81 POLYTAMOND-DLX INTRO 1

(See htips://cs.stanford.edu/ knuth/programs.htm] for date.)

1. Intro. This program produces a DLX file that corresponds to the problem of packing a given set of
polyiamonds into a given two-dimensional box. The output file might be input directly to a DLX-solver;
however, it often is edited manually, to customize a particular problem (for example, to avoid producing
solutions that are equivalent to each other). (I hacked this from POLYOMINO-DLX.)

The triangular cells in the box are of two kinds, A and V. Both kinds have two coordinates xy, in the
range 0 < z,y < 62, specified by means of the extended hexadecimal “digits” 0, 1,...,9,a,b, ..., z, A, B,
..., Z. The ‘V’ triangles, which appear immediately to the right of their ‘A’ counterparts, are distinguished
by having an apostrophe following the coordinates. (It may be helpful to think of a square cell xy, which
has been subdivided into right triangles zy and zy’ by its main diagonal, then slightly squashed so that the
triangles become equilateral.)

As in DLX format, any line of stdin that begins with ‘|’ is considered to be a comment.

The first noncomment line specifies the cells of the box. It’s a list of pairs zy or xy’, where each coordinate
is either a single digit or a set of digits enclosed in square brackets. For example, ‘[02]b’ specifies two cells,
Ob, 2b. Brackets may also contain a range of items, with UNIX-like conventions; for instance, ‘[0-2] [b-b] >’
specifies three cells, 0b’, 1b’, 2b’. A 3 X 4 parallelogram, which contains 24 triangles, can be specified by
‘[1-31[1-4] [1-3]1[1-4]"".

Note: With square cells we had the luxury of regarding the pair zy in either of two ways: (i) “matrixwise”
(with = denoting a row and y a column; increasing x meant going down, while increasing y meant going right);
or (ii) “Cartesianwise” (with and y denoting horizontal and vertical displacement; increasing x meant going
right, while increasing y meant going up). However, with triangular cells, we’re totally Cartesian.

Individual cells may be specified more than once, but they appear just once in the box. For example,

[123]2 2[123] [12] [12]°

specifies a noniamond that looks something like a fish. The cells of a box needn’t be connected.

Cell specifications can optionally be followed by a suffix. For example, ‘[12]7suf’ specifies two items
named ‘17suf’ and ‘27suf’. Such items will be secondary, unless the suffix is simply *’.

The other noncomment lines consist of a piece name followed by typical cells of that piece. These typical
cells are specified in the same way as the cells of a box.

The typical cells lead to up to 12 “base placements” for a given piece, corresponding to rotations and/or
reflections in two-dimensional space. The piece can then be placed by choosing one of its base placements
and shifting it by an arbitrary amount, provided that all such cells fit in the box. The base placements
themselves need not fit in the box.

All suffixes associated with a cell will be appended to the items generated by that cell. For example, a
piece that has typical cells ‘00, 00°, 00!, 00’ !’ will generate options for every pair of adjacent cells in the
box: When 33’ and 34 are present, there will be an option ‘33? 34 33! 34!’. If 00’ ! hadn’t been specified,
there would have been two options, ‘33° 34 33’!’ and ‘34 33’ 34!’.

Each piece name should be distinguishable from the coordinates of the cells in the box. (For example, a
piece should not be named 00 unless cell 00 isn’t in the box.) This condition is not fully checked by the
program.

A piece that is supposed to occur more than once can be preceded by its multiplicity and a vertical line;
for example, one can give its name as ‘12|Z’. (This feature will produce a file that can be handled only by
DLX solvers that allow multiplicity.)

Several lines may refer to the same piece. In such cases the placements from each line are combined.

https://cs.stanford.edu/~knuth/programs.html

2 INTRO POLYTAMOND-DLX 82

2. OK, here we go.
#define bufsize 1024 /* input lines shouldn’t be longer than this x/

#define mazxpieces 100 /* at most this many pieces */

#define maznodes 100000 /* at most this many elements of lists */
#define mazbases 1000 /* at most this many base placements x/
#define mazsuffizes 10 /* at most this many suffixes */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>
char buf [bufsize];

(Type definitions 9);
(Global variables 8);
(Subroutines 3);

main ()
{
register int i,j,k,p,q,r, t,x,y, dr, dy, xy0, suf;
register long long za, ya;
(Read the box spec 17);
(Read the piece specs 24);
(Output the DLX item-name line 34);
{ Output the DLX options 35);
(Bid farewell 36);

83 POLYIAMOND-DLX

LOW-LEVEL OPERATIONS

3

3. Low-level operations. I'd like to begin by building up some primitive subroutines that will help to

parse the input and to publish the output.

For example, I know that I’ll need basic routines for the input and output of radix-62 digits.

(Subroutines 3) =
int decode(char c)
{
if (¢<9’) {
if (¢>’0’) return ¢—’07;
} else if (¢>’a’) {
if (¢<’z’) return ¢+ 10— ’a’;

}elseif (¢> A’ Ac<’Z’) return ¢+ 36 — A’;

if (¢#’\n’) return —1;

forintf (stderr, "Incomplete input,line: %s", buf)

exit (—888);
}

char encode(int x)

{

if (r <0) return ’-’;

if (r <10) return ’0’ + x;

if (r < 36) return ’a’ — 10+ x;
if (r < 62) return ’A’ — 36+ x;
return ’7’;

}

See also sections 4, 12, 13, 14, 15, 30, and 37.

This code is used in section 2.

bl

4. Tll also want to decode the specification of a given set of digits, starting at position p in buf. Subroutine
pdecode sets the global variable acc to a 64-bit number that represents the digit or digits mentioned there.

Then it returns the next buffer position, so that I can continue scanning.

(Subroutines 3) +=
int pdecode(register int p)
{
register int z;
if (buflp] #°0) {
x = decode (buf [p]);
if (z>0) {
acc = 1y, K a;
return p + 1;

}

forintf (stderr,"I1legal digit at position, %d of %s",p, buf);

exit(—2);

} else (Decode a bracketed specification 5);

}

4 LOW-LEVEL OPERATIONS POLYTAMOND-DLX 85

5. We want to catch illegal syntax such as ‘[-5]’, ‘[1-]’, ‘[3-2]°, ‘[1-2-3]’, ‘[3--5]’, while allowing
‘[7-z32-4A5-51", etc. (The latter is equivalent to ‘[2-57-A]".)
Notice that the empty specification ‘[]’ is legal, but useless.

(Decode a bracketed specification 5) =

{

register int ¢, y;
for (acc =0,t =z = —1,p++; buf[p] #°17; p++) {

ift (buf[p] = \n”) {
forintf (stderr, "Noclosing bracket in %s", buf);

exit (—4);
if (buf[p) =’-’) (Get ready for a range 6)
else {
x = decode (buf [p]);
if (x <0) {
forintf (stderr,"I1legal bracketed digit at position %d of %s", p, buf);
exit (—3);

if (t<0) acc|=1LL < ;
else (Complete the range from ¢ to x 7);
}
}

return p + 1;

}

This code is used in section 4.

6. (Get ready for a range 6) =

{
if (z<0Vvbufp+1]=-1") {
forintf (stderr, "I1legal range at position, %d of %s",p, buf);
exit (—5);

t=x,x=—1;
This code is used in section 5.

7. (Complete the range from ¢t to z 7) =

{
if (x <) {
forintf (stderr, "Decreasing, range at position, d of %s",p, buf);
exit (—6);

acc |= (1oL < (z+ 1)) — (1L < t);
t=x=—-1;
}

This code is used in section 5.

8. (Global variables 8) =
long long acc; /* accumulated bits representing coordinate numbers */
long long accx, accy; /* the bits for each dimension of a partial spec */
See also sections 11, 22, and 23.

This code is used in section 2.

89 POLYTAMOND-DLX DATA STRUCTURES 5

9. Data structures. The given box is remembered as a sorted list of cells zy, represented as a linked
list of packed integers (z < 8) 4+ y. The base placements of each piece are also remembered in the same way.
All of the relevant information appears in a structure of type box.
(Type definitions 9) =
typedef struct {
int list; /x link to the first of the packed triples zy */
int size; /* the number of items in that list */
int xmin, xmax, ymin, ymax; /* extreme coordinates */
int pieceno; /* the piece, if any, for which this is a base placement x*/
} box;
See also section 10.

This code is used in section 2.

10. Elements of the linked lists appear in structures of type node.

All of the lists will be rather short. So I make no effort to devise methods that are asymptotically efficient
as things get infinitely large. My main goal is to have a program that’s simple and correct. (And I hope
that it will also be easy and fun to read, when I need to refer to it or modify it.)

(Type definitions 9) +=
typedef struct {
int zy; /* position data stored in this node */
int suf; /= suffix data for this node x/
int link; /* the next node of the list, if any */
} node;

11. All of the nodes appear in the array elt. I allocate it statically, because it doesn’t need to be very big.
(Global variables 8) +=

node elt[maznodes]; /* the nodes x*/
int curnode; /+ the last node that has been allocated so far */
int avail; /x the stack of recycled nodes */

12. Subroutine getavail allocates a new node when needed.

{ Subroutines 3) +=
int getavail (void)

register int p = avail;
if (p) {
avail = elt[avail].link;
return p;
}
p = ++curnode;
if (p < maznodes) return p;
forintf (stderr, "Overflow! Recompile me by making maxnodes bigger than %d.\n", maznodes);
exit (—666);

6 DATA STRUCTURES POLYIAMOND-DLX 813

13. Conversely, putavail recycles a list of nodes that are no longer needed.

(Subroutines 3) +=
void putavail (int p)
{
register int g;
if (p) {
for (¢ =p; eltlg].link; q = elt[q].link) ;
elt[q].link = avail
avail = p;
}
}

14. The insert routine puts new (x,y) data into the list of newboz, unless (x,y) is already present.
{ Subroutines 3) +=
void insert(int z,int y,int s)
{
register int p,q,r, zy;
zy = (x < 8) +y;
for (¢ = 0,p = newbox.list; p; q = p,p = elt[p].link) {
if (elt[pl.ay = zy) {
if (elt[p].suf = s) return; /* nothing to be done x*/
if (elt[p].suf > s) break; /* we’ve found the insertion point %/
} else if (elt[p].zy > zy) break; /* we’ve found the insertion point */
}
r = getavail ();
elt[r].xy = zy, elt[r].suf = s, elt[r].link = p;
if (q) elt|q].link =r;
else newbox.list = r;
newbox .size ++;
if (z < newbozr.zmin) newbox.xmin = x;
if (y < newbox.ymin) newboxr.ymin = y;
if (z > newbozx.zmaz) newbor.zmazr = x;
if (y > newbox.ymaz) newboxr.ymaz = y;
}

15. Although this program is pretty simple, I do want to watch it in operation before I consider it to be
reasonably well debugged. So here’s a subroutine that’s useful for diagnostic purposes.
(Subroutines 3) +=

void printboz (box *b)

{
register int p,z,y;
forintf (stderr, "Piece%d,usize %d,uhd. . hdu%hd. . %d:\n", bepieceno, b-size, boamin, boamaz , b-ymin,
brymaz);
for (p = b-list; p; p = elt[p].link) {
x = elt[p].xy > 8,y = elt[p].xy & #£1;
forintf (stderr, " hechehs", encode(x), encode (y), elt[p].suf ? suffiz[elt[p].suf — 1] : "");
}
forintf (stderr, "\n");

}

816 POLYTAMOND-DLX INPUTTING THE GIVEN BOX 7

16. Inputting the given box. Now we’re ready to look at the xy specifications of the box to be filled.
As we read them, we remember the cells in the box called newboxr. Then, for later convenience, we also
record them in a three-dimensional array called occupied.

17. (Read the box spec 17) =
while (1) {
if (—fgets(buf, bufsize, stdin)) {
forintf (stderr, "Input file ended, before the box specification!\n");
exit(—9);

}

if (buf [strien(buf) — 1] # *\n’) {
forintf (stderr, "Overflow! Recompile me by making bufsize bigger than %d.\n", bufsize);
exit (—667);

printf (" | %s", buf); /x all input lines are echoed as DLX comments */
if (buf[0] # 1) break;

}

p=0;

(Put the specified cells into newboz, starting at buf [p] 18);

givenbor = newbox;

(Set up the occupied table 21);

This code is used in section 2.

18. This spec-reading code will also be useful later when I'm inputting the typical cells of a piece.

(Put the specified cells into newboz, starting at buf [p] 18) =
newbozx .list = newbox.size = 0;
newbox .xmin = newbox.ymin = 62;
newbox .xmaxr = newbox.ymar = —1;
for (; buf[p] # *\n’; pt++) {
if (buf[p] # ’L’) (Scan an zy spec 19);
¥

This code is used in sections 17 and 25.

19. I could make this faster by using bitwise trickery. But what the heck.
(Scan an zy spec 19) =

p = pdecode(p), accx = acc;
p = pdecode(p), accy = acc;
(Digest the optional suffix, suf 20);

if (buf[p]="\n’) p—; /* we’'ll reread the newline character */
for (r = 0,2a = accx; za; x++,z0 >=1)
if (za&1) {

for (y =0, ya = accy; ya; y++,ya >=1)
if (ya & 1) insert(x,y, suf);

}

This code is used in section 18.

8 INPUTTING THE GIVEN BOX POLYIAMOND-DLX

20. Suffixes will be stored in pairs, both with and without ‘>’ at the front.

(Digest the optional suffix, suf 20) =
for (¢=0; buf[p+4q] £’ Abuflp+q] #°\n’; g++) {
if (g = 6) {
forintf (stderr, "Suffix too_long, starting at_ position %d of %s",p, buf);
exit(—11);
}
suffiz [scount][q] = buf [p + ql;

}
if (q) {
suffiz [scount][q] = 0;
P +=q;
for (i =0; ; i++)
if (stremp (suffiz[i], suffiz[scount]) = 0) break;
if (i = scount) {
scount += 2;
if (scount > mawzsuffizes) {
forintf (stderr, "Overflow! Recompile me by making maxsuffixes>)d.\n", mazsuffizes);
exit (—7);

}
if (suffiz[i][0] = **”)
strepy (suffiz [scount — 1), suffix[i]), strepy (suffiz 1], &suffix [scount — 1][1]), i++;
else {
strepy (&suffic [scount — 1][1], suffiz[d]), suffiz[scount — 1][0] = >\’ ?;
if (strien(suffiz[scount —1]) > 6) {
forintf (stderr, "Implied suffix ‘%s’yis too long!\n", suffiz[scount — 1]);
exit(—9);
}
}
}
suf =i+ 1;
} else suf = 0;

This code is used in section 19.

21. (Set up the occupied table 21) =
for (p = givenboz .list; p; p = elt[p].link) {
x = elt[pl.ay > 8,y = elt[p|.xy & #£f;
occupied [elt [p].suf |[z][y] = 1;

}

This code is used in section 17.

22. (Global variables 8) +=
box newbox; /* the current specifications are placed here x/
char suffiz[mazsuffizes + 1][8] = {"*"}; /* table of suffixes seen x/
int scount = 1, /+ this many nonempty suffixes seen */
char occupied [mazsuffizes + 1][64][64]; /* does the box occupy a given cell? */
box givenbox;
int sfrpresent; /* this many items in givenbox have suffixes x/

§20

623 POLYTAMOND-DLX INPUTTING THE GIVEN PIECES 9

23. Inputting the given pieces. After I've seen the box, the remaining noncomment lines of the input
file are similar to the box line, except that they begin with a piece name.

This name can be any string of one to eight nonspace characters allowed by DLX format, followed by a
space. It should also not be the same as a position of the box.

I keep a table of the distinct piece names that appear, and their multiplicities.

And of course I also compute and store all of the base placements that correspond to the typical cells that
are specified.

(Global variables 8) +=

char names|[mazpieces][8]; /* the piece names seen so far x/
int piececount; /* how many of them are there? x/

char mult[mazpieces][8]; /* what is the multiplicity? */
char multip[8]; /x current multiplicity */

box base[mazbases]; /* the base placements seen so far */
int basecount; /* how many of them are there? x/

24. (Read the piece specs 24) =
while (1) {
if (—fgets(buf, bufsize, stdin)) break;
if (buf [strien(buf) — 1] # *\n’) {
fprintf (stderr, "Overflow! Recompile me by making bufsize bigger than %d.\n", bufsize);
exit (—=777);

printf (" _%s", buf); /x all input lines are echoed as DLX comments */
if (buf[0]="1’) continue;
(Read a piece spec 25);

This code is used in section 2.

25. (Read a piece spec 25) =
(Read the piece name, and find it in the names table at position k 27);
newboz .pieceno = k; /* now buf [p] is the space following the name x/
(Put the specified cells into newboz, starting at buf [p] 18);
(Normalize the cells of newbox 29);
base[basecount] = newbor;
(Create the other base placements equivalent to newbox 31);

This code is used in section 24.

26. We accept any string of characters followed by ‘|’ as a multiplicity.

10 INPUTTING THE GIVEN PIECES POLYIAMOND-DLX 827

27. (Read the piece name, and find it in the names table at position k 27) =
for (p=0; buf[p] # *\n’; p++)
if (buflp]="’1’) break;
else multip[p] = buf[p);
if (bufp] =’17) multip[p] = >\0’, p++;
else p =0, multip[0] = *1°, multip[1] = °\0?;
for (¢ =p; buflp] # *\n’; p++) {
if (buflp|=’.’) break;
ift (buf[p]="1"Vbufp] =":7) {
forintf (stderr,"I1legal ,character in piece name: %s", buf);
exit (—8);
}
}
if (buflp]=’\n’) {
forintf (stderr, " (Emptyu%hsuisubeing ignored)\n",p =07 "line" : "piece");
continue;
}

(Store the name in names|[piececount] and check its validity 28);
for (k=0; ; k++)
if (strncmp(names|k], names[piececount],8) = 0) break;
if (k = piececount) { /* it’s a new name */
if (++piececount > mazpieces) {
forintf (stderr, "Overflow! Recompile me by _making maxpieces bigger than jd.\n", mawpieces);
exit (—668);
}

if (—mult[k][0]) strepy (mult[k], multip);
else if (stremp (mult[k], multip)) {
forintf (stderr, "Inconsistent multiplicities for piece,%.8s, %suvs %s!\n", names[k], mult[k],
multip);
exit (—6);
}

This code is used in section 25.

28. (Store the name in names|piececount] and check its validity 28) =
if (p=qVvp>q+8) {
forintf (stderr, "Piece name is nonexistent or too,long: %s", buf);

exit (—7);

for (j =q; j <p; j++) names|piececount][j — q] = buf [§];
if (p=q+2) {
x = decode(names [piececount][0]);
y = decode (names|piececount][1]);
if (x > 0Ay > 0A occupied [0][x][y]) {
fprintf (stderr, "Piece name conflicts, with board position: %s", buf);
exit (—333);
}
}

This code is used in section 27.

§29 POLYTAMOND-DLX INPUTTING THE GIVEN PIECES 11

29. It’s a good idea to “normalize” the typical cells of a piece, by making the zmin and ymin fields of
newbor both zero.

(Normalize the cells of newbox 29) =
zy0 = (newbox.zmin <K 8) + newbox.ymin;

if (ay0) {
for (p = newbox.list; p; p = elt[p].link) elt[p].zy —= xy0;
newbox.xmax —= newbox.xmin, newbox .ymaxr —= newbox.ymin;

newbox .xmin = newbox.ymin = 0;

}

This code is used in sections 25 and 32.

12 TRANSFORMATIONS POLYIAMOND-DLX 830

30. Transformations. Now we get to the interesting part of this program, as we try to find all of the
base placements that are obtainable from a given set of typical cells.

The method is a simple application of breadth-first search: Starting at the newly created base, we make
sure that every elementary transformation of every known placement is also known.

This procedure requires a simple subroutine to check whether or not two placements are equal. We can
assume that both placements are normalized, and that both have the same size. Equality testing is easy
because the lists have been sorted.

(Subroutines 3) +=
int equality (int b)
{ /* return 1 if base[b] matches newboxr =/
register int p, q;
for (p = base[b].list,q = newbox .list; p; p = elt[p].link,q = elt[q].link)
if (elt[p].xy # elt[q].zy V elt[p].suf # elt[q].suf) return 0;
return 1;

}

31. Just two elementary transformations suffice to generate them all. These transformations depend (in a
somewhat subtle-but-nice way) on whether or not there’s a suffix that begins with *”.

(Create the other base placements equivalent to newbox 31) =
j = basecount, k = basecount + 1; /* bases j thru k — 1 have been checked */
while (j < k) {
(Set newbox to base[j] transformed by 60° rotation 32);
for (i = basecount; i < k; i++)
if (equality(i)) break;
if (i <k) putavail (newbox .list); /* already known x/
else base[k++] = newboz; /* we’ve found a new one */
(Set newbox to base[j] transformed by zy transposition 33);
for (i = basecount; i < k; i++)
if (equality(i)) break;

if (i <k) putavail (newbox .list); /* already known x/
else base[k++] = newboz; /* we've found a new one */
J+s

}

basecount = k;
if (basecount + 12 > mazbases) {
forintf (stderr, "Overflow! Recompile me by making maxbases bigger than %d.\n",
basecount + 23);
exit (—669);
}

This code is used in section 25.

§32 POLYTAMOND-DLX TRANSFORMATIONS 13

32. The first elementary transformation replaces (z,y) by (x+y—1,1—2) and (x,y) by (z+y,1 —z). It
corresponds to 60-degree rotation about the “origin” (the point between (0,0) and (1,1)) in our coordinates).
Actually I add a constant, then normalize afterwards, so that the coordinates don’t go negative.

(Set newbox to base[j] transformed by 60° rotation 32) =
newbozx .size = newbox .list = 0;
t = newbox.ymaz = base[j].xmaz; newbox.zmax = 0O;
newbox .xmin = newbox.ymin = 64;
for (p = base[j].list; p; p = elt[p].link) {
x = elt[pl.ay > 8,y = elt[p|.xy & #£f;
if (elt[p].suf & 1) { /* suffix starts with prime */
insert(x +y + 1,t — z, elt[p].suf — 1);
} else {
insert(x +y,t — z, elt[p].suf + 1);

}

(Normalize the cells of newbox 29);

This code is used in section 31.

33. The other elementary transformation replaces (z,y) by (y,x) and (z,y) by (y,z)’. It corresponds to
reflection about the line at slope 30° through the origin—a nice reflection that doesn’t interchange A with
V.

[I like to think of the barycentric coordinates (z, y, z) such that z+y+z = 1 or 2, with (z,y) + (z,y,2—2,y)
and (z,y) + (z,y,1 —x —y). With such coordinates the simplest transformations take (z,y, 2) to (y,z, 2),
(ya Z,l‘), and (1 -z, 1- Y, 1- Z)]

(Set newbox to base[j] transformed by zy transposition 33) =

newbox .size = newbox .list = 0;

newbox.xmazx = base[j].ymazx, newbor.ymax = base[j].zmax;

for (p = base[j].list; p; p = elt[p].link) {

x = elt[pl.zy > 8,y = elt[pl.ay & #£f;
insert(y, x, elt[p].suf);

This code is used in section 31.

14 FINISHING UP POLYIAMOND-DLX 834

34. Finishing up. In previous parts of this program, I've terminated abruptly when finding malformed

input.
But when everything on stdin passes muster, I'm ready to publish all the information that has been
gathered.
(Output the DLX item-name line 34) =
printf (" | this file was created by polyiamond-dlx from that data\n");
for (p = givenbox .list; p; p = elt[p].link)
if (elt[p].suf <2) {
x = elt|pl.ay > 8,y = elt[p|.zy & #*£f;
printf ("Lhchehs", encode(x), encode (y), elt[p].suf 7 ">" :"");

for (k =0; k < piececount; k++) {
if (mult[k][0] = *1° A mult[k][1] = °\0?) printf (" %.8s", names[k]);
else printf ("u%s|%.8s", mult[k], names[k]);

if (scount > 1) {
printf ("u1");
for (sfrpresent = 0,p = givenbox.list; p; p = elt[p|.link)
if (elt[p].suf > 1) {
x = elt[pl.ay > 8,y = elt[p|.ay & #££, sfrpresent++;
printf ("Lhchehs", encode (), encode (y), suffix[elt[p].suf — 1]);
}
}
printf ("\n");

This code is used in section 2.

35. (Output the DLX options 35) =
for (j = 0; j < basecount; j++) {
for (dz = givenboz.zmin; dx < givenbor.zmax — baselj].xmaz; dx++)
for (dy = givenboz.ymin; dy < givenbox.ymaz — base[j|.ymaz; dy++) {
for (p = base[j].list; p; p = elt[p].link) {
x = elt[pl.ay > 8,y = elt[p].xy & #£T;
if (—occupied[elt[p].suf][x + dz]ly + dy]) break;

if (—p) { /* they’re all in the box */
printf ("%.8s", names[base[j].pieceno]);
for (p = base[j].list; p; p = elt[p].link) {
x = elt[pl.zy > 8,y = elt[p|.oy & #£f;
printf ("Uhchehs", encode (x + dz), encode (y + dy), elt[p].suf ? suffiz[elt[p].suf — 1] : "");

printf ("\a");
}
}
}

This code is used in section 2.

836 POLYTAMOND-DLX FINISHING UP 15

36. Finally, when I’ve finished outputting the desired DLX file, it’s time to say goodbye by summarizing
what I did.
(Bid farewell 36) =
if (—sfrpresent)
forintf (stderr, "Altogether %d cells, %d pieces, %d base_ placements, %d nodes.\n",
givenbox .size, piececount , basecount, curnode + 1);
else fprintf (stderr,"Altogether %d+%d cells, %d pieces, %d base placements,)d nodes.\n",
givenbox .size — sfrpresent, sfrpresent, piececount , basecount, curnode + 1);

This code is used in section 2.

37. (Subroutines 3) +=
void debug (int m)

forintf (stderr, " . .debug stop %d. . \n", m);

16 INDEX

38. Index.

acc: 4, 5, 7,8, 19.
accx: 8, 19.

accy: 8, 19.

avail: 11, 12, 13.
b: 15, 30.

base: 23, 25, 30, 31, 32, 33, 35.
basecount: 23, 25, 31, 35, 36.
box: 9, 15, 22, 23.

buf: 2,3, 4,5,6,7, 17, 18, 19, 20, 24, 25, 27, 28

bufsize: 2, 17, 24.

c: 3.

curnode: 11, 12, 36.

debug: 37.

decode: 3, 4, b, 28.

dx: 2, 35.

dy: 2, 35.

elt: 11,12, 13, 14, 15, 21, 29, 30, 32, 33, 34, 35.

encode: 3, 15, 34, 35.

equality: 30, 31.

exit: 3,4,5,6, 7,12, 17, 20, 24, 27, 28, 31.

fgets: 17, 24.

forintf: 3, 4, 5, 6, 7, 12, 15, 17, 20, 24, 27,
28, 31, 36, 37.

getavail: 12, 14.

gwenboz: 17, 21, 22, 34, 35, 36.

i 2.

insert: 14, 19, 32, 33.

Jr 2.

k: 2.

link: 10, 12, 13, 14, 15, 21, 29, 30, 32, 33, 34, 35.

list: 9, 14, 15, 18, 21, 29, 30, 31, 32, 33, 34, 35.

m: 37.

main: 2.

mazxbases: 2, 23, 31.
mazxnodes: 2, 11, 12.
mazpieces: 2, 23, 27.

mazxsuffizes: 2, 20, 22.
mult: 23, 27, 34.

multip: 23, 27.

names: 23, 27, 28, 34, 35.

newboz: 14, 16, 17, 18, 22, 25, 29, 30, 31, 32, 33

node: 10, 11.

occupied: 16, 21, 22, 28, 35.
p: 27 4, Qv Ea M7 Ev @
pdecode: 4, 19.

piececount: 23, 27, 28, 34, 36.
pieceno: 9, 15, 25, 35.
printbox: 15.

printf: 17, 24, 34, 35.
putavail: 13, 31.

¢ 2, 13, 14, 30.

POLYIAMOND-DLX §38

r: 2, 14.

s 14.

scount: 20, 22, 34.

sfrpresent: 22, 34, 36.

size: 9, 14, 15, 18, 32, 33, 36.

stderr: 3, 4, 5, 6, 7, 12, 15, 17, 20, 24, 27,
28, 31, 36, 37.

stdin: 1, 17, 24, 34.

stremp: 20, 27.

strepy: 20, 27.

strlen: 17, 20, 24.

strnemp: 27.

suf: 2,10, 14, 15, 19, 20, 21, 30, 32, 33, 34, 35.

suffix: 15, 20, 22, 34, 35.

t: 2, 5.
xT: 27 37 47 M7 E'
za: 2, 19.

xmax: 9, 14, 15, 18, 29, 32, 33, 35.
xmin: 9, 14, 15, 18, 29, 32, 35.
xy: 10, 14, 15, 21, 29, 30, 32, 33, 34, 35.

xy0: 2, 29.
y: 2, 5, 14, 15.
ya: 2, 19.

ymaz: 9, 14, 15, 18, 29, 32, 33, 35.
ymin: 9, 14, 15, 18, 29, 32, 35.

POLYIAMOND-DLX NAMES OF THE SECTIONS

Bid farewell 36> Used in section 2.

Complete the range from ¢ to # 7) Used in section 5.

Create the other base placements equivalent to newbox 31) Used in section 25.
Decode a bracketed specification 5) Used in section 4.

Digest the optional suffix, suf 20) Used in section 19.

Get ready for a range 6) Used in section 5.

Global variables 8, 11, 22, 23) Used in section 2.

Normalize the cells of newbox 29) Used in sections 25 and 32.

Output the DLX item-name line 34) Used in section 2.

Output the DLX options 35) Used in section 2.

Put the specified cells into newboz, starting at buf[p] 18) Used in sections 17 and 25.
Read a piece spec 25) Used in section 24.

Read the box spec 17) Used in section 2.

Read the piece name, and find it in the names table at position k 27) Used in section 25.
Read the piece specs 24) Used in section 2.

Scan an xy spec 19) Used in section 18.

Set up the occupied table 21) Used in section 17.

Set newbox to base[j] transformed by 60° rotation 32) Used in section 31.

Set newbox to base[j] transformed by zy transposition 33) Used in section 31.
Store the name in names|[piececount] and check its validity 28) Used in section 27.
Subroutines 3, 4, 12, 13, 14, 15, 30, 37> Used in section 2.

Type definitions 9, 10) Used in section 2.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

17

POLYIAMOND-DLX

Section Page

015 o 1
Low-level 0perations i 3
Data structures 9
Inputting the given box 16
Inputting the given pieces 23
Transformations 30
Finishing upo oo 34

I .o 38

	Intro
	Low-level operations
	Data structures
	Inputting the given box
	Inputting the given pieces
	Transformations
	Finishing up
	Index
	Names of the sections
	Bid farewell
	Complete the range from t to x
	Create the other base placements equivalent to newbox
	Decode a bracketed specification
	Digest the optional suffix, suf
	Get ready for a range
	Global variables
	Normalize the cells of newbox
	Output the DLX item-name line
	Output the DLX options
	Put the specified cells into newbox, starting at buf[p]
	Read a piece spec
	Read the box spec
	Read the piece name, and find it in the names table at position k
	Read the piece specs
	Scan an xy spec
	Set up the occupied table
	Set newbox to base[j] transformed by 60^ rotation
	Set newbox to base[j] transformed by xy transposition
	Store the name in names[piececount] and check its validity
	Subroutines
	Type definitions

