
§1 POLYNUM-RESTART INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. The purpose of this program is to enumerate fixed polyominoes of up to 55 cells
(although I won’t really be able to get that far until Moore’s law carries on for a few more years). The
method is essentially that of Iwan Jensen [arXiv:cond-mat/0007239, to appear in Journal of Statistical
Physics, spring 2001], who discovered that the important techniques of Andrew Conway [Journal of Physics
A28 (1995), 335–349] can be vastly improved in the special case of polyomino enumeration.
The basic idea is quite simple: We will count the number of fixed polyominoes that span a rectangle that

is h cells high and w cells wide, where h and w are as small as possible; then we will add the totals for all
relevant h and w. We can assume that h ≥ w. For each h and w that we need, we enumerate the spanning
polyominoes by considering one cell at a time of an h×w array, working from left to right and top to bottom,
deciding whether or not that cell is occupied, and combining results for all boundary configurations that are
equivalent as far as future decisions are concerned. For example, we might have a polyomino that starts out
like this:

(This partial polyomino obviously has more than 54 cells already, but large examples will help clarify the
concepts that are needed in the program below.)
Most of the details of the upper part of this pattern have no effect on whether the yet-undetermined

cells will form a suitable polyomino or not. All we really need to know in order to answer that question is
whether the bottom cells of each column-so-far are occupied or unoccupied, and which of the occupied ones
are already connected to each other. We also need to know whether the left column and right column are
still blank.
In this case the 26 columns have occupancy pattern 01001001001010110011010110 at the bottom, and

the occupied cells belong to six connected components, namely

01000000000000000000010000

00001000001000110000000000

00000001000000000000000000

00000000000010000000000000

00000000000000000011000000

00000000000000000000000110

Fortunately the fact that polyominoes lie in a plane forces the components to be nested within each other; we
can’t have “crossings” like 1000100 with 0010001. Therefore we can encode the component and occupancy
information conveniently as

0(00(00100−010−)00()0)0()0

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION POLYNUM-RESTART §1

using a five-character alphabet:

0 means the cell is unoccupied;
1 means the cell is a single-cell component;
(means the cell is the leftmost of a multi-cell component;
) means the cell is the rightmost of a multi-cell component;
− means the cell is in the midst of a multi-cell component.

Furthermore we can treat the cases where the entire leftmost column is nonblank by considering that the left
edge of the array belongs to the leftmost cell component; and the rightmost column can be treated similarly.
With these conventions, we encode the boundary condition at the lower fringe of the partially filled array
above by the 26-character string

0(00(00100−010−
∧
)00()0)0(−0 , (∗)

using ‘
∧
’ to show where the last partial row ends.

A string like (∗) represents a so-called configuration. If no ‘
∧
’ appears, the partial row is assumed to be a

complete row. The number of rows above a given occupancy pattern is implicitly part of the configuration
but not explicitly shown in the notation, because this program never has to deal simultaneously with
configurations that have different numbers of rows above the current partial row.

2. A bit of theory may help the reader internalize these rules: It turns out that the set of all connectiv-
ity/occupancy configuration codes at the end of a row has the interesting unambiguous context-free grammar

S → L 0J0R | Z−I−Z | Z−Z
Z → ϵ | 0Z
L → ϵ | Z) | Z−I)
R → ϵ | (Z | (I−Z
I0 → ϵ | 0J0
J0 → I0 | A 0J0

I → ϵ | −I | 0J
J → I | A 0J

A → 1 | (I)

[Translation: I is any sequence of 0’s and −’s and A’s with each A preceded and followed by 0; I0 is similar,
but with no − at top level.] The number sn of strings of length n in S has the generating function

∑
snz

n =
1− 4z2 − 4z3 + z4 − (1 + z)(1− z2)

√
1 + z

√
1− 3z

2z3(1− z)
= 2z + 6z2 + 16z3 + · · · ;

hence sn is asymptotically proportional to 3n/n3/2.

§3 POLYNUM-RESTART INTRODUCTION 3

3. Any polyomino with the configuration (∗) in the midst of row 10 must have occupied at least 28+ 18+
1 + 1 + 2 + 4 = 54 cells so far, and 16 more will be needed to connect it up and make it touch the left
edge of the array. Moreover, the array has only 10 rows so far, but it has 26 columns, and we will only be
interested in arrays for which h ≥ w. Therefore at least 15 additional cells must be occupied if we are going
to complete a polyomino in an h× 26 array.
In other words, we would need to consider the boundary configuration (∗) only if we were enumerating

polyominoes of at least 54 + 16 + 15 = 85 cells. Such considerations greatly limit the number of configu-
rations that can arise; Jensen’s experiments show that the total number of cases we must deal with grows
approximately as cn where c is slightly larger than 1.4. This is exponentially large, but it is considerably
smaller than the 3n/2 configurations that arise in Conway’s original method; and it’s vastly smaller than the
total number of polyominoes, which turns out to be approximately 4.06n times 0.3/n.

4. This program doesn’t actually do the whole job of enumeration; it only outputs a set of instructions
that tell how to do it. Another program reads those instructions and completes the computation.

#include <stdio.h>

⟨Type definitions 12 ⟩
⟨Global variables 7 ⟩
⟨ Subroutines 5 ⟩
main (int argc , char ∗argv [])
{
⟨Local variables 67 ⟩;
⟨ Scan the command line 6 ⟩;
⟨ Initialize 15 ⟩;
⟨Output instructions for the postprocessor 78 ⟩;
⟨Print statistics about this run 72 ⟩;
⟨Empty the buffer and close the output file 16 ⟩;
exit (0);

}

5. ⟨ Subroutines 5 ⟩ ≡
void panic(char ∗mess)
{
fprintf (stderr , "%s!\n",mess);
exit (−1);

}
See also sections 9, 10, 11, 13, 14, 17, 30, 31, 32, 35, 55, 56, 59, 63, 64, 69, 73, 75, and 76.

This code is used in section 4.

4 INTRODUCTION POLYNUM-RESTART §6

6. The user specifies the maximum size of polyominoes to be counted, n, and the desired width, w, on
the command line. All h × w rectangles spanned by polyominoes of n cells or less will be counted, for
w ≤ h ≤ n+ 1− w. (No solutions are possible for h > n+ 1− w.)

The present version of this program restricts w to be at most 23, for simplicity. But the packing and
unpacking routines below could be adapted via CWEB change files in order to deal with values of w as large
as 27, when we’re pushing the envelope.
The command line should also specify the amount of memory allocated for configurations in this program

and for individual counters in the output. Statistics will be printed for guidance in the choice of those
parameters.
The base name of the output file should be given as the final command-line argument. This name will

actually be extended by .0, .1, . . . , as explained below, because there might be an enormous amount of
output.

#define wmax 23 /∗ for quinary/octal packing into two tetrabytes ∗/
#define nmax (wmax + wmax + 126)
#define bad (k, v) sscanf (argv [k], "%d",&v) ̸= 1

⟨ Scan the command line 6 ⟩ ≡
if (argc ̸= 6 ∨ bad (1, n) ∨ bad (2, w) ∨ bad (3, conf size) ∨ bad (4, slave size)) {
fprintf (stderr , "Usage:␣%s␣n␣w␣confsize␣slavesize␣outfilename\n", argv [0]);
exit (−2);

}
if (w > wmax) panic("Sorry,␣that␣w␣is␣too␣big␣for␣this␣implementation");
if (w < 2) panic("No,␣w␣must␣be␣at␣least␣2");
if (n < w + w − 1) panic("There␣are␣no␣solutions␣for␣such␣a␣small␣n");
if (n > w + w + 126) panic("Eh?␣That␣n␣is␣incredible");
base name = argv [5];

This code is used in section 4.

7. ⟨Global variables 7 ⟩ ≡
int n; /∗ we will count polyominoes of n or fewer cells ∗/
int w; /∗ provided that they span a rectangle of width w and height ≥ w ∗/
int conf size ; /∗ the number of config structures in our memory ∗/
int slave size ; /∗ the number of counter positions in the slave program memory ∗/

See also sections 8, 18, 27, 34, 39, 57, 65, 68, 71, 85, 98, 108*, and 110.

This code is used in section 4.

§8 POLYNUM-RESTART OUTPUT 5

8. Output. Let’s get the basics of output out of the way first, so that we know where we’re heading.
The postprocessing program POLYSLAVE will interpret instructions according to a compact binary format,
with either one or four bytes per instruction.
Several gigabytes might well be generated, and my Linux system is not real happy with files of length

greater than 231 − 1 = 2147483647. Therefore this program breaks the output up into a sequence of files
called foo.0, foo.1, . . . , each at most one large gigabyte in size. (That’s one GGbyte = 230 bytes.)

Some unfortunate hardware failures led me to add a checksum feature.

#define filelength threshold (1 ≪ 30) /∗ maximum file size in bytes ∗/
#define buf size (1 ≪ 16) /∗ buffer size, should be a divisor of filelength threshold ∗/
⟨Global variables 7 ⟩ +≡
FILE ∗out file ; /∗ the output file ∗/
union {
unsigned char buf [buf size + 4]; /∗ place for binary output ∗/
int foo ; /∗ force out .buf to be aligned somewhat sensibly ∗/

} out ;
unsigned char ∗buf ptr ; /∗ our current place in the buffer ∗/
int bytes out ; /∗ the number of bytes so far in the current output file ∗/
unsigned int checksum ; /∗ a way to help identify bad I/O ∗/
FILE ∗ck file ; /∗ the checksum file ∗/
int file extension ; /∗ the number of GGbytes output ∗/
char ∗base name ,filename [100];

9. ⟨ Subroutines 5 ⟩ +≡
void open it ()
{
sprintf (filename , "%.90s.%d", base name ,file extension);
out file = fopen (filename , "wb");
if (¬out file) {

fprintf (stderr , "I␣can’t␣open␣file␣%s",filename);
panic("␣for␣output");

}
bytes out = checksum = 0;

}

10. ⟨ Subroutines 5 ⟩ +≡
void close it ()
{
if (fwrite (&checksum , sizeof (unsigned int), 1, ck file) ̸= 1)
panic("I␣couldn’t␣write␣the␣check␣sum");

if (fclose (out file) ̸= 0) panic("I␣couldn’t␣close␣the␣output␣file");
printf ("[%d␣bytes␣written␣on␣file␣%s,␣checksum␣%u.]\n", bytes out ,filename , checksum);

}

6 OUTPUT POLYNUM-RESTART §11

11. ⟨ Subroutines 5 ⟩ +≡
void write it (int bytes)
{
register int k;
register unsigned int s;

if (bytes out ≥ filelength threshold) {
if (bytes out ̸= filelength threshold) panic("Improper␣buffer␣size");
close it ();
file extension++;
open it ();

}
if (fwrite (&out .buf , sizeof (unsigned char), bytes , out file) ̸= bytes) panic("Bad␣write");
bytes out += bytes ;
for (k = s = 0; k < bytes ; k++) s = (s ≪ 1) + out .buf [k];
checksum += s;

}

12. A four-byte instruction has the binary form (0xaaaaaa)2, (bbbbbbbb)2, (cccccccc)2, (dddddddd)2, where
(aaaaaabbbbbbbbccccccccdddddddd)2 is a 30-bit address specified in big-endian fashion. If x = 0 it means,
“This is the new source address s.” If x = 1 it means, “This is the new target address t.”
A one-byte instruction has the binary form (1ooopppp)2, with a 3-bit opcode (ooo)2 and a 4-bit parameter

(pppp)2. If the parameter is zero, the following byte is regarded as an 8-bit parameter (pppppppp)2, and it
should not be zero. (In that case the “one-byte instruction” actually occupies two bytes.)
In the instruction definitions below, p stands for the parameter, s stands for the current source address,

and t stands for the current target address. The slave processor operates on a large array called count .
Opcode 0 (sync) means, “We have just finished row p.” A report is given to the user.
Opcode 1 (clear) means, “Set count [t+ j] = 0 for 0 ≤ j < p.”
Opcode 2 (copy) means, “Set count [t+ j] = count [s+ j] for 0 ≤ j < p.”
Opcode 3 (add) means, “Set count [t+ j] += count [s+ j] for 0 ≤ j < p.”
Opcode 4 (inc src) means, “Set s += p.”
Opcode 5 (dec src) means, “Set s −= p.”
Opcode 6 (inc trg) means, “Set t += p.”
Opcode 7 (dec trg) means, “Set t −= p.”

#define targ bit #40000000 /∗ specifies t in a four-byte instruction ∗/
⟨Type definitions 12 ⟩ ≡

typedef enum {
sync , clear , copy , add , inc src , dec src , inc trg , dec trg

} opcode;

See also sections 26, 28, 29, 33, 54, 60, and 61.

This code is used in section 4.

§13 POLYNUM-RESTART OUTPUT 7

13. #define end of buffer &out .buf [buf size]

⟨ Subroutines 5 ⟩ +≡
void put inst (unsigned char o,unsigned char p)
{
register unsigned char ∗b = buf ptr ;

∗b++ = #80+ (o ≪ 4) + (p < 16 ? p : 0);
if (p ≥ 16) ∗b++ = p;
if (b ≥ end of buffer) {
write it (buf size);
out .buf [0] = out .buf [buf size];
b −= buf size ;

}
buf ptr = b;

}

14. ⟨ Subroutines 5 ⟩ +≡
void put four (register unsigned int x)
{
register unsigned char ∗b = buf ptr ;

∗b = x ≫ 24;
∗(b+ 1) = (x ≫ 16) & #ff;
∗(b+ 2) = (x ≫ 8) & #ff;
∗(b+ 3) = x& #ff;
b += 4;
if (b ≥ end of buffer) {
write it (buf size);
out .buf [0] = out .buf [buf size];
out .buf [1] = out .buf [buf size + 1];
out .buf [2] = out .buf [buf size + 2];
b −= buf size ;

}
buf ptr = b;

}

8 OUTPUT POLYNUM-RESTART §15

15. The first six bytes of the instruction file are, however, special. Byte 0 is the number n of cells in the
largest polyominoes being enumerated. When a sync is interpreted, POLYSLAVE outputs the current values
of count [j] for 1 ≤ j ≤ n.
Byte 1 is the number of the final row. If this number is r, POLYSLAVE will terminate after interpreting

the instruction sync r.
Bytes 2–5 specify the (big-endian) number of elements in the count array.
Initially s = t = 0, count [0] = 1, and count [j] is assumed to be zero for 1 ≤ j ≤ n.

⟨ Initialize 15 ⟩ ≡
sprintf (filename , "%.90s.ck", base name);
ck file = fopen (filename , "wb");
if (¬ck file) panic("I␣can’t␣open␣the␣checksum␣file");
open it ();
out .buf [0] = n;
out .buf [1] = n+ 2− w;
buf ptr = &out .buf [2];
put four (slave size);

See also sections 58, 62, 66, and 77*.

This code is used in section 4.

16. Here’s what we’ll do when it’s all over.

⟨Empty the buffer and close the output file 16 ⟩ ≡
if (buf ptr ̸= &out .buf [0]) write it (buf ptr −&out .buf [0]);
close it ();

This code is used in sections 4 and 106*.

17. Most of the output is generated by the basic inst routine.

⟨ Subroutines 5 ⟩ +≡
void basic inst (int op , int src addr , int trg addr ,unsigned char count)
{
register int del ;

if (verbose > 1) {
if (op ≡ clear) printf ("{clear␣%d␣−>%d}\n", count , trg addr);
else printf ("{%s␣%d␣%d−>%d}\n", sym [op], count , src addr , trg addr);

}
del = src addr − cur src ;
if (del > 0 ∧ del < 256) put inst (inc src , del);
else if (del < 0 ∧ del > −256) put inst (dec src ,−del);
else if (del) put four (src addr);
cur src = src addr ;
del = trg addr − cur trg ;
if (del > 0 ∧ del < 256) put inst (inc trg , del);
else if (del < 0 ∧ del > −256) put inst (dec trg ,−del);
else if (del) put four (trg addr + targ bit);
cur trg = trg addr ;
put inst (op , count);

}

18. ⟨Global variables 7 ⟩ +≡
char ∗sym [4] = {"sync", "clear", "copy", "add"};
int cur src , cur trg ; /∗ current source and target addresses in the slave ∗/
int verbose = 0; /∗ set nonzero when debugging ∗/

§19 POLYNUM-RESTART CONNECTIVITY 9

19. Connectivity. The hardest task that confronts us is to figure out how to determine the cutoff
threshold: Given a configuration like 0(00(00100−010−

∧
)00()0)0(−0, what is the minimum number of

additional cells that are needed to connect it up and to make it stretch out to at least a given number
of further rows? We claimed above, without proof, that this particular configuration needs at least 16 more
cells before it will be connected and touch the left boundary. Now we want to prove that claim, and solve
the general problem as well.
Some cases of this problem are easy. For example, let’s consider first the case when we are at the

beginning or end of a complete row. Then it is clear that a configuration like 00−)0(0−−)00(−−0 needs at
least 3 + 4 more cells to become occupied. [Well, if this isn’t clear, please stop now and think about it until
it is. Remember that it stands for a pattern with three connected components of occupied cells; the left
component is connected to the left edge, the right component is connected to the right edge, and the middle
component is standing alone.]
Suppose we have a pattern like 0g0α10

g1α2 . . . 0
gk−1αk0

gk , where each αj is a separate component begin-
ning with (and ending with). For example, a typical α might be () or (−) or (−00−−00−0−0), etc. Again
the problem we face is easily solved: We need to occupy g0 + 1 cells in order to connect α1 to the left edge,
gj + 2 cells to connect αj to αj+1 for 1 ≤ j < k, and gk + 1 cells to connect αk to the right edge. The same
formula holds if any αj is simply 1, denoting a singleton component, except that we can subtract 1 for every
such αj . For example, the cost of connecting up 0100(0−)00010(0)0 is 2 + 4 + 5 + 3 + 2− 2.

If α1 is already connected to the left edge, we save g0 + 1, but we cannot take the bonus if α1 is 1; a
similar consideration applies at the right.

20. The situation gets more interesting when components are nested. Suppose, for example, that α1, α2,
. . . , αk−1 are distinct, but αk is part of the same component as α1. Then we still must pay g0+1 to connect
α1 at the left and gk + 1 to connect αk ≡ α1 at the right; but in this new case we are allowed to keep αj

disconnected from αj+1 for any single choice of j we like, in the range 1 ≤ j < k. That will save gj +2 from
the formula stated above, except that it will cost one or two bonus points if αj and/or αj+1 had length 1.
For example, to connect the configuration 0(00010(0)00−0)00, which has the form 01α10

3α20
1α30

2α40
2

with α1 ≡ α4 and potential bonuses at α1 and α2, we have three options. Disconnecting α1 from α2 costs
2 + 0 + 3 + 4 + 3− 0; disconnecting α2 from α3 costs 2 + 5 + 0 + 4 + 3− 1; disconnecting α3 from α4 costs
2 + 5 + 3 + 0 + 3 − 2. The third alternative is best, even though it doesn’t disconnect the largest gap 03,
because it retains the 2 bonus points.

21. Now look at the configuration −00(010−010)00()00()00−, which is connected to left and right edges
and which also contains the subcomponent (010−010). The best way to handle the subcomponent is to
occupy 5 cells below it, spanning the middle region 10−01. But then we need 4 + 4 + 4 additional cells to
connect up the whole diagram. If instead we use 6 cells within the subcomponent, spanning (01 at the left
and 10) at the right, we need only 3 + 3 + 4 additional cells to finish. Thus the environment can affect the
optimal behavior within a subcomponent.
These examples give us one way to think about the minimum connection cost for the general pattern

0g0α10
g1α2 . . . 0

gk−1αk0
gk , when αi is already connected to αj for certain pairs (i, j), namely to start by

charging (g0 + 1) + (g1 + 2) + · · · + (gk−1 + 2) + (gk + 1) and then to deduct some of the terms for gaps
gj that are legitimately left unconnected: The term (g0 + 1) can be deducted if α1 is connected to the left
edge, and (gk + 1) can be deducted if αk is connected to the right edge. If αi ≡ αj for some j > i and if the
components αi+1, . . . , αj are mutually disconnected, then we are allowed to deduct any one of the terms
(gi + 2), . . . , (gj−1 + 2), after which we can treat αi . . . αj as a single component with respect to further
deductions. Finally after choosing a subset of terms to deduct, we get a bonus for each αj of length 1 such
that neither gj−1 nor gj were left disconnected. (Length 1 means that the code for αj is a single character,
either 1 or (or) or −.)

10 CONNECTIVITY POLYNUM-RESTART §22

22. A recursive strategy can be used to solve the minimum connectivity problem in linear time, but we
must design it carefully because of the examples considered earlier. The key idea will be to associate four
costs cij with each subcomponent, where 0 ≤ i, j ≤ 1. Cost cij is the minimum number of future occupied
cells needed to connect everything up within the component, with the further proviso that there is a cell
below the leftmost cell if i = 1, and a cell below the rightmost cell if j = 1. The 2× 2 matrix (cij) will then
represent all we need to know about connecting this component at a higher level.

For example, the cost matrix for a single-character component is
(
0 1
1 1

)
, and the cost matrix for a multi-

character component with no internal subcomponents is
(
0 1
1 2

)
. (The 0 in the upper left corner signifies that

we don’t need any cells to connect it up, since it’s already connected. But we may have to occupy one or
two cells as “hooks” at the left and/or the right if the environment wants them.)

The theory that underlies the algorithm below is best understood in terms of min-plus matrix multiplication
C = AB, where cij = mink(aik + bkj). (I should probably use a special symbol to denote this multiplication,
like A ∧

+ B instead of AB; see, for example, exercise 1.3.1′–32 in The Art of Computer Programming,
Fascicle 1. But that would clutter up a huge number of the formulas below. And I have no use for ordinary
matrix multiplication in the present program. Therefore min-plus multiplication will be assumed to need no
special marking in the following discussion.)

Let Xg be the matrix
(∞
∞

∞
g

)
. Then if α1, . . . , αk are distinct subcomponents with cost matrices A1,

. . . , Ak, respectively, the cost of connecting up 0g0α10
g1α2 . . . 0

gk−1αk0
gk and touching the left and right

edges is the upper left corner entry of

OXg0A1Xg1 . . . Xgk−1
AkXgkO, where O =

(
0
0

0
0

)
,

because matrix Xg essentially means “occupy g cells below and require the cells to the left and right of these
cells to be occupied as well.” Notice that this rule yields (g0+1)+(g1+2)+ · · ·+(gk−1+2)+(gk+1) in the
special case when each matrix Aj is

(
0 1
1 2

)
, and there’s a bonus of 1 whenever we replace Aj by

(
0 1
1 1

)
. Notice

also that XgXh = Xg+h; thus we can essentially think of each 0 in the configuration as a multiplication
by X1.

23. If α and β are subcomponents that are already connected to each other, having cost matrices A and B
respectively, the cost matrix for α 0gβ as a single component is ANB, where N =

(
0
∞

∞
∞
)
is the matrix

meaning “don’t occupy anything below the 0g and don’t insist that the cells to the left and right of that gap
must be occupied.” For example, this rule gives

(
0 1
1 1

)
N
(
0 1
1 1

)
=

(
0 1
1 2

)
as it should.

And in general, suppose α0, α1, . . . , αk are subcomponents that are distinct except that α0 is already
connected to αk. Then the cost matrix for α00

g1α1 . . . αk−10
gkαk as a single subcomponent can be expressed

in terms of the individual cost matrices A0, A1, . . . , Ak by using the formula

min
1≤j≤k

(
A0Xg1 . . . Xgj−1Aj−1NAjXgj+1 . . . XgkAk

)
, (∗∗)

because we are allowed to leave any one of the gaps 0gj disconnected. Rule (∗∗) is the basic principle that
makes a recursive algorithm work.

24. Our discussion so far has assumed for simplicity that we’re at the end of a row. But we also need to
consider the case that a gap 0g might be 0a

∧
0b in the vicinity of the place where a partial row is being filled.

Fortunately the same theory applies with only a slight variation: Instead of Xg = Xa+b, we use Xa+b+1 if

a > 0, or we use Yb =
(∞
∞

b
∞
)
if a = 0; either a or b or both might be zero. Matrix Yb means, “Occupy the

cells below 0b and require the next cell on the right (but not necessarily the left) to be occupied as well.”
The extra 1 in Xa+b+1 is needed when a > 0 because one of the newly occupied cells must pass through the
current row r in order to reach row r + 1.

§25 POLYNUM-RESTART CONNECTIVITY 11

25. After calculating the minimum cost of connection, we might also need to add the cost of extension to
span a w × w square. Thus, if row r is partially filled and row r − 1 is completely filled, and if r < w, we
must add w − r − 1 cells if the minimum connection can be achieved with at least one cell in row r + 1;
otherwise we must add w − r cells.
Consider, for example, the configuration −0

∧
010)00. The best way to connect this up is to occupy the five

cells in row r that occur below the 10)00. But then we need w − r more for extension. On the other hand,
in a configuration like −0

∧
010000)00, there are two essentially different ways to do the connection with eight

more cells, and we must choose the one that uses cells of row r + 1. (A configuration like −0
∧
01000)00 can

be connected in seven cells without using row r + 1, or in eight with the use of that row, so it’s a tossup.)
The configurations −01

∧
00− and −01

∧
00)0(also present interesting tradeoffs that our algorithm must handle

properly.
The solution adopted here is to add ϵ to the cell costs after the ‘

∧
’, so that newly occupied cells in row r

are slightly more expensive than cells in row r+1. This makes the latter cells more attractive, in cases when
they need to be.

26. OK, we’ve got a reasonably clean theory; now it’s time to put it into practice. The first step is to
define the encoding of our alphabet 0, 1, (,), and −, to which we’ll add an “edge of line” character. The
following encoding is designed to make it easy to test whether a character is either − or):

#define mid or rt (x) (((x) & 2) ≡ 2)

⟨Type definitions 12 ⟩ +≡
typedef enum {
zero , one , rt ,mid , lft , eol

} code; /∗ 0, 1,), −, (, or edge delimiter in a configuration string ∗/

27. ⟨Global variables 7 ⟩ +≡
char decode [5] = {’0’, ’1’, ’)’, ’−’, ’(’};
code reflect [5] = {zero , one , lft ,mid , rt};

28. Then in the cost matrices and in our answer describing the minimum connection cost of a given
configuration, we will represent numbers a+ bϵ as short integers, knowing that a and b will never exceed 27.

#define unity (1 ≪ 8)
#define epsilon 1
#define uunity (unity + epsilon)
#define int part (x) ((x) ≫ 8)
#define eps part (x) ((x) & #ff)

⟨Type definitions 12 ⟩ +≡
typedef unsigned short cost; /∗ a+ bϵ represented as (a ≪ 8) + b ∗/
typedef struct {
cost c[2][2];

} cost matrix;

29. We will need to distinguish between the cost matrices Xg =
(∞
∞

∞
g

)
and Yg =

(∞
∞

g
∞
)
, as well as a

third case that arises when a configuration is already connected to the left edge.

⟨Type definitions 12 ⟩ +≡
typedef enum {
ytyp , xtyp , otyp

} gap type;

12 CONNECTIVITY POLYNUM-RESTART §30

30. A few easy subroutines do the basic operations on cost matrices that we will need.

⟨ Subroutines 5 ⟩ +≡
cost matrix a n b(cost matrix a, cost matrix b) /∗ computes ANB ∗/
{
cost matrix c;

c.c[0][0] = a.c[0][0] + b.c[0][0];
c.c[0][1] = a.c[0][0] + b.c[0][1];
c.c[1][0] = a.c[1][0] + b.c[0][0];
c.c[1][1] = a.c[1][0] + b.c[0][1];
return c;

}

31. ⟨ Subroutines 5 ⟩ +≡
cost matrix a x b(cost matrix a, cost matrix b,gap type typ , cost g)

/∗ computes AXgB, AYgB, or B, depending on typ ∗/
{
cost matrix c;

if (typ ≡ otyp) return b;
c.c[0][0] = a.c[0][typ] + g + b.c[1][0];
c.c[0][1] = a.c[0][typ] + g + b.c[1][1];
c.c[1][0] = a.c[1][typ] + g + b.c[1][0];
c.c[1][1] = a.c[1][typ] + g + b.c[1][1];
return c;

}

32. ⟨ Subroutines 5 ⟩ +≡
void min mat (cost matrix ∗a, cost matrix b) /∗ sets A = min(A,B) ∗/
{
if ((∗a).c[0][0] > b.c[0][0]) (∗a).c[0][0] = b.c[0][0];
if ((∗a).c[0][1] > b.c[0][1]) (∗a).c[0][1] = b.c[0][1];
if ((∗a).c[1][0] > b.c[1][0]) (∗a).c[1][0] = b.c[1][0];
if ((∗a).c[1][1] > b.c[1][1]) (∗a).c[1][1] = b.c[1][1];

}

33. The algorithm we use is inherently recursive, but we implement it iteratively using a stack because
it involves only simple algebraic operations. Each stack entry typically represents a string of 0’s and a
subcomponent that has not been completely scanned as yet; the string of 0’s is represented by a cost matrix
Xg or Yg, and the incomplete subcomponent is represented by a partial evaluation of formula (∗∗).
At stack level 0, however, there is no incomplete subcomponent and only the closed cost field is relevant.

This field corresponds to the cost matrix of all components scanned so far.

⟨Type definitions 12 ⟩ +≡
typedef struct {
cost gap ; /∗ zeros to cover in the previous gap ∗/
gap type gap typ ; /∗ type of previous gap (xtyp or ytyp or otyp) ∗/
cost matrix closed cost ; /∗ cost matrix with no gaps ∗/
cost matrix open cost ; /∗ cost matrix with optional gap ∗/

} stack entry;

§34 POLYNUM-RESTART CONNECTIVITY 13

34. The given configuration string will appear in c[1] through c[w]; also c[0] and c[w+1] will be set to eol .

⟨Global variables 7 ⟩ +≡
code c[64]; /∗ codes of the current configuration string ∗/
stack entry stk [64]; /∗ partially evaluated costs ∗/

35. This program operates in two phases that are almost identical: Before row end has been sensed, the
cost of a connection cell is unity , but afterwards it is unity + epsilon . In order to streamline the code I’m
using a little trick explained in Example 7 of my paper “Structured programming with goto statements”:
I make two almost identical copies of the code, one for the actions to be taken before k ≡ row end and
one for the actions to be taken subsequently. The first copy jumps to the second as soon as the condition
k ≡ row end is sensed. This avoids all kinds of conditional coding and makes “variables” into “constants,”
although it does have the somewhat disconcerting feature of jumping from one loop into the body of another.
The program could be made faster if I would look at high speed for special cases like subcomponents of

the form (0−−00−), since that subcomponent is equivalent to () with respect to the connectivity measure
we are computing. But I intentionally avoided tricky optimizations in order to keep this program simpler
and easier to verify.
On the other hand, I do reduce 0-less forms like (−−−) to (), and (−

∧
−−) to (

∧
), etc. Such optimizations

aren’t strictly necessary but I found them irresistible, because they arise so frequently.
Variable row end in the following routine points to the character just following the ‘

∧
’.

⟨ Subroutines 5 ⟩ +≡
cost connectivity (register int row end)
{
register int k; /∗ our place in the string ∗/
register int s; /∗ the number of open items on the stack ∗/
int g; /∗ the current gap size ∗/
gap type typ ; /∗ its type ∗/
int open ; /∗ set nonzero if previous token was (or − ∗/
⟨Get ready to compute connectivity 36 ⟩;

scan zeros0 : ⟨ Scan for zeros in Phase 0 37 ⟩;
scan tokens0 : ⟨ Scan a nonzero token cluster in Phase 0 38 ⟩;
scan zeros1 : ⟨ Scan for zeros in Phase 1 48 ⟩;
scan tokens1 : ⟨ Scan a nonzero token cluster in Phase 1 49 ⟩;
⟨Finish the connectivity bound calculation and return the answer 52 ⟩;

}

36. In practice row end will not be zero. But I decided to make the algorithm general enough to work
correctly also in that case, because only one more line of code was needed.

⟨Get ready to compute connectivity 36 ⟩ ≡
s = open = 0;
stk [0].closed cost = zero cost ;
k = 1;
if (mid or rt (c[1])) {
g = 0, typ = xtyp ; /∗ xtyp and ytyp are equivalent at the left edge ∗/
if (row end ≡ 1) goto scan tokens1 ;
else goto scan tokens0 ;

}
This code is used in section 35.

14 CONNECTIVITY POLYNUM-RESTART §37

37. ⟨ Scan for zeros in Phase 0 37 ⟩ ≡
if (k ≡ row end) {
g = 0, typ = ytyp ;
goto scan zeros1x ;

}
if (c[k]) panic("Syntax␣error,␣0␣expected");
typ = xtyp , g = unity , k++;
while (c[k] ≡ 0) {
if (k ≡ row end) {

g += unity + uunity , k++; /∗ correction for straddling rows ∗/
goto scan zeros1x ;

}
g += unity , k++;

}
if (k ≡ row end) {
g += unity ;
goto scan tokens1 ;

}
This code is used in section 35.

38. ⟨ Scan a nonzero token cluster in Phase 0 38 ⟩ ≡
cm = base cost0 ;
k++; switch (c[k − 1]) {

case lft : if (¬mid or rt (c[k])) goto scan open0 ;
⟨Compress −∗) following (into a single token in Phase 0 40 ⟩
if (c[k − 1] ̸= rt) goto scan open0 ;

case one : ⟨Append cm to the current partial component 42 ⟩;
open = 0; goto scan zeros0 ;

case mid : if (¬(mid or rt (c[k]))) goto scan mid0 ;
⟨Compress −∗) following − into a single token in Phase 0 41 ⟩
if (c[k − 1] ̸= rt) goto scan mid0 ;

case rt : if (¬s) {
if (stk [0].closed cost .c[1][1]) panic("Unmatched␣)");
stk [0].closed cost = cm ; /∗ already connected to left edge ∗/

} else {
⟨Append cm to stk [s].open cost 43 ⟩;
⟨Combine the top two items on the stack 44 ⟩;

}
open = 0; goto scan zeros0 ;

case eol : goto scan eol0 ;
default: panic("Illegal␣code"); }
scan open0 : ⟨Finish processing lft 46 ⟩; goto check eol0 ;
scan mid0 : ⟨Finish processing mid 47 ⟩;
check eol0 : open = 1;
if (c[k] ̸= eol) goto scan zeros0 ;
if (k ≡ row end) goto scan eol1 ;

scan eol0 : panic("Row␣end␣missed");

This code is used in section 35.

§39 POLYNUM-RESTART CONNECTIVITY 15

39. ⟨Global variables 7 ⟩ +≡
gap type typ ; /∗ the current type of gap g ∗/
cost matrix cm ; /∗ the current cost matrix ∗/
cost matrix acm ; /∗ another cost matrix ∗/
const cost matrix zero cost = {0, 0, 0, 0}; /∗

(
0 0
0 0

)
∗/

const cost matrix base cost0 = {0, unity , unity , unity}; /∗
(
0 1
1 1

)
∗/

const cost matrix base cost1 = {0, uunity , uunity , uunity}; /∗
(

0
1+ϵ

1+ϵ
1+ϵ

)
∗/

40. ⟨Compress −∗) following (into a single token in Phase 0 40 ⟩ ≡
{
do {

if (k ≡ row end) goto scan tokens1a ;
k++;
if (c[k − 1] ≡ rt) break;

} while (mid or rt (c[k]));
cm .c[1][1] = unity + unity ; /∗ now cm is

(
0 1
1 2

)
∗/

}
This code is used in section 38.

41. ⟨Compress −∗) following − into a single token in Phase 0 41 ⟩ ≡
{
do {

if (k ≡ row end) goto scan tokens1b ;
k++;
if (c[k − 1] ≡ rt) break;

} while (mid or rt (c[k]));
cm .c[1][1] = unity + unity ; /∗ now cm is

(
0 1
1 2

)
∗/

}
This code is used in section 38.

42. ⟨Append cm to the current partial component 42 ⟩ ≡
if (s) ⟨Append cm to stk [s].open cost 43 ⟩;
stk [s].closed cost = a x b(stk [s].closed cost , cm , typ , g);

This code is used in sections 38 and 49.

43. ⟨Append cm to stk [s].open cost 43 ⟩ ≡
{
acm = a n b(stk [s].closed cost , cm);
stk [s].open cost = a x b(stk [s].open cost , cm , typ , g);
min mat (&stk [s].open cost , acm);

}
This code is used in sections 38, 42, 47, and 49.

44. ⟨Combine the top two items on the stack 44 ⟩ ≡
s−−;
if (s) ⟨Append stk [s+ 1].open cost to stk [s].open cost 45 ⟩;
stk [s].closed cost = a x b(stk [s].closed cost , stk [s+ 1].open cost , stk [s+ 1].gap typ , stk [s+ 1].gap);

This code is used in sections 38, 49, and 52.

16 CONNECTIVITY POLYNUM-RESTART §45

45. ⟨Append stk [s+ 1].open cost to stk [s].open cost 45 ⟩ ≡
{
acm = a n b(stk [s].closed cost , stk [s+ 1].open cost);
stk [s].open cost = a x b(stk [s].open cost , stk [s+ 1].open cost , stk [s+ 1].gap typ , stk [s+ 1].gap);
min mat (&stk [s].open cost , acm);

}
This code is used in section 44.

46. ⟨Finish processing lft 46 ⟩ ≡
stk [++s].gap typ = typ ;
stk [s].gap = g;
stk [s].closed cost = stk [s].open cost = cm ;

This code is used in sections 38 and 49.

47. ⟨Finish processing mid 47 ⟩ ≡
if (¬s) {
if (stk [0].closed cost .c[1][1]) panic("Unmatched␣−");
s = 1, stk [1].gap typ = otyp , stk [1].closed cost = stk [1].open cost = cm ;

} else {
⟨Append cm to stk [s].open cost 43 ⟩;
stk [s].closed cost = stk [s].open cost ;

}
This code is used in sections 38 and 49.

48. ⟨ Scan for zeros in Phase 1 48 ⟩ ≡
if (c[k]) panic("Syntax␣error,␣0␣expected");
typ = xtyp , g = uunity , k++;

scan zeros1x : while (c[k] ≡ 0) {
g += uunity , k++;

}
This code is used in section 35.

§49 POLYNUM-RESTART CONNECTIVITY 17

49. ⟨ Scan a nonzero token cluster in Phase 1 49 ⟩ ≡
cm = base cost1 ;
k++; switch (c[k − 1]) {

case lft : if (¬mid or rt (c[k])) goto scan open1 ;
⟨Compress −∗) following (into a single token in Phase 1 50 ⟩
if (c[k − 1] ̸= rt) goto scan open1 ;

case one : ⟨Append cm to the current partial component 42 ⟩;
open = 0; goto scan zeros1 ;

case mid : if (¬(mid or rt (c[k]))) goto scan mid1 ;
⟨Compress −∗) following − into a single token in Phase 1 51 ⟩
if (c[k − 1] ̸= rt) goto scan mid1 ;

case rt : if (¬s) {
if (stk [0].closed cost .c[1][1]) panic("Unmatched␣)");
stk [0].closed cost = cm ; /∗ already connected to left edge ∗/

} else {
⟨Append cm to stk [s].open cost 43 ⟩;
⟨Combine the top two items on the stack 44 ⟩;

}
open = 0; goto scan zeros1 ;

case eol : goto scan eol1 ;
default: panic("Illegal␣code"); }
scan open1 : ⟨Finish processing lft 46 ⟩; goto check eol1 ;
scan mid1 : ⟨Finish processing mid 47 ⟩;
check eol1 : open = 1;
if (c[k] ̸= eol) goto scan zeros1 ;

scan eol1 : /∗ fall through to return the answer ∗/
This code is used in section 35.

50. ⟨Compress −∗) following (into a single token in Phase 1 50 ⟩ ≡
{
scan tokens1a : do {

k++;
if (c[k − 1] ≡ rt) break;

} while (mid or rt (c[k]));
cm .c[0][1] = uunity ;
cm .c[1][1] += uunity ; /∗ now cm is

(
0
1

1+ϵ
2+ϵ

)
or

(
0

1+ϵ
1+ϵ
2+2ϵ

)
∗/

}
This code is used in section 49.

51. ⟨Compress −∗) following − into a single token in Phase 1 51 ⟩ ≡
{
scan tokens1b : do {

k++;
if (c[k − 1] ≡ rt) break;

} while (mid or rt (c[k]));
cm .c[0][1] = uunity ;
cm .c[1][1] += uunity ; /∗ now cm is

(
0
1

1+ϵ
2+ϵ

)
or

(
0

1+ϵ
1+ϵ
2+2ϵ

)
∗/

}
This code is used in section 49.

18 CONNECTIVITY POLYNUM-RESTART §52

52. The cost of reaching the right edge is g if g has the form b+ bϵ, but it is a+ b if g has the exceptional
form a+ 1 + b+ bϵ that arises when filling an unfilled row.

⟨Finish the connectivity bound calculation and return the answer 52 ⟩ ≡
if (open) {
⟨Combine the top two items on the stack 44 ⟩;
if (s) panic("Missing␣)");
return stk [0].closed cost .c[0][0];

} else { /∗ we need to reach the right edge ∗/
if (s) panic("Missing␣)");
if (int part (g) ≡ eps part (g)) return stk [0].closed cost .c[0][typ] + g;
return stk [0].closed cost .c[0][1] + ((int part (g)− 1) ≪ 8);

}
This code is used in section 35.

§53 POLYNUM-RESTART DATA STRUCTURES 19

53. Data structures. If we want to count n-ominoes efficiently for large n, our most precious resource
turns out to be the random-access memory that is available. I think at least 20 bytes of memory are needed
per active configuration, and that limits us to about 50 million active configurations per gigabyte of memory.
Under such circumstances I don’t mind recomputing results several times in order to save space. For example,
many configurations will occur on several different rows, and this program recomputes their connectivity cost
each time they appear.
The main loop of our computation will consist of taking a viable configuration α and looking at its two

successors α0 and α1. The value of row end in α0 and α1 (the position of ‘
∧
’) will be one greater than its

value in α; α0 will leave the new cell empty, but α1 will occupy it.
We gain time when α0 and/or α1 have been seen before; a hash table helps us determine whether or not

they are déjà vu. Newly seen configurations are subjected to the connectivity bound, and accepted into the
computation only if they are found to be viable.
Each configuration α has an associated generating function g(α). For example, the generating function

5z8 + 2z9 would mean that there are 5 ways to reach α with 8 cells occupied and 2 ways to reach it with 9
cells occupied (so far). We will add g(α) to g(α0) if α0 is viable, and zg(α) to g(α1) if α1 is viable. After
that we are able to forget α and g(α), reclaiming precious memory space.
Indeed, we don’t actually have enough space to deal with the generating functions g(α). Therefore this

program compiles and outputs a sequence of instructions that will be interpreted by another program,
POLYSLAVE; that program will subsequently do the actual additions, without needing a hash table or other
space-hungry data.
The algorithm proceeds row by row, starting in row r = 1, and continues until no viable configurations

remain. In each row it makes w complete passes over the existing configurations, with row end running from
0 to w − 1. Every such pass processes and discards all configurations that were generated on the previous
pass, and we are free to process them in any convenient order. Therefore we adopt a “rolling” strategy that
uses memory with near-maximum efficiency: Suppose one pass has produced M configurations in the first
M slots α(1), . . . , α(M) of a memory pool consisting of N = conf size total slots. We start by finding the

successors α
(M)
0 and α

(M)
1 of α(M), putting them into slots N and N − 1. Then slot M is free and we turn

to α(M−1), etc., thereby running out of memory only if N configurations are fully in use. On the following
pass we reverse direction, filling slots from 1 upwards instead of from N downwards.
The same strategy makes it easy to allocate the memory space needed for generating functions in the

POLYSLAVE program. Indeed, this rolling allocation scheme fills memory almost perfectly, even though
each generating function occupies a variable number of bytes. (Sometimes holes do appear, if a generating
function turns out to need more bytes than we thought it would. But the behavior in general is quite
satisfactory.)

54. Eight bytes suffice to encode any configuration c0 . . . cw−1 in a 5-letter alphabet, since 527 < 264 < 528

and we are assuming that w is at most 27. We define cstring to a union type, so that the hash function
can readily access its individual bytes, yet packing and unpacking can be done with radix 5 or 8. (The hash
function will evaluate differently on a big-endian machine versus a little-endian machine, but that doesn’t
matter.)

⟨Type definitions 12 ⟩ +≡
typedef struct {
unsigned int h, l; /∗ high-order and low-order halves ∗/

} octa; /∗ two tetrabytes make one octabyte ∗/
typedef union {
octa o;
unsigned char byte [8];

} cstring; /∗ packed version of a configuration string ∗/

20 DATA STRUCTURES POLYNUM-RESTART §55

55. The pack subroutine produces a cstring from the codes in array c. Since we are assuming provisionally
that w is at most 23, we can use octal notation to put 10 codes in one tetrabyte and quinary notation to
put 13 in the other. But quinary notation could obviously be used in both tetrabytes, or we could use pure
quinary on octabytes, in variants of this program designed for larger values of w.

⟨ Subroutines 5 ⟩ +≡
cstring packit ()
{
register int j, k;
cstring packed ;

k = w − 1, j = c[w];
if (w ≤ 10) packed .o.h = 0;
else {
for (; k > 10; k−−) j = (j ≪ 2) + j + c[k];
packed .o.h = j;
k = 9, j = c[10];

}
for (; k > 0; k−−) j = (j ≪ 3) + c[k];
packed .o.l = j;
return packed ;

}

56. That which can be packed can be unpacked. This routine puts the results into two arrays, sc and c,
because it is used only when unpacking a new source configuration α.

There’s an all-binary way to divide by 5 that is faster than division on some machines (see TAOCP exercise
4.4–9). But the simple ‘/5’ works best on my computer, winning also over floating point division.
Curiously, I also found that ‘x∗5’ is slower than ‘(x << 2)+x’, but ‘y−5∗x’ is faster than ‘y−((x ≪ 2)+x)’.

Some quirk of pipelining probably underlies these phenomena. I am content to leave such mysteries
unexplained for now, because the present speed is acceptable.

⟨ Subroutines 5 ⟩ +≡
void unpackit (cstring s)
{
register int j, k, q;

if (w > 10) {
for (k = 1, j = s.o.l; k < 10; k++) {
sc [k] = c[k] = j & 7;
j ≫= 3;

}
sc [10] = c[10] = j;
for (k = 11, j = s.o.h; k < w; k++) {
q = j/5;
sc [k] = c[k] = j − 5 ∗ q;
j = q;

}
} else
for (k = 1, j = s.o.l; k < w; k++) {
sc [k] = c[k] = j & 7;
j ≫= 3;

}
sc [k] = c[k] = j;

}

§57 POLYNUM-RESTART DATA STRUCTURES 21

57. ⟨Global variables 7 ⟩ +≡
code sc [64]; /∗ codes of the current source configuration ∗/

58. ⟨ Initialize 15 ⟩ +≡
c[0] = sc [0] = c[w + 1] = sc [w + 1] = eol ;

59. ⟨ Subroutines 5 ⟩ +≡
void print config (int row end)
{
register int k;

for (k = 1; k ≤ w; k++) {
if (row end ≡ k) printf ("^");
if (c[k] < eol) printf ("%c", decode [c[k]]);
else printf ("?");

}
}

60. A configuration can be in three states: Normally it is active , with a generating function represented as
a sequence of counters; first, however, it is raw , meaning that the space for counters has been allocated but
not yet cleared to zero. An inactive target node is marked deleted when its memory space has been recycled
and made available for reuse.

⟨Type definitions 12 ⟩ +≡
typedef enum {
active , raw , deleted

} status;

61. Here then are the 20 precious bytes that represent a configuration. The rolling strategy allows us to
get by with only one link field.

⟨Type definitions 12 ⟩ +≡
typedef struct conf struct {
cstring s; /∗ the configuration name ∗/
unsigned int addr ; /∗ where the slave keeps the generating function ∗/
struct conf struct ∗link ; /∗ the next item in a hash chain or hole list ∗/
char lo ; /∗ smallest exponent of z in the current generating function ∗/
char hi ; /∗ largest exponent of z in the current generating function ∗/
char lim ; /∗ largest viable exponent of z, if this is a target ∗/
status state ; /∗ active , raw , or deleted ∗/

} config;

62. ⟨ Initialize 15 ⟩ +≡
conf = (config ∗) calloc(conf size , sizeof (config));
if (¬conf) panic("I␣can’t␣allocate␣the␣config␣table");
conf end = conf + conf size ;

22 DATA STRUCTURES POLYNUM-RESTART §63

63. The main high-level routine, called update , is used to add terms p⃗ lo through hi of the generating
function for configuration p to the generating function for configuration q. The special case q = Λ is used to
update the counters for polyominoes that have been completed.

⟨ Subroutines 5 ⟩ +≡
void update (config ∗p, config ∗q, char hi)
{
if (¬q) basic inst (add , p⃗ addr , p⃗ lo , hi + 1− p⃗ lo);
else if (q⃗ state ≡ raw) {

q⃗ state = active ;
if (q⃗ lo ̸= p⃗ lo ∨ q⃗ hi ̸= hi) basic inst (clear , cur src , q⃗ addr , q⃗ hi + 1− q⃗ lo);
basic inst (copy , p⃗ addr , q⃗ addr + p⃗ lo − q⃗ lo , hi + 1− p⃗ lo);

} else basic inst (add , p⃗ addr , q⃗ addr + p⃗ lo − q⃗ lo , hi + 1− p⃗ lo);
}

64. “Universal hashing” (TAOCP exercise 6.4–72) is used to get a good hash function, because most of
the key bits tend to be zero.

#define hash width 20 /∗ lg of hash table size ∗/
#define hash mask ((1 ≪ hash width)− 1)

⟨ Subroutines 5 ⟩ +≡
int mangle (cstring s)
{
register unsigned int h, l;

for (l = 1, h = hash bits [0][s.byte [0]]; l < 8; l++) h += hash bits [l][s.byte [l]];
return h& hash mask ;

}

65. ⟨Global variables 7 ⟩ +≡
unsigned int hash bits [8][256]; /∗ random bits for universal hashing ∗/
config ∗hash table [hash mask + 1]; /∗ heads of the hash chains ∗/

66. The random number generator used here doesn’t have to be of sensational quality. We can keep
hash bits [j][0] = 0 without loss of universality.

⟨ Initialize 15 ⟩ +≡
row end = 314159265; /∗ borrow a register temporarily (bad style, sorry) ∗/
for (j = 0; j < 8; j++)
for (k = 1; k < 256; k++) {

row end = 69069 ∗ row end + 1;
hash bits [j][k] = row end ≫ (32− hash width);

}

67. ⟨Local variables 67 ⟩ ≡
register int j, k; /∗ all-purpose indices ∗/
register int row end ; /∗ size of the current partial row r ∗/

See also section 99.

This code is used in section 4.

§68 POLYNUM-RESTART DATA STRUCTURES 23

68. On odd-numbered passes, src runs down towards conf , while trg starts at conf end − 1 and proceeds
downward. On even-numbered passes, src runs up towards conf end − 1 and trg starts up from conf . The
variables ssrc and strg have a similar significance but they refer to addresses in the slave memory.

⟨Global variables 7 ⟩ +≡
config ∗conf ; /∗ first item in the pool of configuration nodes ∗/
config ∗conf end ; /∗ last item (plus 1) in the pool of configuration nodes ∗/
config ∗src ; /∗ the current configuration α about to be recycled ∗/
config ∗trg ; /∗ the first unused configuration slot ∗/
int ssrc , strg ; /∗ allocation pointers for slave counts ∗/

69. When a new configuration is created, we allocate space for its generating function in the slave module.
Later on, we might discover that more space is needed because another generating function (with more
terms) must be combined with it. At such times, we copy the data to another slot, leaving a hole in the
configuration array and in the slave’s array of counters. All holes of a given size are linked together, so that
they can hopefully be plugged again soon.
Here is the basic subroutine that allocates space for a configuration with s + 1 terms in its generating

function. The subroutine has two versions, one for passes in which allocation goes upward and the other for
passes in which allocation goes downward. It maintains statistics so that we can judge how fragmented the
memory has become at the most stressful times.

⟨ Subroutines 5 ⟩ +≡
config ∗get slot up(register int s)
{
register config ∗p = slot [s];

if (p) {
slot [s] = p⃗ link ;
holes−−, sholes −= s+ 1;

} else {
p = trg ++;
⟨Allocate p⃗ addr (upward) and check that memory hasn’t overflowed 70 ⟩;

}
p⃗ state = raw ;
return p;

}

70. ⟨Allocate p⃗ addr (upward) and check that memory hasn’t overflowed 70 ⟩ ≡
{
if (src − trg < min space) {

min space = src − trg ;
if (min space < 0) panic("Memory␣overflow");
min holes = holes , space row = r, space col = re ;

}
p⃗ addr = strg ;
strg += s+ 1;
if (ssrc − strg < min sspace) {
min sspace = ssrc − strg ;
if (min sspace < 0) panic("Slave␣memory␣overflow");
min sholes = sholes , slave row = r, slave col = re ;

}
}

This code is used in section 69.

24 DATA STRUCTURES POLYNUM-RESTART §71

71. ⟨Global variables 7 ⟩ +≡
int holes ; /∗ current number of holes in the target area ∗/
int sholes ; /∗ current number of vacated counters in slave target area ∗/
int min space = 1000000000; /∗ how close did src and trg get? ∗/
int min holes ; /∗ and how many holes were present at that time? ∗/
int space row , space col ; /∗ and where were we then? ∗/
int min sspace = 1000000000; /∗ how close did ssrc and strg get? ∗/
int min sholes ; /∗ and how many wasted counters were present then? ∗/
int slave row , slave col ; /∗ and where were we then? ∗/
int moves ; /∗ the number of times a hole was created ∗/
int configs ; /∗ total configurations recorded so far, mod 109 ∗/
int hconfigs ; /∗ billions of configurations so far ∗/
int r; /∗ number of the partially filled row ∗/
int re ; /∗ non-register copy of row end ∗/
config ∗slot [nmax + 1]; /∗ heads of the available-slot chains ∗/

72. ⟨Print statistics about this run 72 ⟩ ≡
printf ("Altogether␣");
if (hconfigs) printf ("%d%09d", hconfigs , configs);
else printf ("%d", configs);
printf ("␣viable␣configurations␣examined;\n");
printf ("␣%d␣slots␣needed␣(with␣%d␣holes)␣in␣position␣(%d,%d);\n", conf size −min space ,

min holes , space row , space col);
printf ("␣%d␣counters␣needed␣(with␣%d␣wasted)␣in␣position␣(%d,%d);\n", slave size −min sspace ,

min sholes , slave row , slave col);
printf ("␣%d␣moves.\n",moves);

This code is used in sections 4 and 105.

73. ⟨ Subroutines 5 ⟩ +≡
config ∗get slot down (register int s)
{
register config ∗p = slot [s];

if (p) {
slot [s] = p⃗ link ;
holes−−, sholes −= s+ 1;

} else {
p = trg −−;
⟨Allocate p⃗ addr (downward) and check that memory hasn’t overflowed 74 ⟩;

}
p⃗ state = raw ;
return p;

}

§74 POLYNUM-RESTART DATA STRUCTURES 25

74. ⟨Allocate p⃗ addr (downward) and check that memory hasn’t overflowed 74 ⟩ ≡
{
if (trg − src < min space) {

min space = trg − src ;
if (min space < 0) panic("Memory␣overflow");
min holes = holes , space row = r, space col = re ;

}
strg −= s+ 1;
if (strg − ssrc < min sspace) {
min sspace = strg − ssrc ;
if (min sspace < 0) panic("Slave␣memory␣overflow");
min sholes = sholes , slave row = r, slave col = re ;

}
p⃗ addr = strg + 1;

}
This code is used in section 73.

75. Themove down andmove up subroutines are invoked when an active target configuration p needs more
space for its generating function. The global variable hash will have been set so that hash table [hash] = p;
we effectively move that configuration to another place in the sequential list of targets, and return a pointer
to the new place. The former node p is now marked deleted , but its addr field remains valid (in case get slot
is able to reuse it).

⟨ Subroutines 5 ⟩ +≡
config ∗move down (config ∗p, int lo , int hi)
{
register config ∗q, ∗r;
register int s = p⃗ lo , t = p⃗ hi ;

r = p⃗ link ;
p⃗ link = slot [t− s], slot [t− s] = p;
p⃗ state = deleted ;
holes ++, sholes += t− s+ 1;
if (s > lo) s = lo ;
if (t < hi) t = hi ;
q = get slot down (t− s);
q⃗ lo = s, q⃗ hi = t;
q⃗ s = p⃗ s, q⃗ lim = p⃗ lim ;
hash table [hash] = q, q⃗ link = r;
update (p, q, p⃗ hi);
moves ++;
return q;

}

26 DATA STRUCTURES POLYNUM-RESTART §76

76. ⟨ Subroutines 5 ⟩ +≡
config ∗move up(config ∗p, int lo , int hi)
{
register config ∗q, ∗r;
register int s = p⃗ lo , t = p⃗ hi ;

r = p⃗ link ;
p⃗ link = slot [t− s], slot [t− s] = p;
p⃗ state = deleted ;
holes ++, sholes += t− s+ 1;
if (s > lo) s = lo ;
if (t < hi) t = hi ;
q = get slot up(t− s);
q⃗ lo = s, q⃗ hi = t;
q⃗ s = p⃗ s, q⃗ lim = p⃗ lim ;
hash table [hash] = q, q⃗ link = r;
update (p, q, p⃗ hi);
moves ++;
return q;

}

§77 POLYNUM-RESTART THE MAIN LOOP 27

77*. The main loop. Now that we have some infrastructure in place, we can map out the top levels of
this program’s main processing cycle.
We start by restoring the situation at the end of the previous checkpoint.
Important: We have already clobbered file foo.0, because we are assuming that the user has either

renamed the former output files or already processed them with POLYSLAVE. In the latter case, POLYSLAVE

will have written its own dump files foo−256.dump, etc., for various moduli; it should be restarted with the
variation prepared from change file polyslave−restart.ch.

⟨ Initialize 15 ⟩ +≡
sprintf (dfilename , "%.90s.dump", base name);
in file = fopen (dfilename , "rb");
if (¬in file) panic("I␣can’t␣open␣the␣dump␣file");
if (fread (dump data , sizeof (int), 5, in file) ̸= 5) panic("Bad␣read␣at␣beginning␣of␣dump");
if (n ̸= dump data [0] ∨ w ̸= dump data [1]) panic("Dump␣data␣doesn’t␣match");
r = dump data [2], trg = conf + dump data [3], strg = dump data [4];
if (trg ≥ conf end) panic("Must␣increase␣confsize"); /∗ it’s waaaaaaaayy too small ∗/
if (strg ≥ slave size) panic("Must␣increase␣slavesize"); /∗ likewise ∗/
if (fread (conf , sizeof (config), trg − conf , in file) ̸= trg − conf)
panic("Can’t␣read␣the␣dumped␣configurations");

row end = w;

78. Once again it seems best to write two nearly identical pieces of code, depending on whether the
allocation is actually moving upward or downward. (We’re supposed to be hoarding memory, but the space
required for this program is small potatoes.)

⟨Output instructions for the postprocessor 78 ⟩ ≡
while (1) {
⟨Get ready for a downward pass, or break when done 79* ⟩;
⟨Pass downward over all configurations created on the previous pass 80 ⟩;
⟨Get ready for an upward pass, or break when done 82 ⟩;
⟨Pass upward over all configurations created on the previous pass 83 ⟩;

}
This code is used in section 4.

28 THE MAIN LOOP POLYNUM-RESTART §79

79*. ⟨Get ready for a downward pass, or break when done 79* ⟩ ≡
if (row end < w) {
row end ++;
printf ("Beginning␣column␣%d", row end);
⟨Print current stats and clear the hash/slot tables 81 ⟩;

} else {
if (r ̸= dump data [2]) {
printf ("Finished␣row␣%d", r);
⟨Print current stats and clear the hash/slot tables 81 ⟩;
if (r > w) put inst (sync , r);

}
⟨Check if this run has gone on too long 105 ⟩;
r++, row end = 1;

}
if (trg ≡ conf) break; /∗ the previous pass was sterile ∗/
src = trg − 1; /∗ start the source pointer at the highest occupied node ∗/
ssrc = strg − 1; /∗ and the highest occupied counter position ∗/
trg = conf end − 1; /∗ start the target pointer at the highest unoccupied node ∗/
strg = slave size − 1; /∗ and the highest unoccupied counter position ∗/
re = row end ;

This code is used in section 78.

80. ⟨Pass downward over all configurations created on the previous pass 80 ⟩ ≡
while (src ≥ conf) {
if (src⃗ state ≡ active) {

unpackit (src⃗ s); /∗ Put the source configuration α into sc and c ∗/
if (verbose) {

print config (row end); printf ("\n");
}
⟨Change array c for target α0 84 ⟩;
if (viable) ⟨Process target configuration c (downward) 97 ⟩;
for (k = 1; k ≤ w; k++) c[k] = sc [k];
⟨Change array c for target α1 90 ⟩;
if (viable) ⟨Process target configuration c (downward) 97 ⟩;

}
ssrc = src⃗ addr − 1;
src−−; /∗ the old src node is now outta here ∗/

}
This code is used in section 78.

81. Timely progress reports let the user know that we are still chugging along. We are about to start an
upward pass if and only if src ≡ conf − 1.

⟨Print current stats and clear the hash/slot tables 81 ⟩ ≡
if (src ≡ conf − 1) printf ("␣(%d,%d,", conf end − 1− trg , slave size − 1− strg);
else printf ("␣(%d,%d,", trg − conf , strg − n− 1);
printf ("%d,%d,%d,%d,%d)\n", conf size −min space ,min holes , slave size −min sspace ,min sholes ,

bytes out);
⟨Print and clear the hash/slot tables 109 ⟩;
fflush (stdout);

This code is used in sections 79* and 82.

§82 POLYNUM-RESTART THE MAIN LOOP 29

82. Counter positions 1 through n in the slave memory are reserved for the final polyomino counts.

⟨Get ready for an upward pass, or break when done 82 ⟩ ≡
if (row end < w) {
row end ++;
printf ("Beginning␣column␣%d", row end);
⟨Print current stats and clear the hash/slot tables 81 ⟩;

} else {
if (r) {
printf ("Finished␣row␣%d", r);
⟨Print current stats and clear the hash/slot tables 81 ⟩;
if (r > w) put inst (sync , r);

}
r++, row end = 1;

}
if (trg ≡ conf end − 1) break; /∗ the previous pass was sterile ∗/
src = trg + 1; /∗ start the source pointer at the lowest occupied node ∗/
/∗ and we’ll soon set ssrc to src⃗ addr , which equals strg + 1, the lowest occupied counter ∗/

trg = conf ; /∗ start the target pointer at the lowest unoccupied node ∗/
strg = n+ 1; /∗ and the lowest unoccupied counter position ∗/
re = row end ;

This code is used in section 78.

83. ⟨Pass upward over all configurations created on the previous pass 83 ⟩ ≡
while (src < conf end) {
if (src⃗ state ≡ active) {

ssrc = src⃗ addr ;
unpackit (src⃗ s); /∗ Put the source configuration α into sc and c ∗/
if (verbose) {

print config (row end); printf ("\n");
}
⟨Change array c for target α0 84 ⟩;
if (viable) ⟨Process target configuration c (upward) 103 ⟩;
for (k = 1; k ≤ w; k++) c[k] = sc [k];
⟨Change array c for target α1 90 ⟩;
if (viable) ⟨Process target configuration c (upward) 103 ⟩;

}
src++; /∗ the old src node is now outta here ∗/

}
This code is used in section 78.

30 NITTY-GRITTY POLYNUM-RESTART §84

84. Nitty-gritty. The basic logic of a so-called “transfer-matrix” approach is embedded in the following
program steps, which change a configuration string when a new cell in row r is or is not to be occupied.
Here, for example, we observe that when the previous configuration has ‘1

∧
(’ at the end of a partial row, and

if we occupy the new cell, the new configuration has ‘(−
∧
’ instead. But if we don’t occupy that cell, the new

configuration has ‘10
∧
’ and a further change must also be made because of the (that has disappeared.

Most of the cases that arise are completely straightforward. But each of the thirty combinations of two
adjacent codes must of course be handled perfectly. The following chart summarizes what the program is
supposed to do when the new cell is being left vacant.

0 1 (-)

0 00 a 00 b 00 c 00 d

1 10 a 10 b 10 10 d

((0 e e (0 (0 d

- -0 a -0 b -0 -0 d

))0 a -0 b)0 -0 d

left edge 0 e e 0 c a

a Not viable
b Downgrade the successor of (
c A polyomino may have been completed
d Downgrade the predecessor of)
e Impossible case

Special handling is necessary when a − is eliminated, if it is preceded or followed by nothing but zeros;
for example, 0(010− must become 010(00, and −010()0−0 must become either 00)0()0(0 or)010(−000.
These somewhat unusual cases are approached cautiously in the program below.

#define f(x, y) ((x ≪ 3) + y)

⟨Change array c for target α0 84 ⟩ ≡
pair = f(sc [row end − 1], sc [row end]);
c[row end] = zero ;
viable = 1;
switch (pair) {
case f(zero , one): case f(one , one): case f(mid , one): case f(rt , one): case f(eol , rt): viable = 0;

/∗ component would be isolated ∗/
case f(zero , zero): case f(one , zero): case f(lft , zero): case f(mid , zero): case f(rt , zero):
case f(eol , zero): case f(lft ,mid): case f(mid ,mid): break;

case f(zero , lft): case f(one , lft): case f(mid , lft): case f(rt , lft):
⟨Downgrade the successor of the lft 86 ⟩; break;

case f(zero , rt): case f(one , rt): case f(lft , rt): case f(mid , rt): case f(rt , rt):
⟨Downgrade the predecessor of the rt 87 ⟩; break;

case f(zero ,mid): case f(eol ,mid): ⟨Cautiously delete a mid that may be leftmost 88 ⟩;
case f(one ,mid): case f(rt ,mid): ⟨Cautiously delete a mid that may be rightmost 89 ⟩;
break;

case f(lft , one): case f(lft , lft): case f(eol , one): case f(eol , lft):
panic("Impossible␣configuration");

default: panic("Impossible␣pair");
}

This code is used in sections 80 and 83.

85. ⟨Global variables 7 ⟩ +≡
int pair ; /∗ the two codes surrounding the ‘

∧
’ in sc ∗/

int viable ; /∗ might the target configuration lead to a relevant polyomino? ∗/

§86 POLYNUM-RESTART NITTY-GRITTY 31

86. In this step, we have just zeroed out a left parenthesis. If that (is followed by a −, we change the −

to (; if it is followed by a), we change the) to 1.
Here “followed by” really means “followed on the same level by,” because nested subcomponents may

intervene. We therefore need a level counter, j, as we scan to the right.
If the (had no successor because it simply marked a connection to the right edge, we shouldn’t have

deleted it; its component is now disconnected, so we set viable to zero.

⟨Downgrade the successor of the lft 86 ⟩ ≡
for (k = row end + 1, j = 0; ; k++) {
switch (c[k]) {
case lft : j++;
case zero : case one : continue;
case mid : if (j) continue;
c[k] = lft ; break;

case rt : if (j) { j−−; continue; }
c[k] = one ; break;

case eol : if (j) panic("Unexpected␣eol");
viable = 0;

}
break;

}
This code is used in section 84.

87. Contrariwise, an erased) is like an erased (but vice versa.

⟨Downgrade the predecessor of the rt 87 ⟩ ≡
for (k = row end − 1, j = 0; ; k−−) {
switch (c[k]) {
case rt : j++;
case zero : case one : continue;
case mid : if (j) continue;
c[k] = rt ; break;

case lft : if (j) { j−−; continue; }
c[k] = one ; break;

case eol : if (j) panic("Unexpected␣eol");
viable = 0;

}
break;

}
This code is used in section 84.

32 NITTY-GRITTY POLYNUM-RESTART §88

88. ⟨Cautiously delete a mid that may be leftmost 88 ⟩ ≡
for (k = row end − 1; c[k] ≡ zero ; k−−) ;
if (c[k] ≡ eol) { /∗ yes, the mid was leftmost ∗/
for (k = row end + 1; c[k] ≡ zero ; k++) ;
switch (c[k]) {
case mid : case rt : case eol : break; /∗ no problem ∗/
default: if (c[k] ≡ one) c[k] = rt , j = 0;
else c[k] = mid , j = 1; /∗ c[k] was lft ∗/
for (k++; ; k++) { /∗ we must downgrade the successor of the mid ∗/
switch (c[k]) {
case lft : j++;
case zero : case one : continue;
case mid : if (j) continue;
c[k] = lft ; break;

case rt : if (j) { j−−; continue; }
c[k] = one ; break;

case eol : panic("This␣can’t␣happen");
}
break;

}
}

}
This code is used in section 84.

89. ⟨Cautiously delete a mid that may be rightmost 89 ⟩ ≡
for (k = row end + 1; c[k] ≡ zero ; k++) ;
if (c[k] ≡ eol) { /∗ yes, the mid was rightmost ∗/
for (k = row end − 1; c[k] ≡ zero ; k−−) ;
switch (c[k]) {
case mid : case lft : case eol : break; /∗ no problem ∗/
default: if (c[k] ≡ one) c[k] = lft , j = 0;
else c[k] = mid , j = 1; /∗ c[k] was rt ∗/
for (k−−; ; k−−) { /∗ we must downgrade the predecessor of the mid ∗/
switch (c[k]) {
case rt : j++;
case zero : case one : continue;
case mid : if (j) continue;
c[k] = rt ; break;

case lft : if (j) { j−−; continue; }
c[k] = one ; break;

case eol : panic("This␣can’t␣happen");
}
break;

}
}

}
This code is used in section 84.

§90 POLYNUM-RESTART NITTY-GRITTY 33

90. A different kind of excitement awaits us when we consider occupying the new cell.
If the cases f(lft ,mid), f(lft , rt), f(mid ,mid), and f(mid , rt) are modified here to set viable = 0, the

program will count polyomino trees instead of normal polyominoes. (In a polyomino tree there is exactly one
way to get from one cell to another via rook moves.) These are the four cases in which already-connected
cells are connected again.

0 1 (-)

0 01 k 01 0(0- 0)

1 () () (- -- -)

((- e e (- f () f

- -- -- -- g -- f -) f

) -) -) -- -- h -) h

left edge) i e e -)

e Impossible case
f Not viable in polyomino trees
g Merge with mate of (
h Merge with mate of)
i Downgrade the next component if open
j Downgrade the previous component if open
k Or possibly 0) ior 0(j

The somewhat unusual case 01 k becomes 0) iif no nonzero cells lie to the left but the left edge has already
been occupied somewhere in the rows above. It becomes 0(jif no nonzero cells lie to the right but the right
edge has already been occupied somewhere in the rows above.

⟨Change array c for target α1 90 ⟩ ≡
viable = 1;
src⃗ lo++, src⃗ hi ++; /∗ implicitly multiply the generating function g(α) by z ∗/
switch (pair) {
case f(one , zero): case f(one , one): c[row end − 1] = lft , c[row end] = rt ;
case f(zero , one): case f(zero , lft): case f(zero ,mid): case f(zero , rt): case f(lft ,mid):
case f(lft , rt): case f(mid ,mid): case f(mid , rt): case f(eol ,mid): case f(eol , rt): break;

case f(one , lft): c[row end − 1] = lft , c[row end] = mid ; break;
case f(one ,mid): case f(one , rt): c[row end − 1] = mid ; break;
case f(lft , zero): case f(mid , zero): case f(mid , one): c[row end] = mid ; break;
case f(mid , lft): c[row end] = mid ;
⟨Merge with the mate of the former lft 91 ⟩; break;

case f(rt , zero): case f(rt , one): c[row end − 1] = mid , c[row end] = rt ; break;
case f(rt , lft): c[row end − 1] = c[row end] = mid ; break;
case f(rt ,mid): case f(rt , rt): c[row end − 1] = mid ;
⟨Merge with the mate of the former rt 92 ⟩; break;

case f(eol , zero): c[row end] = rt ;
⟨Downgrade the next component if it is open 93 ⟩; break;

case f(zero , zero): ⟨Cautiously introduce a new one 94 ⟩; break;
case f(lft , one): case f(lft , lft): case f(eol , one): case f(eol , lft):
panic("Impossible␣configuration");

default: panic("Impossible␣pair");
}
if (row end ≡ w) ⟨Make special corrections at the right edge 95 ⟩;

This code is used in sections 80 and 83.

34 NITTY-GRITTY POLYNUM-RESTART §91

91. ⟨Merge with the mate of the former lft 91 ⟩ ≡
for (k = row end + 1, j = 0; ; k++) {
switch (c[k]) {
case lft : j++;
case zero : case one : case mid : continue;
case rt : if (¬j) break;
j−−; continue;

case eol : panic("Unexpected␣eol");
}
c[k] = mid ; break;

}
This code is used in section 90.

92. ⟨Merge with the mate of the former rt 92 ⟩ ≡
for (k = row end − 2, j = 0; ; k−−) {
switch (c[k]) {
case rt : j++;
case zero : case one : case mid : continue;
case lft : if (¬j) break;

j−−; continue;
case eol : panic("Unexpected␣eol");
}
c[k] = mid ; break;

}
This code is used in section 90.

93. ⟨Downgrade the next component if it is open 93 ⟩ ≡
for (k = 2; ; k++) {
switch (c[k]) {
case zero : continue;
case mid : c[k] = lft ;
case one : case lft : case eol : break;
case rt : c[k] = one ;
}
break;

}
This code is used in section 90.

§94 POLYNUM-RESTART NITTY-GRITTY 35

94. ⟨Cautiously introduce a new one 94 ⟩ ≡
c[row end] = one ;
for (k = row end − 2; c[k] ≡ zero ; k−−) ;
if (¬k) { /∗ we’re introducing a new leftmost 1 ∗/
for (k = row end + 1; ; k++) {

switch (c[k]) {
case zero : continue;
case mid : c[k] = lft , c[row end] = rt ;
case one : case lft : case eol : break;
case rt : c[k] = one , c[row end] = rt ;
}
break;

}
} else {
for (j = row end + 1; c[j] ≡ zero ; j++) ;
if (c[j] ≡ eol) { /∗ we’re introducing a new rightmost 1 ∗/
if (c[k] ≡ mid) c[k] = rt , c[row end] = lft ;
else if (c[k] ≡ lft) c[k] = one , c[row end] = lft ;

}
}

This code is used in section 90.

95. ⟨Make special corrections at the right edge 95 ⟩ ≡
switch (c[row end]) {
case rt : c[row end] = mid ;
case zero : case mid : case lft : break;
case one : c[row end] = lft ;
⟨Downgrade the previous component if it is open 96 ⟩;

}
This code is used in section 90.

96. ⟨Downgrade the previous component if it is open 96 ⟩ ≡
for (k = row end − 1; ; k−−) {
switch (c[k]) {
case zero : continue;
case mid : c[k] = rt ;
case one : case rt : case eol : break;
case lft : c[k] = one ;
}
break;

}
This code is used in section 95.

36 NITTIER-AND-GRITTIER POLYNUM-RESTART §97

97. Nittier-and-grittier. The last nontrivial hurdle facing us is the problem of what to do after a target
configuration has been constructed in c[1] through c[w]. It’s not a Big Problem, but it does require care,
especially with respect to the generating function arithmetic.
An all-zero target configuration is preserved only in the first few passes, before we’ve reached the end of

row 1.

⟨Process target configuration c (downward) 97 ⟩ ≡
{
if (row end ≡ w) ⟨Canonize the configuration 100 ⟩;
target = packit ();
if (target .o.l ∨ target .o.h ∨ (r ≡ 1 ∧ row end < w)) {
⟨ If target is already present, make p point to it 101 ⟩;
if (¬p) ⟨Get a downward slot for target if it is really viable 102 ⟩;
if (p ∧ (src⃗ lo ≤ (j = p⃗ lim))) {

if (src⃗ hi < j) j = src⃗ hi ;
if (j > p⃗ hi ∨ src⃗ lo < p⃗ lo) p = move down (p, src⃗ lo , j);
if (verbose) {
printf ("␣−>␣"); print config (row end + 1); printf ("\n");

}
update (src , p, j);

}
} else if (r > w) {

if (verbose) printf ("␣−>␣0\n");
update (src ,Λ, src⃗ hi); /∗ polyominoes completed ∗/

}
}

This code is used in section 80.

98. ⟨Global variables 7 ⟩ +≡
cstring target ; /∗ the packed name of the current target configuration ∗/
int hash ; /∗ its hash address ∗/

99. ⟨Local variables 67 ⟩ +≡
register config ∗p; /∗ current target of interest ∗/

§100 POLYNUM-RESTART NITTIER-AND-GRITTIER 37

100. At the end of a row we change the configuration to its left-right reflection, if the reflection is
lexicographically smaller. This reduction to a canonical form reduces the number of active configurations
by a factor of nearly 2, at least for the next few passes. (The reduction can be justified by observing that
we could have operated from right to left instead of from left to right, on each row that follows a left-heavy
row.)
Notice that a code like 0(0 will be reflected to 0)0.

⟨Canonize the configuration 100 ⟩ ≡
{
for (j = 1, k = w; j ≤ k; j++, k−−)
if (c[j] ̸= reflect [c[k]]) break;

if (c[j] > reflect [c[k]])
for (; j ≤ k; j++, k−−) {

register int i = c[k];

c[k] = reflect [c[j]];
c[j] = reflect [i];

}
}

This code is used in sections 97 and 103.

101. We take care to move p to the top of its hash list, when present, and to set the global variable hash
as required by move down and move up .

⟨ If target is already present, make p point to it 101 ⟩ ≡
hash = mangle (target);
p = hash table [hash];
if (p ∧ ¬(p⃗ s.o.l ≡ target .o.l ∧ p⃗ s.o.h ≡ target .o.h)) {
register config ∗q;
for (q = p, p = p⃗ link ; p; q = p, p = p⃗ link)

if (p⃗ s.o.l ≡ target .o.l ∧ p⃗ s.o.h ≡ target .o.h) break;
if (p) {
q⃗ link = p⃗ link ; /∗ remove p from its former place in the list ∗/
p⃗ link = hash table [hash]; /∗ and insert it at the front ∗/
hash table [hash] = p;

}
}

This code is used in sections 97 and 103.

38 NITTIER-AND-GRITTIER POLYNUM-RESTART §102

102. If the target is viable, p will be set to a fresh node with p⃗ state = raw . The reader can verify that
move down will not then be necessary.

⟨Get a downward slot for target if it is really viable 102 ⟩ ≡
{
j = connectivity (row end + 1);
if (r ≥ w) j = int part (j);
else if (int part (j) ≡ eps part (j)) j = int part (j) + (w − r);
else j = int part (j) + (w − 1− r); /∗ j more cells are needed in a valid polyomino ∗/
if (src⃗ lo + j ≤ n) {

if (++configs ≡ 1000000000) configs = 0, hconfigs ++;
p = get slot down ((src⃗ hi > n− j ? n− j : src⃗ hi)− src⃗ lo);
p⃗ link = hash table [hash], hash table [hash] = p;
p⃗ s = target ;
p⃗ lo = src⃗ lo , p⃗ hi = src⃗ hi , p⃗ lim = n− j;
if (p⃗ hi > p⃗ lim) p⃗ hi = p⃗ lim ;

}
}

This code is used in section 97.

103. ⟨Process target configuration c (upward) 103 ⟩ ≡
{
if (row end ≡ w) ⟨Canonize the configuration 100 ⟩;
target = packit ();
if (target .o.l ∨ target .o.h ∨ (r ≡ 1 ∧ row end < w)) {
⟨ If target is already present, make p point to it 101 ⟩;
if (¬p) ⟨Get an upward slot for target if it is really viable 104 ⟩;
if (p ∧ (src⃗ lo ≤ (j = p⃗ lim))) {

if (src⃗ hi < j) j = src⃗ hi ;
if (j > p⃗ hi ∨ src⃗ lo < p⃗ lo) p = move up(p, src⃗ lo , j);
if (verbose) {
printf ("␣−>␣"); print config (row end + 1); printf ("\n");

}
update (src , p, j);

}
} else if (r > w) {

if (verbose) printf ("␣−>␣0\n");
update (src ,Λ, src⃗ hi); /∗ polyominoes completed ∗/

}
}

This code is used in section 83.

§104 POLYNUM-RESTART NITTIER-AND-GRITTIER 39

104. ⟨Get an upward slot for target if it is really viable 104 ⟩ ≡
{
j = connectivity (row end + 1);
if (r ≥ w) j = int part (j);
else if (int part (j) ≡ eps part (j)) j = int part (j) + (w − r);
else j = int part (j) + (w − 1− r); /∗ j more cells are needed in a valid polyomino ∗/
if (src⃗ lo + j ≤ n) {

if (++configs ≡ 1000000000) configs = 0, hconfigs ++;
p = get slot up((src⃗ hi > n− j ? n− j : src⃗ hi)− src⃗ lo);
p⃗ link = hash table [hash], hash table [hash] = p;
p⃗ s = target ;
p⃗ lo = src⃗ lo , p⃗ hi = src⃗ hi , p⃗ lim = n− j;
if (p⃗ hi > p⃗ lim) p⃗ hi = p⃗ lim ;

}
}

This code is used in section 103.

40 CHECKPOINTING POLYNUM-RESTART §105

105. Checkpointing. One of the goals of this program is to establish new world records. Thus, local
resources are probably being stretched to their current limits, and several days of running time might well
be involved.
It’s prudent therefore to make the program stop at a suitable “checkpoint,” firming up what has been

accomplished so far; then we won’t have to go back to square one when recovering from a disaster. We
should also use POLYSLAVE to reduce the intermediate data at such times, thereby freeing up nearly all of
the disk space we’ve been filling before we proceed to fill some more.
The code in this section is executed at a particularly convenient time: A new row is about to begin, and

so is a new downward pass. It’s as good a time as any to dump out the configuration-table-so-far in a form
that can easily be used by a special version of this program to get going again when we’re ready to resume.
(See the change file polynum−restart.ch for details.)

#define gig threshold 5
/∗ try to avoid filling more than about twice this many gigabytes of disk space ∗/

⟨Check if this run has gone on too long 105 ⟩ ≡
if (file extension ≥ gig threshold ∧ trg ̸= conf) {
⟨ Shut down the POLYSLAVE process 106* ⟩;
sprintf (filename , "%.90s.dump", base name);
out file = fopen (filename , "wb");
if (¬out file) panic("I␣can’t␣open␣the␣dump␣file");
⟨Dump all information needed to restart 107 ⟩;
⟨Print statistics about this run 72 ⟩;
printf ("[%d␣bytes␣written␣on␣file␣%s.]\n", ftell (out file),filename);
exit (1);

}
This code is used in section 79*.

106*. A special sync instruction with parameter 255 tells POLYSLAVE that it should invoke its own
checkpointing activity.

⟨ Shut down the POLYSLAVE process 106* ⟩ ≡
put inst (sync , 255);
⟨Empty the buffer and close the output file 16 ⟩;
printf ("Checkpoint␣stop:␣Please␣process␣that␣data␣with␣polyslave−restart,\n");
printf ("then␣resume␣the␣computation␣with␣polynum−restart.\n");

This code is used in section 105.

107. Since we’re at the beginning of a downward pass, the user will be able to restart this program with
different values of conf size and slave size if desired.

⟨Dump all information needed to restart 107 ⟩ ≡
dump data [0] = n;
dump data [1] = w;
dump data [2] = r;
dump data [3] = trg − conf ;
dump data [4] = strg ;
if (fwrite (dump data , sizeof (int), 5, out file) ̸= 5) panic("Bad␣write␣at␣beginning␣of␣dump");
if (fwrite (conf , sizeof (config), trg − conf , out file) ̸= trg − conf)
panic("Couldn’t␣dump␣the␣configuration␣table");

This code is used in section 105.

108*. ⟨Global variables 7 ⟩ +≡
int dump data [5]; /∗ parameters needed to restart ∗/
char dfilename [100];
FILE ∗in file ;

§109 POLYNUM-RESTART COMPUTATIONAL EXPERIENCE 41

109. Computational experience. With a suitable change file it is not difficult to convert this program
to a one-pass routine that does the evaluation directly, provided that n and w are reasonably small. For
example, when n = 30 and 2 ≤ w ≤ 15, all the computations were completed in 192 seconds (on 12 December
2000). The most difficult case, which took 68 seconds to complete, was for w = 13, when 100,488 slots (with
0 holes) and 218980 counters (with 4114 wasted) were needed.
The resulting number of n-ominoes for n ≤ 30 agreed perfectly with the answers obtained from a completely

different algorithm, using my now-obsolete program POLYENUM. That program had taken more than 15
hours to count 30-ominoes, so Jensen’s method ran almost 300 times faster.
Setting n = 47 led to much more of an adventure, of course, since all space and time requirements

grow exponentially. Some runs lasted several days, and various glitches and hardware failures added to the
excitement. Detailed statistics about the performance, including the histograms computed here, were helpful
for planning and for diagnosing various problems.

#define hist size 100

⟨Print and clear the hash/slot tables 109 ⟩ ≡
for (k = 0; k < hist size ; k++) hhist [k] = 0;
for (k = 0; k ≤ nmax ; k++) chist [k] = 0;
jj = 0;
for (k = 0; k ≤ hash mask ; k++) {
for (p = hash table [k], j = 0; p; p = p⃗ link , j++) chist [p⃗ hi − p⃗ lo]++;
if (j > jj) {
if (j ≥ hist size) j = hist size − 1;
jj = j;

}
hhist [j]++;
hash table [k] = Λ;

}
printf ("Hash␣histogram:");
for (j = 1; j ≤ jj ; j++) printf ("␣%d", hhist [j]);
printf ("\nCounters:");
for (k = nmax ; k ≥ 0; k−−)
if (chist [k]) break;

for (j = 0; j ≤ k; j++) printf ("␣%d", chist [j]);
for (k = nmax ; k ≥ 0; k−−)
if (slot [k]) break;

if (k ≥ 0) {
printf ("\nHoles:");
for (j = 0; j ≤ k; j++) {
for (p = slot [j], jj = 0; p; p = p⃗ link , jj ++) ;
printf ("␣%d", jj);
slot [j] = Λ;

}
}
printf ("\n");
holes = sholes = 0;

This code is used in section 81.

110. ⟨Global variables 7 ⟩ +≡
int hhist [hist size]; /∗ histogram of hash chain lengths ∗/
int chist [nmax + 1]; /∗ histogram of counter table lengths ∗/
int jj ; /∗ auxiliary variable for statistics calculations ∗/

42 COMPUTATIONAL EXPERIENCE POLYNUM-RESTART §111

111. The greatest difficulty for n = 47 occurred when w = 20; indeed, more than 100 gigabytes of data
were passed to POLYSLAVE in that case, and the computation lasted several days, so the checkpointing
algorithm proved to be particularly helpful.
Here is a summary of the main statistics from those runs. The number of “configs” is the total of

distinct configurations, summed over all passes. The number of “moves” is the number of times move up or
move down was called to increase the space allocated to a generating function.

w slots counters configs moves bytes POLYNUM POLYSLAVE

23 0.3M 0.3M 109M 3M 0.4G 14 min 5 min
22 6.2M 8.0M 2150M 129M 10.2G 267 min* 35 min*
21 28.6M 46.5M 9481M 1053M 58.8G 1911 min* 314 min*
20 40.2M 94.0M 12852M 2267M 103.6G 2960 min* 574 min*
19 31.5M 105.6M 9183M 2099M 86.8G 1803 min* 497 min*
18 19.4M 85.5M 5220M 1318M 52.9G 749 min* 324 min*
17 10.1M 58.3M 2514M 678M 26.7G 280 min* 172 min*
16 4.5M 34.2M 1091M 308M 11.9G 137 min* 104 min*
15 1.9M 18.2M 437M 127M 4.9G 51 min* 44 min*
14 0.7M 8.8M 167M 49M 2.0G 22 min 31 min
13 0.3M 4.1M 62M 19M 0.8G 8 min 12 min
12 98K 1.8M 23M 7M 0.3G 3 min 5 min
11 37K 789K 8.5M 2.6M 0.1G 84 sec 2 min
10 14K 334K 3.1M 0.9M 40M 45 sec 21 sec
9 5K 148K 1124K 340K 15M 30 sec 7 sec
8 2K 59K 402K 119K 5M 23 sec 2 sec
7 875 24K 144K 43K 1.9M 20 sec 1 sec
6 350 10K 50K 14K 618K 17 sec 0 sec
5 146 4K 17K 5K 206K 14 sec 0 sec
4 57 1484 5410 1460 59K 11 sec 0 sec
3 22 553 1658 430 17K 8 sec 0 sec
2 7 180 318 76 3K 6 sec 0 sec

* Done on computers with 1 gigabyte of memory, thanks to Andy Kacsmar of Stanford’s database group.

(The case w = 24 was omitted because of the formula

8

(
h+ w − 2

w − 1

)
− 3hw + 2h+ 2w − 8,

which gives the total number of n-ominoes spanning an h×w rectangle when n = h+w− 1 and h > 1 and
w > 1.)

112. I was glad to see that the allocation system used here for variable-length nodes, allowing “holes,”
worked quite well: More than 98 percent of the memory space was typically being put to good use when
it was needed. In fact, only 8 holes were present when the maximum demand of 40,219,325 slots occurred
in the runs for n = 47 (row 10 and column 11 when w = 20); only 105 counters were wasted when the
maximum demand of 105,578,552 counters occurred (row 12 and column 10 when w = 19).

113. Joke: George Pólya was a polymath who worked on polyominoes.

§114 POLYNUM-RESTART INDEX 43

114*. Index.

The following sections were changed by the change file: 77, 79, 106, 108, 114.

a: 30, 31, 32.
a n b : 30, 43, 45.
a x b : 31, 42, 43, 44, 45.
acm : 39, 43, 45.
active : 60, 61, 63, 80, 83.
add : 12, 63.
addr : 61, 63, 70, 74, 75, 80, 82, 83.
argc : 4, 6.
argv : 4, 6.
b: 13, 14, 30, 31, 32.
bad : 6.
base cost0 : 38, 39.
base cost1 : 39, 49.
base name : 6, 8, 9, 15, 77*, 105.
basic inst : 17, 63.
buf : 8, 11, 13, 14, 15, 16.
buf ptr : 8, 13, 14, 15, 16.
buf size : 8, 13, 14.
byte : 54, 64.
bytes : 11.
bytes out : 8, 9, 10, 11, 81.
c: 28, 30, 31, 34.
calloc : 62.
check eol0 : 38.
check eol1 : 49.
checksum : 8, 9, 10, 11.
chist : 109, 110.
ck file : 8, 10, 15.
clear : 12, 17, 63.
close it : 10, 11, 16.
closed cost : 33, 36, 38, 42, 43, 44, 45, 46, 47,

49, 52.
cm : 38, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51.
code: 26, 27, 34, 57.
conf : 62, 68, 77*, 79*, 80, 81, 82, 105, 107.
conf end : 62, 68, 77*, 79*, 81, 82, 83.
conf size : 6, 7, 53, 62, 72, 81, 107.
conf struct: 61.
config: 61, 62, 63, 65, 68, 69, 71, 73, 75, 76,

77*, 99, 101, 107.
configs : 71, 72, 102, 104.
connectivity : 35, 53, 102, 104.
Conway, Andrew Richard: 1.
copy : 12, 63.
cost: 28, 31, 33, 35.
cost matrix: 28, 30, 31, 32, 33, 39.
count : 12, 15, 17.
cstring: 54, 55, 56, 61, 64, 98.
cur src : 17, 18, 63.
cur trg : 17, 18.

dec src : 12, 17.
dec trg : 12, 17.
decode : 27, 59.
del : 17.
deleted : 60, 61, 75, 76.
dfilename : 77*, 108*.
dump data : 77*, 79*, 107, 108*.
end of buffer : 13, 14.
eol : 26, 34, 38, 49, 58, 59, 84, 86, 87, 88, 89,

90, 91, 92, 93, 94, 96.
eps part : 28, 52, 102, 104.
epsilon : 28, 35.
exit : 4, 5, 6, 105.
f : 84.
fclose : 10.
fflush : 81.
file extension : 8, 9, 11, 105.
filelength threshold : 8, 11.
filename : 8, 9, 10, 15, 105.
foo : 8.
fopen : 9, 15, 77*, 105.
fprintf : 5, 6, 9.
fread : 77*.
ftell : 105.
fwrite : 10, 11, 107.
g: 31, 35.
gap : 33, 44, 45, 46.
gap typ : 33, 44, 45, 46, 47.
gap type: 29, 31, 33, 35, 39.
get slot down : 73, 75, 102.
get slot up : 69, 76, 104.
gig threshold : 105.
h: 54, 64.
hash : 75, 76, 98, 101, 102, 104.
hash bits : 64, 65, 66.
hash mask : 64, 65, 109.
hash table : 65, 75, 76, 101, 102, 104, 109.
hash width : 64, 66.
hconfigs : 71, 72, 102, 104.
hhist : 109, 110.
hi : 61, 63, 75, 76, 90, 97, 102, 103, 104, 109.
hist size : 109, 110.
holes : 69, 70, 71, 73, 74, 75, 76, 109.
i: 100.
in file : 77*, 108*.
inc src : 12, 17.
inc trg : 12, 17.
int part : 28, 52, 102, 104.
j: 55, 56, 67.
Jensen, Iwan: 1, 109.

44 INDEX POLYNUM-RESTART §114

jj : 109, 110.
joke: 113.
k: 11, 35, 55, 56, 59, 67.
Kacsmar, Andrew Charles: 111.
l: 54, 64.
lft : 26, 27, 38, 49, 84, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96.
lim : 61, 75, 76, 97, 102, 103, 104.
link : 61, 69, 73, 75, 76, 101, 102, 104, 109.
lo : 61, 63, 75, 76, 90, 97, 102, 103, 104, 109.
main : 4.
mangle : 64, 101.
mess : 5.
mid : 26, 27, 38, 49, 84, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96.
mid or rt : 26, 36, 38, 40, 41, 49, 50, 51.
min holes : 70, 71, 72, 74, 81.
min mat : 32, 43, 45.
min sholes : 70, 71, 72, 74, 81.
min space : 70, 71, 72, 74, 81.
min sspace : 70, 71, 72, 74, 81.
move down : 75, 97, 101, 102, 111.
move up : 75, 76, 101, 103, 111.
moves : 71, 72, 75, 76.
n: 7.
nmax : 6, 71, 109, 110.
o: 13, 54.
octa: 54.
one : 26, 27, 38, 49, 84, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96.
op : 17.
opcode: 12.
open : 35, 36, 38, 49, 52.
open cost : 33, 43, 44, 45, 46, 47.
open it : 9, 11, 15.
otyp : 29, 31, 33, 47.
out : 8, 11, 13, 14, 15, 16.
out file : 8, 9, 10, 11, 105, 107.
p: 13, 63, 69, 73, 75, 76, 99.
pack : 55.
packed : 55.
packit : 55, 97, 103.
pair : 84, 85, 90.
panic : 5, 6, 9, 10, 11, 15, 37, 38, 47, 48, 49,

52, 62, 70, 74, 77*, 84, 86, 87, 88, 89, 90,
91, 92, 105, 107.

print config : 59, 80, 83, 97, 103.
printf : 10, 17, 59, 72, 79*, 80, 81, 82, 83, 97,

103, 105, 106*, 109.
put four : 14, 15, 17.
put inst : 13, 17, 79*, 82, 106*.
q: 56, 63, 75, 76, 101.

r: 71, 75, 76.
raw : 60, 61, 63, 69, 73, 102.
re : 70, 71, 74, 79*, 82.
reflect : 27, 100.
row end : 35, 36, 37, 38, 40, 41, 53, 59, 66, 67, 71,

77*, 79*, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91,
92, 94, 95, 96, 97, 102, 103, 104.

rt : 26, 27, 38, 40, 41, 49, 50, 51, 84, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96.

s: 11, 35, 56, 61, 64, 69, 73, 75, 76.
sc : 56, 57, 58, 80, 83, 84, 85.
scan eol0 : 38.
scan eol1 : 38, 49.
scan mid0 : 38.
scan mid1 : 49.
scan open0 : 38.
scan open1 : 49.
scan tokens0 : 35, 36.
scan tokens1 : 35, 36, 37.
scan tokens1a : 40, 50.
scan tokens1b : 41, 51.
scan zeros0 : 35, 38.
scan zeros1 : 35, 49.
scan zeros1x : 37, 48.
sholes : 69, 70, 71, 73, 74, 75, 76, 109.
slave col : 70, 71, 72, 74.
slave row : 70, 71, 72, 74.
slave size : 6, 7, 15, 72, 77*, 79*, 81, 107.
slot : 69, 71, 73, 75, 76, 109.
space col : 70, 71, 72, 74.
space row : 70, 71, 72, 74.
sprintf : 9, 15, 77*, 105.
src : 68, 70, 71, 74, 79*, 80, 81, 82, 83, 90, 97,

102, 103, 104.
src addr : 17.
sscanf : 6.
ssrc : 68, 70, 71, 74, 79*, 80, 82, 83.
stack entry: 33, 34.
state : 61, 63, 69, 73, 75, 76, 80, 83, 102.
status: 60, 61.
stderr : 5, 6, 9.
stdout : 81.
stk : 34, 36, 38, 42, 43, 44, 45, 46, 47, 49, 52.
strg : 68, 70, 71, 74, 77*, 79*, 81, 82, 107.
sym : 17, 18.
sync : 12, 15, 79*, 82, 106*.
t: 75, 76.
targ bit : 12, 17.
target : 97, 98, 101, 102, 103, 104.
trg : 68, 69, 70, 71, 73, 74, 77*, 79*, 81, 82, 105, 107.
trg addr : 17.
typ : 31, 35, 36, 37, 39, 42, 43, 46, 48, 52.

§114 POLYNUM-RESTART INDEX 45

unity : 28, 35, 37, 39, 40, 41.
unpackit : 56, 80, 83.
update : 63, 75, 76, 97, 103.
uunity : 28, 37, 39, 48, 50, 51.
verbose : 17, 18, 80, 83, 97, 103.
viable : 80, 83, 84, 85, 86, 87, 90.
w: 7.
wmax : 6.
write it : 11, 13, 14, 16.
x: 14.
xtyp : 29, 33, 36, 37, 48.
ytyp : 29, 33, 36, 37.
zero : 26, 27, 84, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96, 97.
zero cost : 36, 39.

46 NAMES OF THE SECTIONS POLYNUM-RESTART

⟨Allocate p⃗ addr (downward) and check that memory hasn’t overflowed 74 ⟩ Used in section 73.

⟨Allocate p⃗ addr (upward) and check that memory hasn’t overflowed 70 ⟩ Used in section 69.

⟨Append cm to the current partial component 42 ⟩ Used in sections 38 and 49.

⟨Append cm to stk [s].open cost 43 ⟩ Used in sections 38, 42, 47, and 49.

⟨Append stk [s+ 1].open cost to stk [s].open cost 45 ⟩ Used in section 44.

⟨Canonize the configuration 100 ⟩ Used in sections 97 and 103.

⟨Cautiously delete a mid that may be leftmost 88 ⟩ Used in section 84.

⟨Cautiously delete a mid that may be rightmost 89 ⟩ Used in section 84.

⟨Cautiously introduce a new one 94 ⟩ Used in section 90.

⟨Change array c for target α0 84 ⟩ Used in sections 80 and 83.

⟨Change array c for target α1 90 ⟩ Used in sections 80 and 83.

⟨Check if this run has gone on too long 105 ⟩ Used in section 79*.

⟨Combine the top two items on the stack 44 ⟩ Used in sections 38, 49, and 52.

⟨Compress −∗) following (into a single token in Phase 0 40 ⟩ Used in section 38.

⟨Compress −∗) following (into a single token in Phase 1 50 ⟩ Used in section 49.

⟨Compress −∗) following − into a single token in Phase 0 41 ⟩ Used in section 38.

⟨Compress −∗) following − into a single token in Phase 1 51 ⟩ Used in section 49.

⟨Downgrade the next component if it is open 93 ⟩ Used in section 90.

⟨Downgrade the predecessor of the rt 87 ⟩ Used in section 84.

⟨Downgrade the previous component if it is open 96 ⟩ Used in section 95.

⟨Downgrade the successor of the lft 86 ⟩ Used in section 84.

⟨Dump all information needed to restart 107 ⟩ Used in section 105.

⟨Empty the buffer and close the output file 16 ⟩ Used in sections 4 and 106*.

⟨Finish processing lft 46 ⟩ Used in sections 38 and 49.

⟨Finish processing mid 47 ⟩ Used in sections 38 and 49.

⟨Finish the connectivity bound calculation and return the answer 52 ⟩ Used in section 35.

⟨Get a downward slot for target if it is really viable 102 ⟩ Used in section 97.

⟨Get an upward slot for target if it is really viable 104 ⟩ Used in section 103.

⟨Get ready for a downward pass, or break when done 79* ⟩ Used in section 78.

⟨Get ready for an upward pass, or break when done 82 ⟩ Used in section 78.

⟨Get ready to compute connectivity 36 ⟩ Used in section 35.

⟨Global variables 7, 8, 18, 27, 34, 39, 57, 65, 68, 71, 85, 98, 108*, 110 ⟩ Used in section 4.

⟨ If target is already present, make p point to it 101 ⟩ Used in sections 97 and 103.

⟨ Initialize 15, 58, 62, 66, 77* ⟩ Used in section 4.

⟨Local variables 67, 99 ⟩ Used in section 4.

⟨Make special corrections at the right edge 95 ⟩ Used in section 90.

⟨Merge with the mate of the former lft 91 ⟩ Used in section 90.

⟨Merge with the mate of the former rt 92 ⟩ Used in section 90.

⟨Output instructions for the postprocessor 78 ⟩ Used in section 4.

⟨Pass downward over all configurations created on the previous pass 80 ⟩ Used in section 78.

⟨Pass upward over all configurations created on the previous pass 83 ⟩ Used in section 78.

⟨Print and clear the hash/slot tables 109 ⟩ Used in section 81.

⟨Print current stats and clear the hash/slot tables 81 ⟩ Used in sections 79* and 82.

⟨Print statistics about this run 72 ⟩ Used in sections 4 and 105.

⟨Process target configuration c (downward) 97 ⟩ Used in section 80.

⟨Process target configuration c (upward) 103 ⟩ Used in section 83.

⟨ Scan a nonzero token cluster in Phase 0 38 ⟩ Used in section 35.

⟨ Scan a nonzero token cluster in Phase 1 49 ⟩ Used in section 35.

⟨ Scan for zeros in Phase 0 37 ⟩ Used in section 35.

⟨ Scan for zeros in Phase 1 48 ⟩ Used in section 35.

⟨ Scan the command line 6 ⟩ Used in section 4.

⟨ Shut down the POLYSLAVE process 106* ⟩ Used in section 105.

POLYNUM-RESTART NAMES OF THE SECTIONS 47

⟨ Subroutines 5, 9, 10, 11, 13, 14, 17, 30, 31, 32, 35, 55, 56, 59, 63, 64, 69, 73, 75, 76 ⟩ Used in section 4.

⟨Type definitions 12, 26, 28, 29, 33, 54, 60, 61 ⟩ Used in section 4.

POLYNUM-RESTART

Section Page
Introduction . 1 1
Output . 8 5
Connectivity . 19 9
Data structures . 53 19
The main loop . 77 27
Nitty-gritty . 84 30
Nittier-and-grittier . 97 36
Checkpointing . 105 40
Computational experience . 109 41
Index . 114 43

