret the instructions in the input 17 〉;
〈Print statistics 25 〉;
exit (0);
}

2. It is easy to adapt this program to work with counters that occupy either one byte (unsigned char),
two bytes (unsigned short), or four bytes (unsigned int), depending on how much memory is available.

Even if we limit ourselves to one-byte counters, exact results of up to 362 bits can be determined. For
example, the eleven moduli 256, 253, 251, 247, 245, 243, 241, 239, 233, 229, 227 will suffice to enumerate
n-ominoes for n ≤ 46; and the additional modulus 223 will carry us through n ≤ 50. (If some day we have
the resources to go even higher, the next moduli to try would be 211, 199, and 197.)

However, the author’s experience with the case n = 47 showed that the memory space needed for counters
in this program was not as precious as the memory space needed for configurations in POLYNUM. Therefore
the four-byte moduli 231 = 2147483648, 231− 1 (which is prime), and 231− 3 (which equals 5 · 19 · 22605091)
worked out best. Together they reach nearly to 1028, which would actually be large enough to count 49-
ominoes.

With a little extra work I could have allowed moduli up to 232. But I didn’t bother, because 231 turned
out to be plenty big.

#define maxm (1� 31) /∗ the modulus m must not exceed this ∗/
〈Type definitions 2 〉 ≡

typedef unsigned int counter; /∗ the main data type in our arrays ∗/
See also section 11.

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION POLYSLAVE-RESTART §3

3. The program checks frequently that everything in the input file is legitimate. If not, too bad; the run is
terminated (although a debugger can help diagnose nonobvious problems). Extensive checks like this have
helped the author to detect errors in the program as well as errors in the input.

〈Subroutines 3 〉 ≡
void panic(char ∗mess)
{

fprintf (stderr , "%s!\n",mess);
exit (−1);
}

See also sections 8, 9, 10, and 12.

This code is used in section 1.

4*. Several gigabytes of input might be needed, so the input file name will be extended by .0, .1, . . . , just
as in POLYNUM.

Output data suitable for processing by Mathematica will be written on a file with the same name as the
input but extended by the modulus and .m.

〈Scan the command line 4* 〉 ≡
if (argc 6= 3 ∨ sscanf (argv [2], "%u",&modulus) 6= 1) {

fprintf (stderr , "Usage: %s infilename modulus\n", argv [0]);
exit (−2);
}
base name = argv [1];
if (modulus < 2 ∨modulus > maxm) panic("Improper modulus");
m = modulus ;
sprintf (filename , "%.90s−%u.m", base name ,modulus);
math file = fopen (filename , "a"); /∗ append to previous outputs ∗/
if (¬math file) panic("I can’t open the output file");

This code is used in section 1.

5. 〈Global variables 5 〉 ≡
unsigned int modulus ; /∗ results will discard multiples of this number ∗/
char ∗base name ,filename [100];
FILE ∗math file ; /∗ the output file ∗/

See also sections 7, 14, 16, and 28*.

This code is used in section 1.

6. 〈Local variables 6 〉 ≡
register int k; /∗ all-purpose index register ∗/
register unsigned int m; /∗ register copy of modulus ∗/

See also section 18.

This code is used in section 1.

§7 POLYSLAVE-RESTART INPUT 3

7. Input. Let’s start with the basic routines that are needed to read instructions from the input file(s).
As soon as 230 bytes of data have been read from file foo.0, we’ll turn to file foo.1, etc.

#define filelength threshold (1� 30) /∗ should match the corresponding number in POLYNUM ∗/
#define buf size (1� 16) /∗ should be a divisor of filelength threshold ∗/
〈Global variables 5 〉 +≡

FILE ∗in file ; /∗ the input file ∗/
union {

unsigned char buf [buf size + 10]; /∗ place for binary input ∗/
unsigned int foo ; /∗ force in .buf to be aligned somewhat sensibly ∗/
} in ;
unsigned char ∗buf ptr ; /∗ our current place in the buffer ∗/
int bytes in ; /∗ the number of bytes seen so far in the current input file ∗/
unsigned int checksum ; /∗ a way to help identify bad I/O ∗/
FILE ∗ck file ; /∗ the checksum file ∗/
unsigned int checkbuf ; /∗ a check sum for comparison ∗/
int file extension ; /∗ the number of GGbytes input ∗/

8. 〈Subroutines 3 〉 +≡
void open it ()
{

sprintf (filename , "%.90s.%d", base name ,file extension);
in file = fopen (filename , "rb");
if (¬in file) {

fprintf (stderr , "I can’t open file %s",filename);
panic(" for input");

}
bytes in = checksum = 0;
}

9. If the check sum is bad, we go back to the beginning. Some incorrect definitions may have been output
to math file , but we’ll append new definitions that override them.

〈Subroutines 3 〉 +≡
void close it ()
{

if (fread (&checkbuf , sizeof (unsigned int), 1, ck file) 6= 1)
panic("I couldn’t read the check sum");

if (fclose (in file) 6= 0) panic("I couldn’t close the input file");
printf ("[%d bytes read from file %s, checksum %u.]\n", bytes in ,filename , checksum);
if (checkbuf 6= checksum) {

printf ("Checksum mismatch! Restarting...\n");
longjmp(restart point , 1);

}
fflush (stdout);
}

4 INPUT POLYSLAVE-RESTART §10

10. My first draft of this program simply used fread to input one or three bytes at a time. But that turned
out to be incredibly slow on my system, so now I’m doing my own buffering.

The program here uses the fact that six consecutive zero bytes cannot be present in a valid input; thus we
need not make a special check for premature end-of-file.

#define end of buffer &in .buf [buf size + 4]

〈Subroutines 3 〉 +≡
void read it ()
{

register int t, k;
register unsigned int s;

if (bytes in ≥ filelength threshold) {
if (bytes in 6= filelength threshold) panic("Improper buffer size");
close it ();
file extension ++;
open it ();

}
t = fread (in .buf + 4, sizeof (unsigned char), buf size , in file);
if (t < buf size) in .buf [t + 4] = in .buf [t + 5] = in .buf [t + 6] = in .buf [t + 7] = in .buf [t + 8] = #81;

/∗ will cause sync 1 error if read ∗/
bytes in += t;
for (k = s = 0; k < t; k++) s = (s� 1) + in .buf [k + 4];
checksum += s;
}

11. A four-byte instruction has the binary form (0xaaaaaa)2, (bbbbbbbb)2, (cccccccc)2, (dddddddd)2, where
(aaaaaabbbbbbbbccccccccdddddddd)2 is a 30-bit address specified in big-endian fashion. If x = 0 it means,
“This is the new source address s.” If x = 1 it means, “This is the new target address t.”

A one-byte instruction has the binary form (1ooopppp)2, with a 3-bit opcode (ooo)2 and a 4-bit parameter
(pppp)2. If the parameter is zero, the following byte is regarded as an 8-bit parameter (pppppppp)2, and it
should not be zero. (In that case the “one-byte instruction” actually occupies two bytes.)

In the instruction definitions below, p stands for the parameter, s stands for the current source address,
and t stands for the current target address. The slave processor operates on a large array called count .

Opcode 0 (sync) means, “We have just finished row p.” A report is given to the user.
Opcode 1 (clear) means, “Set count [t + j] = 0 for 0 ≤ j < p.”
Opcode 2 (copy) means, “Set count [t + j] = count [s + j] for 0 ≤ j < p.”
Opcode 3 (add) means, “Set count [t + j] += count [s + j] for 0 ≤ j < p.”
Opcode 4 (inc src) means, “Set s += p.”
Opcode 5 (dec src) means, “Set s −= p.”
Opcode 6 (inc trg) means, “Set t += p.”
Opcode 7 (dec trg) means, “Set t −= p.”

#define targ bit #40000000 /∗ specifies t in a four-byte instruction ∗/
〈Type definitions 2 〉 +≡

typedef enum {
sync , clear , copy , add , inc src , dec src , inc trg , dec trg
} opcode;

§12 POLYSLAVE-RESTART INPUT 5

12. The get inst routine reads the next instruction from the input and returns the value of its parameter,
also storing the opcode in the global variable op . Changes to s and t are taken care of automatically, so that
op is reduced to either sync , clear , copy , or add .

#define advance b
if (++b ≡ end of buffer) { read it (); b = &in .buf [4]; }

〈Subroutines 3 〉 +≡
opcode get inst ()
{

register unsigned char ∗b = buf ptr ;
register opcode o;
register int p;

restart : advance b ;
if (¬(∗b & #80)) 〈Change the source or target address and goto restart 13 〉;
o = (∗b� 4) & 7;
p = ∗b & #f;
if (¬p) {

advance b ;
p = ∗b;
if (¬p) panic("Parameter is zero");

}
switch (o) {
case inc src : cur src += p; goto restart ;
case dec src : cur src −= p; goto restart ;
case inc trg : cur trg += p; goto restart ;
case dec trg : cur trg −= p; goto restart ;
default: op = o;
}
if (verbose) {

if (op ≡ clear) printf ("{clear %d −>%d}\n", p, cur trg);
else if (op > clear) printf ("{%s %d %d−>%d}\n", sym [op], p, cur src , cur trg);

}
buf ptr = b;
return p;
}

13. 〈Change the source or target address and goto restart 13 〉 ≡
{

if (b + 3 ≥ end of buffer) {
∗(b− buf size) = ∗b, ∗(b + 1− buf size) = ∗(b + 1), ∗(b + 2− buf size) = ∗(b + 2);
read it ();
b −= buf size ;

}
p = ((∗b & #3f)� 24) + (∗(b + 1)� 16) + (∗(b + 2)� 8) + ∗(b + 3);
if (∗b & #40) cur trg = p;
else cur src = p;
b += 3;
goto restart ;
}

This code is used in section 12.

6 INPUT POLYSLAVE-RESTART §14

14. 〈Global variables 5 〉 +≡
opcode op ; /∗ operation code found by get inst ∗/
int verbose = 0; /∗ set nonzero when debugging ∗/
char ∗sym [4] = {"sync", "clear", "copy", "add"};
int cur src , cur trg ; /∗ current source and target addresses, s and t ∗/

15. The first six bytes of the instruction file are, however, special. Byte 0 is the number n of cells in the
largest polyominoes being enumerated. When a sync is interpreted, POLYSLAVE outputs the current values
of count [j] for 1 ≤ j ≤ n.

Byte 1 is the number of the final row. If this number is r, POLYSLAVE will terminate after interpreting
the instruction sync r.

Bytes 2–5 specify the (big-endian) number of elements in the count array.
Initially s = t = 0, count [0] = 1, and count [j] is assumed to be zero for 1 ≤ j ≤ n.

〈 Initialize 15 〉 ≡
sprintf (filename , "%.90s.ck", base name);
ck file = fopen (filename , "rb");
if (¬ck file) panic("I can’t open the checksum file");
open it ();
read it ();
n = in .buf [4];
last row = in .buf [5];
prev row = 0;
slave size = (in .buf [6]� 24) + (in .buf [7]� 16) + (in .buf [8]� 8) + in .buf [9];
buf ptr = &in .buf [9];
w = n + 2− last row ;
if (w < 2 ∨ n < w + w − 1 ∨ n > w + w + 126) panic("Bad bytes at the beginning");
count = (counter ∗) calloc(slave size , sizeof (counter));
if (¬count) panic("I couldn’t allocate the counter array");
count [0] = 1; /∗ prime the pump ∗/
cur src = cur trg = 0;
scount = (counter ∗) calloc(n + 1, sizeof (counter));
if (¬scount) panic("I couldn’t allocate the array of totals");

See also section 29*.

This code is used in section 1.

16. 〈Global variables 5 〉 +≡
int n; /∗ the maximum polyomino size of interest ∗/
int last row ; /∗ the row whose end will complete our mission ∗/
int prev row ; /∗ the row whose end we’ve most recently seen ∗/
int w; /∗ width of polynominoes being counted (deduced from n and last row) ∗/
int slave size ; /∗ the number of counters in memory ∗/
counter ∗count ; /∗ base address of The Big Table ∗/
counter ∗scount ; /∗ base address of totals captured at sync commands ∗/

§17 POLYSLAVE-RESTART SERVITUDE 7

17. Servitude. This program is so easy to write, I could even have done it without the use of literate
programming. (But of course it wouldn’t be nearly as much fun without CWEB.)

〈 Interpret the instructions in the input 17 〉 ≡
while (1) {
p = get inst ();
if (cur trg + p > slave size ∧ op ≥ clear) panic("Target address out of range");
if (cur src + p > slave size ∧ op ≥ copy) panic("Source address out of range");
switch (op) {
case sync : 〈Finish a row; goto done if it was the last 22 〉; break;
case clear : 〈Clear p counters 19 〉; break;
case copy : 〈Copy p counters 20 〉; break;
case add : 〈Add p counters 21 〉; break;
}
}

done :

This code is used in section 1.

18. 〈Local variables 6 〉 +≡
register int p; /∗ parameter of the current instruction ∗/
register unsigned int a; /∗ an accumulator for arithmetic ∗/

19. 〈Clear p counters 19 〉 ≡
for (k = 0; k < p; k++) count [cur trg + k] = 0;

This code is used in section 17.

20. 〈Copy p counters 20 〉 ≡
for (k = 0; k < p; k++) count [cur trg + k] = count [cur src + k];

This code is used in section 17.

21. I wonder what kind of machine language code my C compiler is giving me here, but I’m afraid to look.

〈Add p counters 21 〉 ≡
for (k = 0; k < p; k++) {
a = count [cur trg + k] + count [cur src + k];
if (a ≥ m) a −= m;
count [cur trg + k] = a;
}

This code is used in section 17.

22. The sync instruction, at least, gives me a little chance to be creative, especially with respect to checking
the sanity of the source file.

〈Finish a row; goto done if it was the last 22 〉 ≡
〈Check that p has the correct value 23 〉;
〈Output the relevant counters for completed polyominoes 24 〉;
for (k = 1; k ≤ n; k++) scount [k] = count [k];
if (p ≡ last row) goto done ;

This code is used in section 17.

8 SERVITUDE POLYSLAVE-RESTART §23

23. 〈Check that p has the correct value 23 〉 ≡
if (p ≡ 255) 〈Go into special shutdown mode 26 〉;
if (p ≡ 1) panic("File read error"); /∗ see read it ∗/
if (¬prev row) {

if (p 6= w + 1) panic("Bad first sync");
} else if (p 6= prev row + 1) panic("Out of sync");
prev row = p;

This code is used in section 22.

24. 〈Output the relevant counters for completed polyominoes 24 〉 ≡
printf ("Polyominoes that span %dx%d rectangles (mod %u):\n", p− 1, w,m);
fprintf (math file , "p[%d,%d,%u]={0", p− 1, w,m);
for (k = 2; k < w + p− 2; k++) fprintf (math file , ",0");
for (; k ≤ n; k++) {

if (count [k] ≥ scount [k]) a = count [k]− scount [k];
else a = count [k] + m− scount [k];
printf (" %d:%d", a, k);
fprintf (math file , ",%d", a);
}
printf ("\n");
fflush (stdout);
fprintf (math file , "}\n");

This code is used in section 22.

25. 〈Print statistics 25 〉 ≡
printf ("All done! Final totals (mod %u):\n",m);
for (k = w + w − 1; k ≤ n; k++) {

printf (" %d:%d", count [k], k);
}
printf ("\n");
close it ();

This code is used in section 1.

§26 POLYSLAVE-RESTART CHECKPOINTING 9

26. Checkpointing. POLYNUM issues the special command sync 255 when it wants to pause for breath
and shore up its knowledge. Therefore, if we see that instruction, we must immediately dump all the counters
into a temporary file. A special variant of this program is able to read that file and reconstitute all the data,
as if there had been no break in the action. (See the change file polyslave−restart.ch for details.)

〈Go into special shutdown mode 26 〉 ≡
{

close it ();
printf ("Checkpoint stop: After processing with all desired moduli,\n");
printf (" please resume with polynum−restart and polyslave−restart.\n");
sprintf (filename , "%.90s−%u.dump", base name ,m);
out file = fopen (filename , "wb");
if (¬out file) panic("I can’t open the dump file");
〈Dump all information needed to restart 27 〉;
exit (1);
}

This code is used in section 23.

27. 〈Dump all information needed to restart 27 〉 ≡
dump data [0] = n;
dump data [1] = w;
dump data [2] = m;
dump data [3] = slave size ;
dump data [4] = prev row ;
if (fwrite (dump data , sizeof (unsigned int), 5, out file) 6= 5)

panic("Bad write at beginning of dump");
if (fwrite (scount , sizeof (counter), n + 1, out file) 6= n + 1) panic("Couldn’t dump the subtotals");
if (fwrite (count , sizeof (counter), slave size , out file) 6= slave size)

panic("Couldn’t dump the counters");
printf ("[%u bytes written on file %s.]\n", ftell (out file),filename);

This code is used in section 26.

28*. 〈Global variables 5 〉 +≡
unsigned int dump data [5]; /∗ parameters needed to restart ∗/
FILE ∗out file ;
FILE ∗dump file ;
char dfilename [100];

10 CHECKPOINTING POLYSLAVE-RESTART §29

29*. This is the data reconstituter just mentioned. If the dumped data had a different value of slave size ,
we don’t complain; POLYNUM will have made sure that there is no problem. (At the time of a checkpoint,
all the valid data appears at the beginning of the count table.)

〈 Initialize 15 〉 +≡
sprintf (dfilename , "%.90s−%u.dump", base name ,m);
dump file = fopen (dfilename , "rb");
if (¬dump file) panic("I can’t open the dump file");
if (fread (dump data , sizeof (unsigned int), 5, dump file) 6= 5)

panic("Bad read at beginning of dump");
if (n 6= dump data [0] ∨ w 6= dump data [1] ∨m 6= dump data [2]) panic("Dump data doesn’t match");
if (dump data [3] > slave size) dump data [3] = slave size ;
if (fread (scount , sizeof (counter), n + 1, dump file) 6= n + 1)

panic("Can’t read the dumped subtotals");
if (fread (count , sizeof (counter), dump data [3], dump file) 6= dump data [3])

panic("Can’t read the dumped counters");
prev row = dump data [4];

§30 POLYSLAVE-RESTART CHECKPOINTING 11

30. For the record, here are three shell scripts called nums, slaves, and slaves−restart, which were used
to run POLYNUM and POLYSLAVE when n = 47:

nums #!/bin/sh

if [$# −ne 3]; then

echo "Usage: nums width configs counts"

exit 255

fi

time polynum 47 $1 $2 $3 /home/tmp/poly47−$1

slaves $1

while [$? = 1]; do

mv /home/tmp/poly47−$1.dump /home/tmp/poly47−$1.dump~

time polynum−restart 47 $1 $2 $3 /home/tmp/poly47−$1

slaves−restart $1

done

slaves #!/bin/sh

for m in 2147483648 2147483647 2147483645; do

time polyslave /home/tmp/poly47−$1 $m

done

slaves-restart #!/bin/sh

for m in 2147483648 2147483647 2147483645; do

cp /home/tmp/poly47−$1−$m.dump /home/tmp/poly47−$1−$m.dump~

time polyslave−restart /home/tmp/poly47−$1 $m

done

And here is the Mathematica script used to convert modular numbers to multiprecise integers:

(* for Chinese Remainders, say for example

chinese[{13,17,19}]

x=cdecode[{1,2,3}]

and x (= 4031) will satisfy Mod[x,13]=1, Mod[x,17]=2, Mod[x,19]=3 *)

chinese[l_]:=Block[{},chinmod=Apply[Times,l];

chinlist=Table[(chinmod/l[[k]])PowerMod[chinmod/l[[k]],−1,l[[k]]],

{k,Length[l]}]]

cdecode[l_]:=Mod[chinlist.l,chinmod]

m=2^31

chinese[{m,m−1,m−3}]

fn[a_,b_]:="poly47−"<>a<>"−"<>ToString[m−b]<>".m"

squash[a_,w_]:=Block[{},Get[fn[a,0]];Get[fn[a,1]];Get[fn[a,3]];

Do[q[h,w]= cdecode[{p[h,w,m],p[h,w,m−1],p[h,w,m−3]}],{h,w,48−w}];

Save["poly47−"<>a<>".m",q];

Clear[q]]

12 INDEX POLYSLAVE-RESTART §31

31*. Index.

The following sections were changed by the change file: 4, 28, 29, 31.

a: 18.
add : 11, 12, 17.
advance b : 12.
argc : 1, 4*.
argv : 1, 4*.
b: 12.
base name : 4*, 5, 8, 15, 26, 29*.
buf : 7, 10, 12, 15.
buf ptr : 7, 12, 15.
buf size : 7, 10, 13.
bytes in : 7, 8, 9, 10.
calloc : 15.
checkbuf : 7, 9.
checksum : 7, 8, 9, 10.
ck file : 7, 9, 15.
clear : 11, 12, 17.
close it : 9, 10, 25, 26.
copy : 11, 12, 17.
count : 11, 15, 16, 19, 20, 21, 22, 24, 25, 27, 29*.
counter: 2, 15, 16, 27, 29*.
cur src : 12, 13, 14, 15, 17, 20, 21.
cur trg : 12, 13, 14, 15, 17, 19, 20, 21.
dec src : 11, 12.
dec trg : 11, 12.
dfilename : 28*, 29*.
done : 17, 22.
dump data : 27, 28*, 29*.
dump file : 28*, 29*.
end of buffer : 10, 12, 13.
exit : 1, 3, 4*, 26.
fclose : 9.
fflush : 9, 24.
file extension : 7, 8, 10.
filelength threshold : 7, 10.
filename : 4*, 5, 8, 9, 15, 26, 27.
foo : 7.
fopen : 4*, 8, 15, 26, 29*.
fprintf : 3, 4*, 8, 24.
fread : 9, 10, 29*.
ftell : 27.
fwrite : 27.
get inst : 12, 14, 17.
in : 7, 10, 12, 15.
in file : 7, 8, 9, 10.
inc src : 11, 12.
inc trg : 11, 12.
k: 6, 10.
last row : 15, 16, 22.
longjmp : 1, 9.
m: 6.

main : 1.
math file : 4*, 5, 9, 24.
maxm : 2, 4*.
mess : 3.
modulus : 4*, 5, 6.
n: 16.
o: 12.
op : 12, 14, 17.
opcode: 11, 12, 14.
open it : 8, 10, 15.
out file : 26, 27, 28*.
p: 12, 18.
panic : 3, 4*, 8, 9, 10, 12, 15, 17, 23, 26, 27, 29*.
prev row : 15, 16, 23, 27, 29*.
printf : 9, 12, 24, 25, 26, 27.
read it : 10, 12, 13, 15, 23.
restart : 12, 13.
restart point : 1, 9.
s: 10.
scount : 15, 16, 22, 24, 27, 29*.
setjmp : 1.
slave size : 15, 16, 17, 27, 29*.
sprintf : 4*, 8, 15, 26, 29*.
sscanf : 4*.
stderr : 3, 4*, 8.
stdout : 9, 24.
sym : 12, 14.
sync : 10, 11, 12, 15, 16, 17, 22, 26.
t: 10.
targ bit : 11.
verbose : 12, 14.
w: 16.

POLYSLAVE-RESTART NAMES OF THE SECTIONS 13

〈Add p counters 21 〉 Used in section 17.

〈Change the source or target address and goto restart 13 〉 Used in section 12.

〈Check that p has the correct value 23 〉 Used in section 22.

〈Clear p counters 19 〉 Used in section 17.

〈Copy p counters 20 〉 Used in section 17.

〈Dump all information needed to restart 27 〉 Used in section 26.

〈Finish a row; goto done if it was the last 22 〉 Used in section 17.

〈Global variables 5, 7, 14, 16, 28* 〉 Used in section 1.

〈Go into special shutdown mode 26 〉 Used in section 23.

〈 Initialize 15, 29* 〉 Used in section 1.

〈 Interpret the instructions in the input 17 〉 Used in section 1.

〈Local variables 6, 18 〉 Used in section 1.

〈Output the relevant counters for completed polyominoes 24 〉 Used in section 22.

〈Print statistics 25 〉 Used in section 1.

〈Scan the command line 4* 〉 Used in section 1.

〈Subroutines 3, 8, 9, 10, 12 〉 Used in section 1.

〈Type definitions 2, 11 〉 Used in section 1.

POLYSLAVE-RESTART

Section Page
Introduction . 1 1
Input . 7 3
Servitude . 17 7
Checkpointing . 26 9
Index . 31 12

	Introduction
	Input
	Servitude
	Checkpointing
	Index
	Names of the sections
	Add p counters
	Change the source or target address and goto restart
	Check that p has the correct value
	Clear p counters
	Copy p counters
	Dump all information needed to restart
	Finish a row; goto done if it was the last
	Global variables
	Go into special shutdown mode
	Initialize
	Interpret the instructions in the input
	Local variables
	Output the relevant counters for completed polyominoes
	Print statistics
	Scan the command line
	Subroutines
	Type definitions

