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1. Intro. This program attempts to complete a partial latin square (also called a “quasigroup with
holes”) to a complete latin square. It uses fancy methods based on “GAD filtering” to prune the search
space, because this problem can be extremely difficult when the squares are large.

GAD filtering (“global all different” filtering) is a way to reduce the domains of variables that are required
to be mutually distinct, introduced by J.-C. Régin in 1994. [See the survey by I. P. Gent, I. Miguel, and
P. Nightingale in Artificial Intelligence 172 (2008), 1973–2000.] The basic idea is to use the well-developed
theory of bipartite matching to detect and remove possibilities that can never occur in a matching; this can
be done with a beautiful algorithm that finds strong components in an appropriate digraph. I’m writing this
program primarily to gain experience with GAD filtering, because the latin square completion problem is es-
sentially a “pure” example of the all-different constraint: If any search problem is improved by GAD filtering,
this one surely should be. (Also, I’ve been fascinated with latin squares ever since my undergraduate days.)

An n× n latin square is a matrix whose entries lie in an n-element set. Those entries are all required to
be different, in every row and in every column. In other words, every row of the matrix is a permutation of
the permissible values, and so is every column. A partial latin square is similar, but some of its entries have
been left blank. The nonblank values in each row and column are different, and the challenge is to see if we
can suitably fill in the blanks. (It’s like a sudoku problem, but sudoku has extra constraints.)

Input to this program on stdin appears on n lines of n characters each. The characters are either ‘.’
(representing a blank), or one of the digits 1 to 9 or a to z or A to Z, representing an integer from 1
to n. When n is small, this problem is easily handled by a considerably simpler program called PARTIAL-

LATIN-DLX, which sets up suitable input for the exact-cover-solver DLX1-PLATIN. PARTIAL-LATIN-DLX

has exactly the same input conventions as this one; but because of its simplicity, it can bog down when n is
large. I hope to prove that GAD filtering can often come to the rescue.

#define maxn 61 /∗ 61 is Z in our encoding ∗/
#define qmod ((1� 14)− 1) /∗ one less than a power of 2 that exceeds 3 ∗maxn ∗maxn ∗/
#define encode (x) ((x) < 10 ? ’0’ + (x) : (x) < 36 ? ’a’ + (x)− 10 : (x) < 62 ? ’A’ + (x)− 36 : ’*’)
#define decode (c) ((c) ≥ ’0’ ∧ (c) ≤ ’9’ ? (c) − ’0’ : (c) ≥ ’a’ ∧ (c) ≤ ’z’ ? (c) − ’a’ + 10 : (c) ≥

’A’ ∧ (c) ≤ ’Z’ ? (c)− ’A’ + 36 : −1)
#define bufsize 80
#define O "%" /∗ used for percent signs in format strings ∗/
#include <stdio.h>

#include <stdlib.h>

char buf [bufsize ];
int board [maxn ][maxn ]; /∗ a copy of the input ∗/
int P [maxn ][maxn ], R[maxn ][maxn ], C[maxn ][maxn ]; /∗ auxiliary matrices ∗/
〈Type definitions 11 〉;
〈Global variables 3 〉;
〈Subroutines 5 〉;
main (int argc) { /∗ give dummy command-line arguments to increase verbosity ∗/
〈Local variables 4 〉;
〈 Input the partial latin square 6 〉;
〈 Initialize the data structures 15 〉;
〈Solve the problem 72 〉;
〈Say farewell 87 〉;
}
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2. This program might produce lots and lots of output if you want to see what it’s thinking about. All you
have to do is type one or more random arguments on the command line when you call it; this will set argc
to 1 plus the number of such arguments. (The program never actually looks at those arguments; it merely
counts them.)

Here I define macros that control various levels of verbosity.

#define showsols (argc > 1) /∗ show every solution ∗/
#define shownodes (argc > 2) /∗ show search tree nodes ∗/
#define showcauses (argc > 3) /∗ show the reasons for backtracking ∗/
#define showlong (argc > 4) /∗ make progress reports longer ∗/
#define showmoves (argc > 5) /∗ show whenever a tentative assignment is made ∗/
#define showprunes (argc > 6) /∗ show whenever an option has been filtered out ∗/
#define showdomains (argc > 7) /∗ show domain sizes before branching ∗/
#define showsubproblems (argc > 8) /∗ show each matching problem destined for GAD ∗/
#define showmatches (argc > 9) /∗ show a match when beginning a GAD filtering step ∗/
#define showT (argc > 10) /∗ show what Tarjan’s algorithm is doing ∗/
#define showHK (argc > 11) /∗ show what the Hopcroft–Karp algorithm is doing ∗/

3. This program is instrumented to count “mems,” the number of accesses to 64-bit words that aren’t in
registers on an idealized machine. It’s the best way I know to make a fairly decent comparison between
solvers on different machines and different operating systems in different years, although of course it’s only
an ballpark estimate of the true performance because of things like pipelining and caching and branch
prediction.

Mems aren’t counted for things like printouts or debugging or reading stdin , nor for the actual overhead
of mem-counting.

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define oooo mems += 4 /∗ count four mems ∗/
〈Global variables 3 〉 ≡

unsigned long long mems ; /∗ how many 64-bit memory accesses have we made? ∗/
unsigned long long thresh = 10000000000; /∗ report progress when mems ≥ thresh ∗/
unsigned long long delta = 10000000000; /∗ increase thresh between reports ∗/
unsigned long long GADstart ; /∗ mem count when GAD filtering begins ∗/
unsigned long long GADone ; /∗ mems used in part one of GAD filtering ∗/
unsigned long long GADtot ; /∗ mems used in both parts of GAD filtering ∗/
unsigned long long GADtries ; /∗ this many GAD filtering steps ∗/
unsigned long long GADaborts ; /∗ this many of them found no matching ∗/
unsigned long long nodes ; /∗ this many nodes in the search tree so far ∗/
unsigned long long count ; /∗ this many solutions found so far ∗/
int originaln ;

See also sections 13, 20, 28, 39, 74, and 83*.

This code is used in section 1.

4. Lots of local variables are used here and there, when this program assumes they will be in registers. The
main ones are declared here; but others will declared below, in context, when we know their purpose. The
C compiler should have great fun optimizing the assignment of these symbolic names to the actual hardware
registers that will hold the data at run time.

〈Local variables 4 〉 ≡
register int a, i, j, k, l,m, p, q, r, s, t, u, v, x, y, z;

See also sections 32, 35, 46, and 63.

This code is used in section 1.
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5. The first subroutine is one that I hope never gets executed. But here it is, just in case. When it does
come into play, it will again prove that “to err is human.”

〈Subroutines 5 〉 ≡
void confusion (char ∗flaw , int why )
{

fprintf (stderr , "confusion: "O"s("O"d)!\n",flaw ,why );
}

See also sections 19, 25, 26, 29, 30, 73, 80*, 84*, and 85.

This code is used in section 1.
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6. Let’s get the boring stuff out of the way first. (This code is copied from PARTIAL-LATIN-DLX.)

〈 Input the partial latin square 6 〉 ≡
for (z = m = n = y = 0; ; m++) {

if (¬fgets (buf , bufsize , stdin )) break;
if (m ≡ maxn ) {

fprintf (stderr , "Too many lines of input!\n"); exit (−1);
}
for (p = 0; ; p++) {

if (buf [p] ≡ ’.’) {
z++;
continue;

}
x = decode (buf [p]);
if (x < 1) break;
if (x > y) y = x;
if (p ≡ maxn ) {

fprintf (stderr , "Line way too long: %s", buf ); exit (−2);
}
if (R[m][x− 1]) {

fprintf (stderr , "Duplicate ‘%c’ in row %d!\n", encode (x),m + 1); exit (−3);
}
if (C[p][x− 1]) {

fprintf (stderr , "Duplicate ‘%c’ in column %d!\n", encode (x), p + 1); exit (−4);
}
board [m][p] = P [m][p] = x,R[m][x− 1] = p + 1, C[p][x− 1] = m + 1;

}
if (n ≡ 0) n = p;
if (n > p) {

fprintf (stderr , "Line has fewer than %d characters: %s", n, buf ); exit (−5);
}
if (n < p) {

fprintf (stderr , "Line has more than %d characters: %s", n, buf ); exit (−6);
}

}
if (m < n) {

fprintf (stderr , "Fewer than %d lines!\n", n); exit (−7);
}
if (m > n) {

fprintf (stderr , "more than %d lines!\n", n); exit (−8);
}
if (y > n) {

fprintf (stderr , "the entry ‘%c’ exceeds %d!\n", encode (y), n); exit (−9);
}
fprintf (stderr , "OK, I’ve read a %dx%d partial latin square with %d missing entries.\n", n,

n, z);
originaln = n;

This code is used in section 1.
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7. A bit of theory. Latin squares enjoy lots of symmetry, some of which is obvious and some of which
is less so. One obvious symmetry is between rows and columns: The transpose of a latin square is a latin
square. A less obvious symmetry is between rows and values: If we replace the permutation in each row by
the inverse permutation, we get another latin square. The same is true for columns, and for partial squares.
Thus, for example, the six partial squares

314.

2..1

..1.

..23

32..

1...

4.12

.1.3

2.13

41..

3...

.34.

243.

.1.3

1..4

3...

.132

2.4.

1..4

..1.

.21.

1...

23.1

2.4.

are essentially equivalent, obtainable from each other by transposition and/or inversion.
Many other symmetries are also obvious: We can permute the rows, we can permute the columns, we can

permute the values. But the latter symmetries aren’t especially helpful in the problem we’re solving; and it
turns out that transposition isn’t important either. We’ll see, however, that row and column inversion are
extremely useful.

8. The latin square completion problem is equivalent to another problem called uniform tripartite trian-
gulation, whose symmetries are a perfect match. A uniform tripartite graph is a three-colorable graph in
which exactly half of the neighbors of each vertex are of one color while the other half have the other color.
A triangulation of such a graph is a partition of its edges into triangles.

Every n × n partial latin square defines a tripartite graph on the vertices {r1, . . . , rn}, {c1, . . . , cn}, and
{v1, . . . , vn}, if we let

ri−−−cj ⇐⇒ cell (i, j) is blank;

ri−−−vk ⇐⇒ value k doesn’t appear in row i;

cj−−−vk ⇐⇒ value k doesn’t appear in column j.

Furthermore, it’s not difficult to verify that this tripartite graph is uniform. One way to see this is to begin
with the complete tripartite graph, which corresponds to a completely blank partial square, and then to fill
in the entries one by one. Whenever we set cell (i, j) to k, vertices ri and cj and vk each lose two neighbors
of opposite colors.

For example, the tripartite graph for the first partial square above has the edges

r1−−−c4, r2−−−c2, r2−−−c3, r3−−−c1, r3−−−c2, r3−−−c4, r4−−−c1, r4−−−c2;

r1−−−v2, r2−−−v3, r2−−−v4, r3−−−v2, r3−−−v3, r3−−−v4, r4−−−v1, r4−−−v4;

c1−−−v1, c1−−−v4, c2−−−v2, c2−−−v3, c2−−−v4, c3−−−v3, c4−−−v2, c4−−−v4;

and the other five squares have the same graph but with {r, c, v} permuted.
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9. Notice that the latin square completion problem is precisely the same as the task of triangulating its
tripartite graph. And conversely, every uniform tripartite graph on the vertices {r1, . . . , rn}, {c1, . . . , cn},
and {v1, . . . , vn}, corresponds to the problem of completing some 2n×2n latin square. (That latin square has
blanks only in its top left quarter; also, every value {n + 1, . . . , 2n} occurs in every row and every column.)

[This theory is due to C. J. Colbourn, Discrete Applied Mathematics 8 (1984), 25–30, who used it to prove
that partial latin square completion is NP complete. Notice that the complement of the tripartite graph that
corresponds to a partial latin square problem is always triangularizable. Colbourn went up from n to 2n,
because a uniform tripartite graph whose complement isn’t triangularizable does not correspond to an n×n
partial latin square. Perhaps a smaller value than 2n would be adequate in all cases? I don’t know. But n
itself is too small.]

One consequence of these observations is that two partial latin squares with the same tripartite graph
have exactly the same completion problem. We don’t need to know any of the values of the nonblank entries,
except for the identities of the missing elements; we don’t even have to know n! In this program, the problem
is defined solely by the zero-or-nonzero state of the arrays board , R, and C, not by the actual contents of
those three arrays.

10. The triangularization problem, in turn, is equivalent to 3n simultaneous bipartite matching problems.

• The ri problem: Match {j | ri−−−cj} with {k | ri−−−vk}. (“Fill row i.”)

• The cj problem: Match {k | cj−−−vk} with {i | cj−−−ri}. (“Fill column j.”)

• The vk problem: Match {i | vk−−−ri} with {j | vk−−−cj}. (“Fill in the ks.”)

In all three cases, the edges exist precisely when the exact cover problem defined by PARTIAL-LATIN-DLX

contains the option ‘pij rik cjk ’. So I shall refer to “options” and “edges” and “triples” interchangeably in
the program that follows. Every such option is, in fact, essentially a triangle, consisting of three edges—one
for the ri matching, one for the cj matching, and one for the vk matching.

In summary: The problem of completing a partial latin square of size n×n is the problem of triangulating
a uniform tripartite graph. The problem of triangulating a uniform tripartite graph with parts of size n is
the problem of doing 3n simultaneous bipartite matchings. This program relies on GAD filtering, which is
based on the rich theory of bipartite matching.
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11. Data structures. Like all interesting problems, this one suggests interesting data structures.
At the lowest level, the input data is represented in small structs called tetrads, with four fields each:

up , down , itm , and aux . Tetrads are modeled after the “nodes” in DLX; indeed, one good way to think
of this program is to regard it as an exact cover solver like DLX, which has been extended by introducing
GAD filtering to prune unwanted options. The up and down fields of a tetrad provide doubly linked lists of
options, and the itm field refers to the head of such a list, just as in DLX.

The aux fields aren’t presently used in any significant way; they’re included primarily so that exactly 16
bytes are allocated, hence up and down can be fetched and stored simultaneously. But as long as we have
them, we might as well put a symbolic name into aux for use in debugging.

〈Type definitions 11 〉 ≡
typedef struct {

int up , down ; /∗ predecessor and successor in item list ∗/
int itm ; /∗ the item whose list contains this tetrad ∗/
char aux [4]; /∗ padding, used only for debugging at the moment ∗/
} tetrad;

See also sections 12, 27, and 31.

This code is used in section 1.
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12. Another way to think of this program is to regard it as solving a constraint satisfaction problem, whose
variables have one of three forms: pij , rik, or cjk. The domain of each variable is itself a set of variables,
namely the “boys” in the matching problem for which this particular variable is a “girl.” Thus, variable pij
will have a domain consisting of variables of the form rik, because of the ri matchings; variable cjk will have
a domain consisting of variables of the form pij , because of the cj matchings; variable rik will have a domain
consisting of variables of the form cjk, because of the vk matchings.

(We could also consider the domains to be options instead of variables/items, because the options have
such a strict format.)

Each variable is identified internally by a number from 1 to 3z, where z is the number of blank positions
in the partial input square.

Key information for variable v is stored in its struct, var [v], which has many four-byte fields. One of those
fields, name , contains the three-character external name, used in printouts. Another field, pos , shows v’s
position in the vars array, which contains a permutation of all the variables; variable v is active (that is,
not yet assigned a value) if and only if var [v].pos < active , where active is the number of currently active
variables. A third field, matching , points to the bipartite matching problem for which v is currently a “girl.”
A fourth field, tally , counts the number of times this variable had no remaining options when forced moves
were being propagated.

The other fields of a variable’s struct contain data that enters into the GAD filtering algorithm. For
example, we’ll see below that Hopcroft and Karp’s algorithm wants to store information in fields called mate
and mark . Tarjan’s algorithm wants to store information in fields called rank , parent , arcs , link , and min .

An attempt has been made to pair up these four-byte fields so that only one 8-byte memory access is
needed to access two of them, as often as possible. (In particular, bmate and gmate , mark and arcs , rank
and link , parent and min want to be buddies.)

〈Type definitions 11 〉 +≡
typedef struct {

unsigned long long tally ; /∗ how often has this variable run into trouble? ∗/
int bmate ; /∗ a girl’s boyfriend when matching ∗/
int gmate ; /∗ a boy’s girlfriend when matching ∗/
int pos ; /∗ position of this variable in vars ∗/
int matching ; /∗ the current matching problem in which this var is a girl ∗/
int mark ; /∗ state indicator during the Hopcroft–Karp algorithm ∗/
int arcs ; /∗ first of a linked list of arcs ∗/
int rank ; /∗ serial number of a vertex in Tarjan’s algorithm ∗/
int link ; /∗ stack pointer in Tarjan’s algorithm ∗/
int parent ; /∗ predecessor in Tarjan’s active tree ∗/
int min ; /∗ the magic ingredient of Tarjan’s algorithm ∗/
char name [4]; /∗ variable’s three-character name for printouts ∗/
int filler ; /∗ unused field, makes the size a multiple of eight bytes ∗/

} variable;

13. #define maxvars (3 ∗maxn ∗maxn ) /∗ upper bound on the number of variables ∗/
〈Global variables 3 〉 +≡

tetrad ∗tet ; /∗ the tetrads in our data structures ∗/
int vars [maxvars ]; /∗ list of all variables, most active to least active ∗/
int active ; /∗ this many variables are active ∗/
variable var [maxvars + 1]; /∗ the variables’ homes in our data structures ∗/
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14. Variable v is a primary item in an exact cover problem. Thus, when v is active, we want to maintain
a list of all currently active options that include this item. That list is doubly linked and has a list header,
as mentioned above; the header for v is tet [v].

All tetrads following the list headers are grouped into sets of four, one for each option. This gives us extra
breathing room, because an option contains only three items (namely pij , rik, cjk) and could be packed
into just three tetrads. We’ll see that it’s convenient to know that every option appears in four consecutive
tetrads, tet [a], tet [a + 1], tet [a + 2], tet [a + 3], where a is a multiple of 4; the first of these can be used to
store information about the option as a whole, while the other three are devoted respectively to pij , rik, and
cjk.

15. 〈 Initialize the data structures 15 〉 ≡
active = mina = totvars = 3 ∗ z; /∗ this many variables ∗/
for (p = i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

if (ooo , (¬P [i][j] ∧ ¬R[i][k] ∧ ¬C[j][k])) p++; /∗ p options in all ∗/
q = (totvars &−4) + 4 ∗ (p + 1); /∗ we’ll allocate q tetras ∗/
tet = (tetrad ∗) malloc(q ∗ sizeof (tetrad));
if (¬tet ) {

fprintf (stderr , "Couldn’t allocate the tetrad table!\n");
exit (−66);
}
for (k = 0; k < totvars ; k++) oo , vars [k] = k + 1, var [k + 1].pos = k;
for (k = 1; k ≤ totvars ; k++) o, tet [k].up = tet [k].down = k;
〈Name the variables 16 〉;
〈Create the options 17* 〉;
〈Fix the len fields 18 〉;

See also sections 21, 75, and 78*.

This code is used in section 1.

16. 〈Name the variables 16 〉 ≡
for (p = i = 0; i < n; i++)

for (j = 0; j < n; j++) {
if (P [i][j]) P [i][j] = 0;
else P [i][j] = ++p, sprintf (var [p].name , "p"O"c"O"c", encode (i + 1), encode (j + 1));

}
for (i = 0; i < n; i++)

for (k = 0; k < n; k++) {
if (R[i][k]) R[i][k] = 0;
else R[i][k] = ++p, sprintf (var [p].name , "r"O"c"O"c", encode (i + 1), encode (k + 1));

}
for (j = 0; j < n; j++)

for (k = 0; k < n; k++) {
if (C[j][k]) C[j][k] = 0;
else C[j][k] = ++p, sprintf (var [p].name , "c"O"c"O"c", encode (j + 1), encode (k + 1));

}
This code is used in section 15.
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17*. Each option is given the name ‘ijk’ for use in printouts and debugging. No mems are charged for
storing names, because printouts and debugging are not considered to be part of the problem-solving effort.

〈Create the options 17* 〉 ≡
for (q = totvars &−4, i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

if (ooo , (P [i][j] ∧R[i][k] ∧ C[j][k])) {
q += 4;
optloc [i][j][k] = q;
sprintf (tet [q].aux , ""O"c"O"c"O"c", encode (i + 1), encode (j + 1), encode (k + 1));
sprintf (tet [q + 1].aux , "p"O"c"O"c", encode (i + 1), encode (j + 1));
sprintf (tet [q + 2].aux , "r"O"c"O"c", encode (i + 1), encode (k + 1));
sprintf (tet [q + 3].aux , "c"O"c"O"c", encode (j + 1), encode (k + 1));
p = P [i][j];
oo , tet [q + 1].itm = p, r = tet [p].up ;
ooo , tet [p].up = tet [r].down = q + 1, tet [q + 1].up = r;
p = R[i][k];
oo , tet [q + 2].itm = p, r = tet [p].up ;
ooo , tet [p].up = tet [r].down = q + 2, tet [q + 2].up = r;
p = C[j][k];
oo , tet [q + 3].itm = p, r = tet [p].up ;
ooo , tet [p].up = tet [r].down = q + 3, tet [q + 3].up = r;
}

for (p = 1; p ≤ totvars ; p++) oo , q = tet [p].up , tet [q].down = p;

This code is used in section 15.

18. The itm field in a list header makes no sense, so we’ve left it zero so far. But as in DLX, we’ll want to
know the length of every variable’s option list. Thus we use tet [v].itm to keep track of that length. (And
when we do so, we’ll call that field len instead of itm .)

#define len itm

〈Fix the len fields 18 〉 ≡
for (p = 1; p ≤ totvars ; p++) {

for (o, q = tet [p].down , k = 0; q 6= p; o, q = tet [q].down ) k++;
o, tet [p].len = k;
}

This code is used in section 15.

19. A simple routine shows all the options in a given variable’s list.

〈Subroutines 5 〉 +≡
void print options (int v)
{

register q;

fprintf (stderr , "options for "O"s ("O"sactive, length "O"d):\n", var [v].name ,
var [v].pos < active ? "" : "in", tet [v].len );

for (q = tet [v].down ; q 6= v; q = tet [q].down ) fprintf (stderr , " "O"s", tet [q &−4].aux );
fprintf (stderr , "\n");
}
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20. The other major data we need, besides the options, is the set of bipartite matching problems. GAD
filtering will refine the original problems into smaller subproblems. These are all kept on a big stack called
mch (a last-in-first-out list), with the initial problems at the bottom and their refinements at the top.

The “girls” of matching problem m, of size t, appear in mch [m] through mch [m + t− 1], and the “boys”
appear in mch [m+ t] through mch [m+ 2t− 1]. The size itself is stored in mch [m− 1]; and a few other facts
about m are kept in mch [m− 2], etc.

#define msize −1 /∗ where to find the size of a matching ∗/
#define mparent −2 /∗ where to find the matching that spawned this one ∗/
#define mstamp −3 /∗ where to find the trigger for GAD filtering this one ∗/
#define mprev −4 /∗ the address of the most recent matching ∗/
#define mextra 4 /∗ this number of special entries begin a matching spec ∗/
#define mchsize 1000000 /∗ the total size of the mch array ∗/
〈Global variables 3 〉 +≡

int totvars ; /∗ total number of variables ∗/
int mch [mchsize ]; /∗ the big stack of matching problems ∗/
int mchptr = mextra ; /∗ the current top of this stack ∗/
int maxmchptr ; /∗ the largest value assumed by mchptr so far ∗/

21. 〈 Initialize the data structures 15 〉 +≡
if (mchsize < 2 ∗ totvars + 4 ∗ n ∗mextra ) {

fprintf (stderr , "Match table initial overflow (mchsize="O"d)!\n",mchsize );
exit (−667);
}
〈Create the matching problems of type ri 22 〉;
〈Create the matching problems of type cj 23 〉;
〈Create the matching problems of type vk 24 〉;

22. 〈Create the matching problems of type ri 22 〉 ≡
for (i = 0; i < n; i++) {

for (p = j = 0; j < n; j++)
if (o, P [i][j]) oo ,mch [mchptr + p++] = P [i][j], var [P [i][j]].matching = mchptr ;

if (p) {
mch [mchptr + msize ] = p;
for (k = 0; k < n; k++)

if (o,R[i][k]) o,mch [mchptr + p++] = R[i][k];
if (p 6= 2 ∗mch [mchptr + msize ]) confusion ("Ri girls != boys", p);
if (showsubproblems ) print match prob(mchptr );
q = mchptr ,mchptr += p + mextra ,mch [mchptr + mprev ] = q;
tofilter [tofiltertail ++] = q,mch [q + mstamp ] = 1;

}
}

This code is used in section 21.
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23. 〈Create the matching problems of type cj 23 〉 ≡
for (j = 0; j < n; j++) {

for (p = k = 0; k < n; k++)
if (o, C[j][k]) oo ,mch [mchptr + p++] = C[j][k], var [C[j][k]].matching = mchptr ;

if (p) {
mch [mchptr + msize ] = p;
for (i = 0; i < n; i++)

if (o, P [i][j]) o,mch [mchptr + p++] = P [i][j];
if (p 6= 2 ∗mch [mchptr + msize ]) confusion ("Cj girls != boys", p);
if (showsubproblems ) print match prob(mchptr );
q = mchptr ,mchptr += p + mextra ,mch [mchptr + mprev ] = q;
tofilter [tofiltertail ++] = q,mch [q + mstamp ] = 1;

}
}

This code is used in section 21.

24. 〈Create the matching problems of type vk 24 〉 ≡
for (k = 0; k < n; k++) {

for (p = i = 0; i < n; i++)
if (o,R[i][k]) oo ,mch [mchptr + p++] = R[i][k], var [R[i][k]].matching = mchptr ;

if (p) {
mch [mchptr + msize ] = p;
for (j = 0; j < n; j++)

if (o, C[j][k]) o,mch [mchptr + p++] = C[j][k];
if (p 6= 2 ∗mch [mchptr + msize ]) confusion ("Vk girls != boys", p);
if (showsubproblems ) print match prob(mchptr );
q = mchptr ,mchptr += p + mextra ,mch [mchptr + mprev ] = q;
tofilter [tofiltertail ++] = q,mch [q + mstamp ] = 1;

}
}

This code is used in section 21.

25. 〈Subroutines 5 〉 +≡
void print match prob(int m)
{

register int k;

fprintf (stderr , "Matching problem "O"d (parent "O"d, size "O"d):\n",m,mch [m + mparent ],
mch [m + msize ]);

fprintf (stderr , "girls");
for (k = 0; k < mch [m + msize ]; k++) fprintf (stderr , " "O"s", var [mch [m + k]].name );
fprintf (stderr , "\n");
fprintf (stderr , "boys");
for ( ; k < 2 ∗mch [m + msize ]; k++) fprintf (stderr , " "O"s", var [mch [m + k]].name );
fprintf (stderr , "\n");
}
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26. This program differs from DLX not only because of GAD filtering but also because it considers forced
moves to be part of the same node in the search tree. In other words, a new node of the search tree is created
only when all active variables have at least two elements in their current domain. By contrast, DLX makes
only one choice at each level of search.

A last-in-first-out list called the trail keeps track of what changes have been made to the database of
options; this mechanism allows us to backtrack safely when needed. Some options have been deleted because
they’ve been chosen to be in the final exact cover; others have been deleted because GAD filtering has proved
them to be superfluous. The latter are indicated on the trail by adding 1 to their address (which is always
a multiple of 4 as explained above).

Another last-in-first-out list, called forced , holds the names of options that should be forced at the current
search tree node.

Finally, a first-in-first-out list called tofilter holds the names of matching problems that should be GAD-
filtered because their set of edges has gotten smaller.

#define pruned 1 /∗ added to trail address of an option deleted by GAD ∗/
〈Subroutines 5 〉 +≡

void print forced (void)
{ /∗ shows the currently forced options ∗/

register int k;

for (k = 0; k < forcedptr ; k++) fprintf (stderr , " "O"s", tet [forced [k]].aux );
fprintf (stderr , "\n");
}
void print tofilter (void)
{ /∗ shows the currently scheduled filterings ∗/

register int k;

for (k = tofilterhead ; k 6= tofiltertail ; k = (k + 1) & qmod )
fprintf (stderr , " "O"d("O"d)", tofilter [k],mch [tofilter [k] + msize ]);

fprintf (stderr , "\n");
}

27. The path from the root to the currently active node is recorded as a sequence of node structs on the
move stack.

〈Type definitions 11 〉 +≡
typedef struct {

int mchptrstart ; /∗ mchptr at beginning of this node ∗/
int trailstart ; /∗ trailptr at beginning of this node ∗/
int branchvar ; /∗ the variable on which we’re branching ∗/
int curchoice ; /∗ which of its options are we currently pursuing? ∗/
int choices ; /∗ how many options does it have? ∗/
int choiceno ; /∗ and what’s the position of curchoice in that list? ∗/
unsigned long long nodeid ; /∗ node number (for printouts only) ∗/
} node;
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28. 〈Global variables 3 〉 +≡
int trail [maxvars ]; /∗ deleted options to be restored ∗/
int trailptr ; /∗ the first unused element of trail ∗/
int forced [maxvars ]; /∗ options that must be chosen at current search node ∗/
int forcedptr ; /∗ the first unused element of forced ∗/
int tofilter [qmod + 1]; /∗ matchings that should be GAD filtered ∗/
int tofilterhead , tofiltertail ; /∗ queue pointers for tofilter ∗/
node move [maxvars ]; /∗ the choices currently being investigated ∗/
int level ; /∗ depth of the current search tree node ∗/
int maxl ; /∗ maximum value of level so far ∗/
int mina ; /∗ minimum value of active so far ∗/

29. 〈Subroutines 5 〉 +≡
void print trail (void)
{

register int k, l;

for (k = l = 0; k < trailptr ; k++) {
if (k ≡ move [l].trailstart ) {

fprintf (stderr , "−−− level "O"d\n", l);
l++;

}
fprintf (stderr , " "O"s"O"s\n", tet [trail [k] &−4].aux , (trail [k] & #3) ? "*" : "");

}
}
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30. These data structures have plenty of redundancy, so plenty of things can go wrong. Here’s a routine
to detect some of the potential anomalies, which we hope to nip in the bud before they cause a major
catastrophe.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 5 〉 +≡

void sanity (void)
{

register int k, v, p, l, q;

for (k = 0; k < totvars ; k++) {
v = vars [k];
if (var [v].pos 6= k)

fprintf (stderr , "wrong pos field in variable "O"d("O"s)!\n", v, var [v].name );
if (k < active ) {

if (var [v].matching > move [level ].mchptrstart ) fprintf (stderr ,
" "O"s("O"d) has matching > "O"d!\n", var [v].name , v,move [level ].mchptrstart );

for (l = tet [v].len , p = tet [v].down , q = 0; q < l; q++, p = tet [p].down ) {
if (tet [tet [p].up ].down 6= p) fprintf (stderr , "up−down off at "O"d!\n", p);
if (tet [tet [p].down ].up 6= p) fprintf (stderr , "down−up off at "O"d!\n", p);
if (p ≡ v) {

fprintf (stderr , "list "O"d("O"s) too short!\n", v, var [v].name );
break;

}
}
if (p 6= v) fprintf (stderr , "list "O"d("O"s) too long!\n", v, var [v].name );

}
}
}

31. The graph algorithms within GAD use a simple struct to represent a directed arc.

〈Type definitions 11 〉 +≡
typedef struct {

int tip ; /∗ the vertex pointed to ∗/
int next ; /∗ the next arc from the vertex pointed from, or zero ∗/
} Arc;
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32. GAD filtering, part one. Recall that every matching is of type ri or cj or vk. For the computer,
it means that the girls are respectively the pij or cjk or rik items of the options ‘pij rik cjk’ that represent
the edges; the boys are respectively the rki or pij or cjk items. We access those edges only from the girls’
option lists, and the value of del tells us where the corresponding boy appears in each edge. (There’s also
delp , which indicates the unused part of that triple.)

〈Local variables 4 〉 +≡
register int b, g, boy , girl , n,nn , del , delp ;

33. Here’s how we check whether or not matching m is still feasible, given m and the current set of edges.

〈Apply GAD filtering to matching m; goto abort if there’s trouble 33 〉 ≡
if (showmatches ) fprintf (stderr , "GAD filtering for problem "O"d\n",m);
GADstart = mems ,GADtries ++;
o,mch [m + mstamp ] = 0; /∗ clear the flag that told us to do this check ∗/
o, n = mch [m + msize ],nn = n + n; /∗ get the size of this matching problem ∗/
switch (oo , var [mch [m]].name [0]) { /∗ what kind of girls do we have here? ∗/
case ’p’: del = +1, delp = +2; break;
case ’c’: del = −2, delp = −1; break;
case ’r’: del = +1, delp = −1; break;
}
〈Find a matching, or goto abort 34 〉;
GADone += mems −GADstart ;
〈Refine this matching problem, if it splits into independent parts 47 〉;
〈Purge any options that belong to different strong components 55 〉;

doneGAD : GADtot += mems −GADstart ;

This code is used in section 68.

34. Some of the girls and boys might have become inactive, because of forced moves since this matching
problem was set up, In such a case they already have their mates, and they’ll be “refined out” as part of
GAD filtering.

We begin by taking one pass over all the girls, trying to match up as many as we can. (Please excuse
sexist language. I’m too old to make actual passes.)

〈Find a matching, or goto abort 34 〉 ≡
for (b = n; b < nn ; b++) {
o, boy = mch [m + b];
if (o, var [boy ].pos < active ) oo , var [boy ].gmate = var [boy ].mark = 0;

/∗ every active boy is initially free ∗/
else o, var [boy ].mark = −2;
}
for (f = g = 0; g < n; g++) {
o, girl = mch [m + g];
if (o, var [girl ].pos ≥ active ) continue; /∗ an inactive girl has her mate ∗/
for (o, a = tet [girl ].down ; a 6= girl ; o, a = tet [a].down ) {
o, boy = tet [a + del ].itm ;
if (o,¬var [boy ].gmate ) break;

}
if (a 6= girl ) oo , var [girl ].bmate = boy , var [boy ].gmate = girl ;
else ooo , var [girl ].bmate = 0, var [girl ].parent = f, queue [f++] = girl ; /∗ f girls are free ∗/
}
if (f) 〈Use the Hopcroft–Karp algorithm to complete the matching, or goto abort 36 〉;

This code is used in section 33.
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35. The code here has essentially been transcribed from the program HOPCROFT-KARP, except that
I’ve (shockingly?) deleted most of the comments. Readers are encouraged to study the exposition in that
program, because many points of interest are discussed there.

〈Local variables 4 〉 +≡
register int f, qq ,marks ,fin level ;

36. 〈Use the Hopcroft–Karp algorithm to complete the matching, or goto abort 36 〉 ≡
if (showHK ) 〈Print the current matching 37 〉;
for (r = 1; f ; r++) {

if (showHK ) fprintf (stderr , "Beginning round "O"d...\n", r);
〈Build the dag of shortest augmenting paths (SAPs) 38 〉;
〈 If there are no SAPs, goto abort 41 〉;
〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 43 〉;
if (showHK ) {

fprintf (stderr , " ... "O"d pairs now matched (rank "O"d).\n", n− f,fin level );
〈Print the current matching 37 〉;

}
}

This code is used in section 34.

37. To report the matches-so-far, we simply show every boy’s mate.

〈Print the current matching 37 〉 ≡
{

for (p = n; p < nn ; p++) {
girl = var [mch [m + p]].gmate ;
fprintf (stderr , " "O"s", girl ? var [girl ].name : "???");

}
fprintf (stderr , "\n");
}

This code is used in section 36.

38. 〈Build the dag of shortest augmenting paths (SAPs) 38 〉 ≡
fin level = −1, k = 0; /∗ k entries have been compiled into tip and next ∗/
for (marks = l = i = 0, q = f ; ; l++) {

for (qq = q; i < qq ; i++) {
o, girl = queue [i];
if (var [girl ].pos ≥ active ) confusion ("inactive girl in SAP", girl );
for (o, a = tet [girl ].down ; a 6= girl ; o, a = tet [a].down ) {

oo , boy = tet [a + del ].itm , p = var [boy ].mark ;
if (p ≡ 0) 〈Enter boy into the dag 40 〉
else if (p ≤ l) continue;
if (showHK ) fprintf (stderr , " "O"s−>"O"s=>"O"s\n", var [boy ].name , var [girl ].name ,

var [girl ].bmate ? var [var [girl ].bmate ].name : "bot");
ooo , arc [++k].tip = girl , arc [k].next = var [boy ].arcs , var [boy ].arcs = k;

}
}
if (q ≡ qq ) break; /∗ stop if nothing new on the queue for the next level ∗/
}

This code is used in section 36.
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39. 〈Global variables 3 〉 +≡
int queue [maxn ]; /∗ girls seen during the breadth-first search ∗/
int marked [maxn ]; /∗ which boys have been marked ∗/
int dlink ; /∗ head of the list of free boys in the dag ∗/
Arc arc [maxn + maxn ]; /∗ suitable partners and links ∗/
int lboy [maxn ]; /∗ the boys being explored during the SAP demolition ∗/

40. 〈Enter boy into the dag 40 〉 ≡
{

if (fin level ≥ 0 ∧ var [boy ].gmate ) continue;
else if (fin level < 0 ∧ (o,¬var [boy ].gmate )) fin level = l, dlink = 0, q = qq ;
oo , var [boy ].mark = l + 1,marked [marks ++] = boy , var [boy ].arcs = 0;
if (o, var [boy ].gmate ) o, queue [q++] = var [boy ].gmate ;
else {

if (showHK ) fprintf (stderr , " top−>"O"s\n", var [boy ].name );
o, arc [++k].tip = boy , arc [k].next = dlink , dlink = k;

}
}

This code is used in section 38.

41. We have no SAPs if and only no free boys were found.

〈 If there are no SAPs, goto abort 41 〉 ≡
if (fin level < 0) {

if (showcauses ) fprintf (stderr , " problem "O"d has no matching\n",m);
GADone += mems −GADstart ;
GADtot += mems −GADstart ;
GADaborts ++;
goto abort ;
}

This code is used in section 36.

42. 〈Reset all marks to zero 42 〉 ≡
while (marks ) oo , var [marked [−−marks ]].mark = 0;

This code is used in section 43.
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43. 〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 43 〉 ≡
while (dlink ) {
o, boy = arc [dlink ].tip , dlink = arc [dlink ].next ;
l = fin level ;

enter level : o, lboy [l] = boy ;
advance : if (o, var [boy ].arcs ) {

o, girl = arc [var [boy ].arcs ].tip , var [boy ].arcs = arc [var [boy ].arcs ].next ;
o, b = var [girl ].bmate ;
if (¬b) 〈Augment the current matching and continue 44 〉;
if (o, var [b].mark < 0) goto advance ;
boy = b, l−−;
goto enter level ;

}
if (++l > fin level ) continue;
o, boy = lboy [l];
goto advance ;
}
〈Reset all marks to zero 42 〉;

This code is used in section 36.

44. At this point girl = g0 and boy = lboy [0] = b0 in an augmenting path. The other boys are lboy [1],
lboy [2], etc.

〈Augment the current matching and continue 44 〉 ≡
{

if (l) confusion ("free girl", l); /∗ free girls should occur only at level 0 ∗/
〈Remove g from the list of free girls 45 〉;
while (1) {

if (showHK )
fprintf (stderr , ""O"s "O"s−"O"s", l ? "," : " match", var [boy ].name , var [girl ].name );

o, var [boy ].mark = −1;
ooo , j = var [boy ].gmate , var [boy ].gmate = girl , var [girl ].bmate = boy ;
if (j ≡ 0) break; /∗ boy was free ∗/
o, girl = j, boy = lboy [++l];

}
if (showHK ) fprintf (stderr , "\n");
continue;
}

This code is used in section 43.

45. 〈Remove g from the list of free girls 45 〉 ≡
f−−; /∗ f is the number of free girls ∗/
o, j = var [girl ].parent ; /∗ where is girl in queue? ∗/
ooo , i = queue [f ], queue [j] = i, var [i].parent = j; /∗ OK to clobber queue [f ] ∗/

This code is used in section 44.
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46. GAD filtering, part two. Once a witness to a perfect matching is known, we can set up a directed
acyclic graph whose strong components tell us whether or not we can reduce the remaining problem.

GAD filtering applies in general to cases where boys outnumber girls. The dag that’s constructed is
tripartite in such a case, and it’s also somewhat complicated. But we’re dealing with the simple case when
boys and girls are equinumerous; so our dag is defined entirely on the set of boys. Boy b′ has an arc to boy
b 6= b′ if and only if b′ is adjacent to a girl mated to b.

If that dag isn’t strongly connected, we make progress! The boys in each of its strong components, and
their mates, form smaller matching problems whose solutions can be found independently, without losing any
solutions to the overall matching problem we began with. “Cross edges” between different strong components
can therefore be deleted. (Technically speaking, the strong components correspond to minimal Hall sets,
also known as elementary bigraphs.)

And we’re in luck, because of Robert E. Tarjan’s beautiful linear-time algorithm to find strong components.
The code here follows closely the tried and true implementation of his algorithm that can be found in the
program ROGET-COMPONENTS (part of The Stanford GraphBase).

Again I’ve (shockingly?) deleted most of the comments, and readers are encouraged to read the original
exposition.

〈Local variables 4 〉 +≡
register int stack , pboy ,newn ;

47. 〈Refine this matching problem, if it splits into independent parts 47 〉 ≡
〈Make all vertices unseen and all arcs untagged 49 〉;
〈Build the digraph for the current matching 48 〉;
r = stack = 0;
for (b = n; b < nn ; b++) {
o, v = mch [m + b];
if (o,¬var [v].rank ) { /∗ vertex/boy v is still unseen ∗/
〈Perform a depth-first search with v as the root, finding the strong components of all unseen vertices

reachable from v 50 〉;
}
}

This code is used in section 33.

48. 〈Build the digraph for the current matching 48 〉 ≡
for (k = 0, g = 0; g < n; g++) {
o, girl = mch [m + g];
if (o, var [girl ].pos ≥ active ) continue;
o, boy = var [girl ].bmate ;
for (o, a = tet [girl ].down ; a 6= girl ; o, a = tet [a].down ) {
o, pboy = tet [a + del ].itm ;
if (pboy 6= boy ) ooo , arc [++k].tip = boy , arc [k].next = var [pboy ].arcs , var [pboy ].arcs = k;

}
}

This code is used in section 47.

49. 〈Make all vertices unseen and all arcs untagged 49 〉 ≡
for (b = n; b < nn ; b++) {
o, boy = mch [m + b];
oo , var [boy ].rank = var [boy ].arcs = 0;
}

This code is used in section 47.
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50. 〈Perform a depth-first search with v as the root, finding the strong components of all unseen vertices
reachable from v 50 〉 ≡

{
o, var [v].parent = 0;
〈Make vertex v active 51 〉;
do 〈Explore one step from the current vertex v, possibly moving to another current vertex and

calling it v 52 〉 while (v);
}

This code is used in section 47.

51. 〈Make vertex v active 51 〉 ≡
oo , var [v].rank = ++r, var [v].link = stack , stack = v;
o, var [v].min = v;

This code is used in sections 50 and 52.

52. 〈Explore one step from the current vertex v, possibly moving to another current vertex and
calling it v 52 〉 ≡

{
o, a = var [v].arcs ; /∗ v’s first remaining untagged arc, if any ∗/
if (showT ) fprintf (stderr , " Tarjan sees "O"s(rank "O"d)−>"O"s\n", var [v].name , var [v].rank ,

a ? var [arc [a].tip ].name : "/\\");
if (a) {

oo , u = arc [a].tip , var [v].arcs = arc [a].next ; /∗ tag the arc from v to u ∗/
if (o, var [u].rank ) { /∗ we’ve seen u already ∗/

if (oo , var [u].rank < var [var [v].min ].rank ) o, var [v].min = u;
/∗ non-tree arc, just update var [v].min ∗/

} else { /∗ u is presently unseen ∗/
o, var [u].parent = v; /∗ the arc from v to u is a new tree arc ∗/
v = u; /∗ u will now be the current vertex ∗/
〈Make vertex v active 51 〉;

}
} else { /∗ all arcs from v are tagged, so v matures ∗/
o, u = var [v].parent ; /∗ prepare to backtrack in the tree of active vertices ∗/
if (var [v].min ≡ v) 〈Remove v and all its successors on the active stack from the tree, and mark

them as a strong component of the graph 53 〉
else /∗ the arc from u to v has just matured, making var [v].min visible from u ∗/
if (ooo , var [var [v].min ].rank < var [var [u].min ].rank ) o, var [u].min = var [v].min ;
v = u; /∗ the former parent of v is the new current vertex v ∗/

}
}

This code is used in section 50.
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53. 〈Remove v and all its successors on the active stack from the tree, and mark them as a strong
component of the graph 53 〉 ≡

{
t = stack ;
o, stack = var [v].link ;
for (newn = 0, p = t; ; o, p = var [p].link ) {

o, var [p].rank = maxn + mchptr ; /∗ “infinity” ∗/
newn ++;
if (p ≡ v) break;

}
if (newn ≡ n) goto doneGAD ; /∗ sorry, there’s no refinement yet ∗/
if (newn > 1 ∨ (o, var [v].pos < active )) {
〈Create a new matching subproblem for this strong component 54 〉;
if (newn ≡ 1) {

o, girl = var [v].gmate ;
for (o, a = tet [girl ].down ; a 6= girl ; o, a = tet [a].down )

if (o, tet [a + del ].itm ≡ v) break;
if (a ≡ girl ) confusion ("lost option", girl );
opt = a &−4;
if (o,¬tet [opt ].itm ) oo , tet [opt ].itm = 1, forced [forcedptr ++] = opt ;

}
}
}

This code is used in section 52.

54. 〈Create a new matching subproblem for this strong component 54 〉 ≡
if (mchptr + mextra + newn + newn ≥ mchsize ) {

fprintf (stderr , "Match table overflow (mchsize="O"d)!\n",mchsize );
exit (−666);
}
oo ,mch [mchptr + mstamp ] = 0,mch [mchptr + mparent ] = m,mch [mchptr + msize ] = newn ;
for (k = mchptr ; ; o, k++, t = var [t].link ) {
o,mch [k + newn ] = t;
ooo , girl = var [t].gmate ,mch [k] = girl , var [girl ].matching = mchptr ;
if (t ≡ v) break;
}
if (showsubproblems ) print match prob(mchptr );
o, k = mchptr ,mchptr += mextra + newn + newn ,mch [mchptr + mprev ] = k;
if (mchptr > maxmchptr ) maxmchptr = mchptr ;

This code is used in section 53.
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55. Confession: I inserted a trick in this code, by adding mchptr to maxn when resetting the ranks of boys
a new matching problem. I hope the reader will agree that it’s a good trick.

〈Purge any options that belong to different strong components 55 〉 ≡
for (g = 0; g < n; g++) {
o, girl = mch [m + g];
if (o, var [girl ].pos ≥ active ) continue;
for (o, a = tet [girl ].down ; a 6= girl ; o, a = tet [a].down ) {
o, boy = tet [a + del ].itm ;
if (oo ,maxn + var [girl ].matching 6= var [boy ].rank ) { /∗ different subproblems ∗/

opt = a &−4; 〈Delete the superfluous option opt 58 〉;
oo , t = var [tet [a + del ].itm ].matching ;
if (o,¬mch [t + mstamp ])

oo ,mch [t + mstamp ] = 1, tofilter [tofiltertail ] = t, tofiltertail = (tofiltertail + 1) & qmod ;
oo , t = var [tet [a + delp ].itm ].matching ;
if (o,¬mch [t + mstamp ])

oo ,mch [t + mstamp ] = 1, tofilter [tofiltertail ] = t, tofiltertail = (tofiltertail + 1) & qmod ;
}

}
}

This code is used in section 33.
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56. Hiding and unhiding. Now it’s time to implement the basic operations by which options are
deleted and later undeleted. The philosophy of “dancing links” operates here, because we are deleting from
doubly linked lists.

To hide a tetrad, we simply delete it from the list that it’s in. To hide an option, we hide all three of its
tetrads. Unhiding does this in reverse.

Actually it’s not quite as simple as it may sound, because deleting from a variable’s list changes the length
of that list. Therefore we schedule GAD filtering for that variable’s matching.

Furthermore, the new length might be 1, in which case we schedule a forced move.
The new length might even be 0. In that case we set foundzero = v; but we don’t abort immediately,

because it’s difficult to “partially undo” a complex sequence of updates. Later, when we reach a quiet time,
foundzero will tell us to abort, after which all changes will be properly undone.

〈Hide the tetrad t 56 〉 ≡
oo , p = tet [t].up , q = tet [t].down , r = tet [t].itm ;
oo , tet [p].down = q, tet [q].up = p;
oo , l = tet [r].len − 1, tet [r].len = l;
o, s = var [r].matching ;
if (o,¬mch [s + mstamp ])

oo ,mch [s + mstamp ] = 1, tofilter [tofiltertail ] = s, tofiltertail = (tofiltertail + 1) & qmod ;
if (l ≤ 1) {

if (l ≡ 0) oo , var [r].tally ++, zerofound = r;
else { /∗ prepare to force r ∗/

o, p = tet [r].down &−4;
if (o,¬tet [p].itm ) oo , tet [p].itm = 1, forced [forcedptr ++] = p;

}
}

This code is used in sections 58, 60*, and 81*.

57. 〈Unhide the tetrad t 57 〉 ≡
oo , p = tet [t].up , q = tet [t].down , r = tet [t].itm ;
oo , tet [p].down = tet [q].up = t;
oo , l = tet [r].len + 1, tet [r].len = l;

This code is used in sections 59, 61*, and 82*.

58. 〈Delete the superfluous option opt 58 〉 ≡
{

if (showprunes ) fprintf (stderr , " pruning "O"s\n", tet [opt ].aux );
o, trail [trailptr ++] = opt + pruned ;
o, tet [opt ].up = 1; /∗ mark a deleted option ∗/
zerofound = 0;
t = opt + 1; 〈Hide the tetrad t 56 〉;
t = opt + 2; 〈Hide the tetrad t 56 〉;
t = opt + 3; 〈Hide the tetrad t 56 〉;
if (zerofound ) {

if (showcauses ) fprintf (stderr , " no options for "O"s\n", var [zerofound ].name );
goto abort ;

}
}

This code is used in section 55.
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59. 〈Undelete the superfluous option opt 59 〉 ≡
{
t = opt + 3; 〈Unhide the tetrad t 57 〉;
t = opt + 2; 〈Unhide the tetrad t 57 〉;
t = opt + 1; 〈Unhide the tetrad t 57 〉;
o, tet [opt ].up = 0;
}

This code is used in section 70.
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60*. Now we implement the fundamental mechanism that contributes an option to the final exact cover,
causing three variables to become inactive (thus “frozen” until we backtrack later).

The main point of interest is that we keep the three option lists intact, so that we can undo this operation
later. But we hide everything else in sight.

〈Force the option opt 60* 〉 ≡
{

if (showmoves ) fprintf (stderr , " forcing "O"s\n", tet [opt ].aux );
if (o, tet [opt ].up) {

if (showcauses ) fprintf (stderr , " option "O"s was deleted\n", tet [opt ].aux );
goto abort ;

}
zerofound = 0;
o, trail [trailptr ++] = opt ;
〈Check for swap prevention 81* 〉;
ooo , pij = tet [opt + 1].itm , rik = tet [opt + 2].itm , cjk = tet [opt + 3].itm ;
o,m = var [pij ].matching ;
if (¬mch [m + mstamp ])

oo ,mch [m + mstamp ] = 1, tofilter [tofiltertail ] = m, tofiltertail = (tofiltertail + 1) & qmod ;
o,m = var [rik ].matching ;
if (¬mch [m + mstamp ])

oo ,mch [m + mstamp ] = 1, tofilter [tofiltertail ] = m, tofiltertail = (tofiltertail + 1) & qmod ;
o,m = var [cjk ].matching ;
if (¬mch [m + mstamp ])

oo ,mch [m + mstamp ] = 1, tofilter [tofiltertail ] = m, tofiltertail = (tofiltertail + 1) & qmod ;
〈Make pij , rik , cjk inactive 62 〉;
for (o, a = tet [pij ].down ; a 6= pij ; o, a = tet [a].down )

if (a 6= opt + 1) {
t = a + 1; 〈Hide the tetrad t 56 〉;
t = a + 2; 〈Hide the tetrad t 56 〉;

}
for (o, a = tet [rik ].down ; a 6= rik ; o, a = tet [a].down )

if (a 6= opt + 2) {
t = a + 1; 〈Hide the tetrad t 56 〉;
t = a− 1; 〈Hide the tetrad t 56 〉;

}
for (o, a = tet [cjk ].down ; a 6= cjk ; o, a = tet [a].down )

if (a 6= opt + 3) {
t = a− 2; 〈Hide the tetrad t 56 〉;
t = a− 1; 〈Hide the tetrad t 56 〉;

}
if (zerofound ) {

if (showcauses ) fprintf (stderr , " no options for "O"s\n", var [zerofound ].name );
goto abort ;

}
}

This code is used in sections 67 and 68.
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61*. 〈Unforce the option opt 61* 〉 ≡
{

ooo , pij = tet [opt + 1].itm , rik = tet [opt + 2].itm , cjk = tet [opt + 3].itm ;
for (o, a = tet [cjk ].up ; a 6= cjk ; o, a = tet [a].up)

if (a 6= opt + 3) {
t = a− 2; 〈Unhide the tetrad t 57 〉;
t = a− 1; 〈Unhide the tetrad t 57 〉;

}
for (o, a = tet [rik ].up ; a 6= rik ; o, a = tet [a].up)

if (a 6= opt + 2) {
t = a− 1; 〈Unhide the tetrad t 57 〉;
t = a + 1; 〈Unhide the tetrad t 57 〉;

}
for (o, a = tet [pij ].up ; a 6= pij ; o, a = tet [a].up)

if (a 6= opt + 1) {
t = a + 2; 〈Unhide the tetrad t 57 〉;
t = a + 1; 〈Unhide the tetrad t 57 〉;

}
〈Check for swap unprevention 82* 〉;
active += 3; /∗ hooray for the sparse-set technique ∗/
}

This code is used in section 70.

62. This step sets the mates so that GAD filtering will know how to deal with these newly inactive variables.

〈Make pij , rik , cjk inactive 62 〉 ≡
o, var [pij ].bmate = rik , var [pij ].gmate = cjk ;
o, p = var [pij ].pos ;
if (p ≥ active ) confusion ("inactive pij", pij );
o, v = vars [−−active ];
oo , vars [active ] = pij , var [pij ].pos = active ;
o, vars [p] = v, var [v].pos = p;
o, var [rik ].bmate = cjk , var [rik ].gmate = pij ;
o, p = var [rik ].pos ;
if (p ≥ active ) confusion ("inactive rik", rik );
o, v = vars [−−active ];
o, vars [active ] = rik , var [rik ].pos = active ;
o, vars [p] = v, var [v].pos = p;
o, var [cjk ].bmate = pij , var [cjk ].gmate = rik ;
o, p = var [cjk ].pos ;
if (p ≥ active ) confusion ("inactive cjk", cjk );
o, v = vars [−−active ];
o, vars [active ] = cjk , var [cjk ].pos = active ;
o, vars [p] = v, var [v].pos = p;

This code is used in section 60*.

63. 〈Local variables 4 〉 +≡
int bvar , opt , pij , rik , cjk , vv , zerofound ,maxtally ;



28 THE SEARCH TREE PARTIAL-LATIN-GAD-SWAP §64

64. The search tree. As stated above, the backtracking in this program traverses an implicit search
tree whose structure is somewhat different from that of DLX, because “forced moves” are incorporated into
the tree node in which they were forced. Filtering operations are also included in each node. (Thus the
structure conforms more to some of the CSP-solving programs I’ve been reading.)

The basic idea is to keep going until forcing and filtering give no further information. Then we choose a
variable on which to branch. If that variable has t possible values, we implicitly branch into t subtrees, one
at a time. Each of those subtrees begins with a forced move to set one of those t values; then we let things
play out until again becoming quiescent (and branching again), or until we actually find a solution (oh happy
day), or until a contradiction arises. In the latter case, the program says ‘goto abort ’; we carefully undo all
the steps since the beginning of this subnode, then move to the next of the t alternatives. Eventually we’ll
have tried all t of the possibilities; it will be time to abort again, until we’ve explored the entire tree.

65. To launch this process, essentially at the root node, we check to see if any forced moves or contradictions
were present in the original problem. (It’s easy to construct partial latin squares that obviously have no
completion.) That gives us the opportunity to reach our first stable state and we’ll be ready to make the
first branch.

〈Prime the pump at the root node 65 〉 ≡
o,move [0].mchptrstart = mchptr ;
for (v = 1; v ≤ totvars ; v++)

if (o, tet [v].len ≤ 1) {
if (¬tet [v].len ) {

if (showcauses ) fprintf (stderr , " "O"s already has no options!\n", var [v].name );
goto abort ;

}
o, t = tet [v].down &−4; /∗ schedule a forced move, but don’t do it yet ∗/
if (o,¬tet [t].itm ) oo , tet [t].itm = 1, forced [forcedptr ++] = t;

}
This code is used in section 72.

66. When we are ready to branch, we use the MRV heuristic (“minimum remaining values”), by finding
an active variable with the smallest domain. This domain should have at least two elements, because of our
forcing strategy. And fortunately it also seems to have at most two elements, in most of the problems that
I’m particularly anxious to solve.

Of course I do check to see that no forced moves have been overlooked. Bugs lurk everywhere and I must
constantly be on the lookout for flaws in my reasoning.

〈Choose the variable for branching 66 〉 ≡
if (showdomains ) fprintf (stderr , "Branching at level "O"d:", level );
for (t = totvars , k = 0; k < active ; k++) {
o, v = vars [k];
if (showdomains ) fprintf (stderr , " "O"s("O"d)", var [v].name , tet [v].len );
if (o, tet [v].len ≤ t) {

if (tet [v].len ≤ 1) confusion ("missed force", v);
if (tet [v].len < t) oo , bvar = v, t = tet [v].len ,maxtally = var [v].tally ;
else if (o, var [v].tally > maxtally ) o, bvar = v, t = tet [v].len ,maxtally = var [v].tally ;

}
}
if (showdomains ) fprintf (stderr , "\n");

This code is used in section 67.
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67. Here now is the main loop, which is the context within which most of this program operates.

〈Main loop 67 〉 ≡
choose : level ++;

if (level > maxl ) maxl = level ;
〈Choose the variable for branching 66 〉;
o,move [level ].mchptrstart = mchptr ,move [level ].trailstart = trailptr ;
o,move [level ].branchvar = bvar ,move [level ].choices = t;
o,move [level ].curchoice = tet [bvar ].down ,move [level ].choiceno = 1;

enternode : move [level ].nodeid = ++nodes ;
if (sanity checking ) sanity ( );
if (shownodes ) {
v = move [level ].branchvar ;
u = tet [move [level ].curchoice + (var [v].name [0] ≡ ’c’ ? −2 : +1)].itm ;
fprintf (stderr , "L"O"d: "O"s="O"s ("O"d of "O"d), node "O"lld, "O"lld mems\n", level ,

var [v].name , var [u].name ,move [level ].choiceno ,move [level ].choices ,move [level ].nodeid ,mems );
}
if (mems ≥ thresh ) {

thresh += delta ;
if (showlong ) print state ( );
else print progress ( );
}
o, opt = move [level ].curchoice &−4;
〈Force the option opt 60* 〉;

mainplayer : 〈Carry out all scheduled forcings and filterings until none remain 68 〉;
if (active < mina ) mina = active ;
if (active ) goto choose ;
count ++;
if (showsols ) 〈Print a solution 86 〉;

abort : if (level ) {
〈Cancel all scheduled forcing and filtering 69 〉;
〈Unrefine all refinements made at this level 71 〉;
〈Roll back the trail to the beginning of this level 70 〉;
if (o,move [level ].choiceno < move [level ].choices ) {

oo ,move [level ].curchoice = tet [move [level ].curchoice ].down ;
o,move [level ].choiceno ++;
goto enternode ;

}
level −−;
if (showcauses ) fprintf (stderr , "done with branches from node "O"lld\n",move [level ].nodeid );
goto abort ;
}

This code is used in section 72.
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68. A queue is used for matchings to be filtered, because we want to maximize the time between initial
scheduling and actual filtering. (Filtering does more when fewer options remain.) On the other hand, there’s
no reason to delay a forcing, so we use a stack for that.

〈Carry out all scheduled forcings and filterings until none remain 68 〉 ≡
while (1) {

while (forcedptr ) {
o, opt = forced [−−forcedptr ];
o, tet [opt ].itm = 0; /∗ this option is no longer on the forced stack ∗/
〈Force the option opt 60* 〉;

}
if (tofilterhead ≡ tofiltertail ) break;
o,m = tofilter [tofilterhead ], tofilterhead = (tofilterhead + 1) & qmod ;
o,mch [m + mstamp ] = 0; /∗ this matching is no longer in the tofilter queue ∗/
〈Apply GAD filtering to matching m; goto abort if there’s trouble 33 〉;
}

This code is used in section 67.

69. 〈Cancel all scheduled forcing and filtering 69 〉 ≡
while (forcedptr ) {
o, opt = forced [−−forcedptr ];
o, tet [opt ].itm = 0;
}
while (tofilterhead 6= tofiltertail ) {
o,m = tofilter [tofilterhead ], tofilterhead = (tofilterhead + 1) & qmod ;
o,mch [m + mstamp ] = 0;
}

This code is used in section 67.

70. 〈Roll back the trail to the beginning of this level 70 〉 ≡
o; /∗ fetch move [level ].trailstart and move [level ].mchptrstart ∗/
while (trailptr 6= move [level ].trailstart ) {
o, opt = trail [−−trailptr ] &−4;
if (trail [trailptr ] & #3) 〈Undelete the superfluous option opt 59 〉
else 〈Unforce the option opt 61* 〉;
}

This code is used in section 67.

71. 〈Unrefine all refinements made at this level 71 〉 ≡
while (mchptr > move [level ].mchptrstart ) {

oo ,m = mch [mchptr + mprev ], n = mch [m + msize ], p = mch [m + mparent ];
for (k = 0; k < n; k++) oo , var [mch [m + k]].matching = p;
mchptr = m;
}
if (mchptr 6= move [level ].mchptrstart ) confusion ("mchptrstart",mchptr −move [level ].mchptrstart );

This code is used in section 67.

72. 〈Solve the problem 72 〉 ≡
〈Prime the pump at the root node 65 〉;
goto mainplayer ;
〈Main loop 67 〉;

This code is used in section 1.
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73. Learning from previous runs. The tally counts have turned out to be tremendously helpful. But
they have no effect whatsoever on the first dozen or so levels of the tree, except after the algorithm has been
run using bad choices for awhile.

So I’m experimenting with the idea of running for awhile, then saving the tallies-so-far and restarting.
The following subroutine stores the current tallies, for a problem with z variables, in a file whose name is

‘plgadz.tally’.

#define tallyfiletemplate "plgad"O"d.tally"

〈Subroutines 5 〉 +≡
void save tallies (int z)
{

register int v;

sprintf (tallyfilename , tallyfiletemplate , z);
tallyfile = fopen (tallyfilename , "w");
if (¬tallyfile ) {

fprintf (stderr , "I can’t open file ‘"O"s’ for writing!\n", tallyfilename );
} else {

for (v = 1; v ≤ z; v++) fprintf (tallyfile , ""O"20lld "O"s\n", var [v].tally , var [v].name );
fclose (tallyfile );
fprintf (stderr , "Tallies saved in file ‘"O"s’.\n", tallyfilename );

}
}

74. 〈Global variables 3 〉 +≡
FILE ∗tallyfile ;
char tallyfilename [32];

75. We check at the beginning whether a tally file is available.

〈 Initialize the data structures 15 〉 +≡
sprintf (tallyfilename , tallyfiletemplate , totvars );
tallyfile = fopen (tallyfilename , "r");
if (tallyfile ) {

for (v = 1; v ≤ totvars ; v++) {
if (¬fgets (buf , bufsize , tallyfile )) break;
if (var [v].name [0] 6= buf [21] ∨ var [v].name [1] 6= buf [22] ∨ var [v].name [2] 6= buf [23]) break;
sscanf (buf , ""O"20lld",&var [v].tally );

}
if (v ≤ totvars )

for (v−−; v ≥ 1; v−−) var [v].tally = 0; /∗ oops, wrong file ∗/
else fprintf (stderr , "(tallies initialized from file ‘"O"s’)\n", tallyfilename );
}
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76*. A hoped-for speedup. We might perhaps be able to cut the running time approximately in half,
if it turns out that every solution contains a 2× 2 latin square in rows (i, i′) and columns (j, j′). The entries
in that 2× 2 square can then be swapped, and we can obtain all solutions by looking at only half of them.

For example, consider the 4× 4 problem

12..
21..
....
....

, which has 8 solutions

1234
2143
3412
4321

,

1234
2143
3421
4312

,

1234
2143
4312
3421

,

1234
2143
4321
3412

,

1243
2134
3412
4321

,

1243
2134
3421
4312

,

1243
2134
4312
3421

,

1243
2134
4321
3412

.

Since this one has three independent 2× 2 subsquares, we can reduce all eight solutions to a single one.
The general idea is to find sets of six indices i, j, k, i′, j′, k′ such that i < i′, j < j′, k < k′, and to forbid

all solutions that contain all four of the options

ijk, ij′k′, i′jk′, i′j′k.

(That would rule out all but the last solution above.)
The situation gets more complicated when the 2× 2 subsquares overlap. Consider the 5× 5 problem

.....

..453

.5.24

.35.2

.423.

, which has 5 solutions

12345
21453
35124
43512
54231

,

21345
12453
35124
43512
54231

,

32145
21453
15324
43512
54231

,

42315
21453
35124
13542
54231

,

52341
21453
35124
43512
14235

.

The first one was five swappable subsquares, but all five of them are ruled out. The other four solutions each
have one swappable subsquare, and that subsquare is perfectly legal. So in this case the number of solutions
goes down only from 5 to 4.

On the other hand, if we change the order of the digits in that example, by complementing them with
respect to 6, we get

.....

..213

.1.42

.31.4

.243.

, which has 5 solutions

54321
45213
31542
23154
12435

,

45321
54213
31542
23154
12435

,

34521
45213
51342
23154
12435

,

24351
45213
31542
53124
12435

,

14325
45213
31542
23154
52431

.

In this example only the first case is legal; the other four cases are omitted.

77*. In general, let’s say that two latin squares are “swap-equivalent” if we can transform one to the other
by some sequence of 2× 2 swaps. All five of the solutions in our 5× 5 example are swap-equivalent; in fact,
the first one gives any of the other four after just one swap.

If we replace an illegal 2× 2 subsquare by a legal one, we increase the entries of the overall square lexico-
graphically. Therefore we don’t paint ourselves into a corner: every swap-equivalence class is represented by
at least one solution.

(This idea is a special case of the general principle of reducing solutions by endomorphisms, as discussed
on pages 107–111 of The Art of Computer Programming, Volume 4, Fascicle 6.)
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78*. To implement these ideas, we must start by discovering all of the potential places for swapping.

〈 Initialize the data structures 15 〉 +≡
{

register ii , jj , kk ;

if (showprunes ) fprintf (stderr , "potential swaps:\n");
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
if (o, P [i][j]) {

for (k = 0; k < n; k++)
if (o, optloc [i][j][k]) {

for (jj = j + 1; jj < n; jj ++)
if (o, P [i][jj ]) {

for (kk = k + 1; kk < n; kk ++)
if (o, optloc [i][jj ][kk ]) {

for (ii = i + 1; ii < n; ii ++)
if (o, optloc [ii ][j][kk ]) {

if (o, optloc [ii ][jj ][k]) {
〈Create the swap record for (i, j, k, i′, j′, k′) 79* 〉;
if (showprunes ) print swap quad (swapptr − swapitemsize + 4);

}
}

}
}

}
}

}
fprintf (stderr , "(I found "O"d potential swaps)\n", swapcount );
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79*. Each possible swap record will occupy 17 positions of the swap array. The first four of these point
respectively to options ijk, ij′k′, i′jk′, and i′j′k. The next is a counter, which will trigger the appropriate
action when it gets large enough. Then come four entries of the form (count , inc .next ), which are commands
linked to the four options; they mean “add inc to swap(count), then go to swap(next) for the next such
command.”

The down field of an option links to the quadruples containing that option.

#define swapitemsize 17
#define maxswaps 100000

〈Create the swap record for (i, j, k, i′, j′, k′) 79* 〉 ≡
{

if (++swapcount ≥ maxswaps ) {
fprintf (stderr , "Too many swaps! (max="O"d)\n",maxswaps );
exit (−668);

}
oo , swap [swapptr ] = optloc [i][j][k];
oo , swap [swapptr + 1] = optloc [i][jj ][kk ];
oo , swap [swapptr + 2] = optloc [ii ][j][kk ];
oo , swap [swapptr + 3] = optloc [ii ][jj ][k];
o, swap [swapptr + 5] = swapptr + 4;
o, swap [swapptr + 6] = #10;
oo , swap [swapptr + 7] = tet [optloc [i][j][k]].down ;
o, tet [optloc [i][j][k]].down = swapptr + 5;
o, swap [swapptr + 8] = swapptr + 4;
o, swap [swapptr + 9] = #11;
oo , swap [swapptr + 10] = tet [optloc [i][jj ][kk ]].down ;
o, tet [optloc [i][jj ][kk ]].down = swapptr + 8;
o, swap [swapptr + 11] = swapptr + 4;
o, swap [swapptr + 12] = #12;
oo , swap [swapptr + 13] = tet [optloc [ii ][j][kk ]].down ;
o, tet [optloc [ii ][j][kk ]].down = swapptr + 11;
o, swap [swapptr + 14] = swapptr + 4;
o, swap [swapptr + 15] = #13;
oo , swap [swapptr + 16] = tet [optloc [ii ][jj ][k]].down ;
o, tet [optloc [ii ][jj ][k]].down = swapptr + 14;
swapptr += swapitemsize ;
}

This code is used in section 78*.

80*. 〈Subroutines 5 〉 +≡
void print swap quad (int p)
{

fprintf (stderr , " "O"s "O"s "O"s "O"s "O"02x\n", tet [swap [p− 4]].aux , tet [swap [p− 3]].aux ,
tet [swap [p− 2]].aux , tet [swap [p− 1]].aux , swap [p]);

}
void print swap list (int t)
{

register int q;

fprintf (stderr , "swap quads for "O"s:\n", tet [t].aux );
for (q = tet [t].down ; q; q = swap [q + 2]) print swap quad (swap [q]);
}
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81*. The mechanism for avoiding forbidden quadruples of options is similar to what we’ve done before:
Whenever an option is forced, we add to the counter for each of the quadruples that contain it. And if that
counter reaches three, we’ll hide the fourth option. (Each option is well separated from the options that
participate in other parts of the forcing operation.)

The up field of an option is set nonzero when that option has been hidden although its variables may be
active.

When we fetch three consecutive items in the swap array, the cost is only two mems.
I hope the reader enjoys looking into the code in this step!

〈Check for swap prevention 81* 〉 ≡
stack = 0;
for (o, q = tet [opt ].down ; q; o, q = swap [q + 2]) {

oo , p = swap [q], swap [p] += swap [q + 1]; /∗ see the note about mems above ∗/
if (swap [p] ≥ #30) { /∗ we’ve chosen three options of a quad ∗/

o, t = swap [p + #32− swap [p]]; /∗ the unchosen option(!) ∗/
o, tip [stack ++] = t;

}
}
while (stack ) {
o, t = tip [−−stack ];
oo , tet [t].up ++;
if (tet [t].up > 1) continue; /∗ option t was already hidden ∗/
ooo , pij = tet [t + 1].itm , rik = tet [t + 2].itm , cjk = tet [t + 3].itm ;
if ((o, var [pij ].pos ≥ active ) ∨ (o, var [rik ].pos ≥ active ) ∨ (o, var [cjk ].pos ≥ active )) continue;

/∗ option t isn’t active ∗/
if (showprunes ) fprintf (stderr , "swap disables "O"s\n", tet [t].aux );
t++;
〈Hide the tetrad t 56 〉;
t++;
〈Hide the tetrad t 56 〉;
t++;
〈Hide the tetrad t 56 〉;
}

This code is used in section 60*.
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82*. 〈Check for swap unprevention 82* 〉 ≡
stack = 0;
for (o, q = tet [opt ].down ; q; o, q = swap [q + 2]) {
o, p = swap [q];
if (swap [p] ≥ #30) { /∗ we’ve chosen three options of a quad ∗/
o, t = swap [p + #32− swap [p]]; /∗ the unchosen option(!) ∗/
o, tip [stack ++] = t;

}
o, swap [p] −= swap [q + 1]; /∗ see the note about mems above ∗/
}
for (s = 0; s < stack ; s++) { /∗ unhide in the opposite order ∗/
o, t = tip [s];
oo , tet [t].up−−;
if (tet [t].up) continue; /∗ option t had already been hidden ∗/
ooo , pij = tet [t + 1].itm , rik = tet [t + 2].itm , cjk = tet [t + 3].itm ;
if ((o, var [pij ].pos ≥ active ) ∨ (o, var [rik ].pos ≥ active ) ∨ (o, var [cjk ].pos ≥ active )) continue;

/∗ option t wasn’t active ∗/
t += 3;
〈Unhide the tetrad t 57 〉;
t−−;
〈Unhide the tetrad t 57 〉;
t−−;
〈Unhide the tetrad t 57 〉;
}

This code is used in section 61*.

83*. 〈Global variables 3 〉 +≡
int optloc [maxn ][maxn ][maxn ];
int swapcount , swapptr ;
int swap [swapitemsize ∗maxswaps ];
int tip [maxn ∗maxn ∗maxn ];
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84*. Miscellaneous loose ends. In a long run, it’s nice to know how much of the search tree has
been explored. The computer’s best guess, based on the assumption that the tree-so-far is typical of the
tree-as-a-whole, is computed by the following routine copied from DLX1.

〈Subroutines 5 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count );
for (f = 0.0, fd = 1.0, l = 1; l < level ; l++) {
k = move [l].choiceno , d = move [l].choices ;
fd ∗= d, f += (k − 1)/fd ; /∗ choice at level l is k of d ∗/
fprintf (stderr , " "O"c"O"c", encode (k), encode (d));

}
fprintf (stderr , " "O".5f\n", f + 0.5/fd );
}

85. A longer progress report shows the entire move stack.

〈Subroutines 5 〉 +≡
void print state (void)
{

register int l, v;

fprintf (stderr , "Current state (level "O"d):\n", level );
for (l = 1; l ≤ level ; l++) {

switch (move [l].curchoice & #3) {
case 1: case 2: v = tet [move [l].curchoice + 1].itm ; break;
case 3: v = tet [move [l].curchoice − 2].itm ; break;
}
fprintf (stderr , " "O"s="O"s ("O"d of "O"d), node "O"lld\n", var [move [l].branchvar ].name ,

var [v].name ,move [l].choiceno ,move [l].choices ,move [l].nodeid );
}
fprintf (stderr , " "O"lld solution"O"s, "O"lld mems, maxl "O"d, mina "O"d so far.\n",

count , count ≡ 1 ? "" : "s",mems ,maxl ,mina );
}
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86. 〈Print a solution 86 〉 ≡
{

printf ("Solution #"O"lld:\n", count );
for (t = 0; t < trailptr ; t++)

if ((trail [t] & #3) ≡ 0) {
opt = trail [t];
i = decode (tet [opt ].aux [0]);
j = decode (tet [opt ].aux [1]);
k = decode (tet [opt ].aux [2]);
board [i− 1][j − 1] = k;

}
for (i = 0; i < originaln ; i++) {

for (j = 0; j < originaln ; j++) printf (""O"c", encode (board [i][j]));
printf ("\n");

}
print state ( );
}

This code is used in section 67.

87. And all’s well that ends well. (Unless there was a bug.)

〈Say farewell 87 〉 ≡
save tallies (totvars );
fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu mems, "O"llu nodes.\n", count ,

count ≡ 1 ? "" : "s",mems ,nodes );
fprintf (stderr , "(GAD time "O"llu+"O"llu, "O"llu/"O"llu aborted;",GADone ,

GADtot −GADone ,GADaborts ,GADtries );
fprintf (stderr , " maxl="O"d, mina="O"d, maxmchptr="O"d)\n",maxl ,mina ,maxmchptr );

This code is used in section 1.
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88*. Index.

The following sections were changed by the change file: 17, 60, 61, 76, 77, 78, 79, 80, 81, 82, 83, 84, 88.

a: 4.
abort : 41, 58, 60*, 64, 65, 67.
active : 12, 13, 15, 19, 28, 30, 34, 38, 48, 53, 55,

61*, 62, 66, 67, 81*, 82*.
advance : 43.
Arc: 31, 39.
arc : 38, 39, 40, 43, 48, 52.
arcs : 12, 38, 40, 43, 48, 49, 52.
argc : 1, 2.
aux : 11, 17*, 19, 26, 29, 58, 60*, 80*, 81*, 86.
b: 32.
bmate : 12, 34, 38, 43, 44, 48, 62.
board : 1, 6, 9, 86.
boy : 32, 34, 38, 40, 43, 44, 48, 49, 55.
branchvar : 27, 67, 85.
buf : 1, 6, 75.
bufsize : 1, 6, 75.
bvar : 63, 66, 67.
C: 1.
c: 84*.
choiceno : 27, 67, 84*, 85.
choices : 27, 67, 84*, 85.
choose : 67.
cjk : 60*, 61*, 62, 63, 81*, 82*.
confusion : 5, 22, 23, 24, 38, 44, 53, 62, 66, 71.
count : 3, 67, 84*, 85, 86, 87.
curchoice : 27, 67, 85.
d: 84*.
decode : 1, 6, 86.
del : 32, 33, 34, 38, 48, 53, 55.
delp : 32, 33, 55.
delta : 3, 67.
dlink : 39, 40, 43.
doneGAD : 33, 53.
down : 11, 15, 17*, 18, 19, 30, 34, 38, 48, 53, 55,

56, 57, 60*, 65, 67, 79*, 80*, 81*, 82*.
encode : 1, 6, 16, 17*, 84*, 86.
enter level : 43.
enternode : 67.
exit : 6, 15, 21, 54, 79*.
f : 35, 84*.
fclose : 73.
fd : 84*.
fgets : 6, 75.
filler : 12.
fin level : 35, 36, 38, 40, 41, 43.
flaw : 5.
fopen : 73, 75.
forced : 26, 28, 53, 56, 65, 68, 69.
forcedptr : 26, 28, 53, 56, 65, 68, 69.

foundzero : 56.
fprintf : 5, 6, 15, 19, 21, 25, 26, 29, 30, 33, 36, 37,

38, 40, 41, 44, 52, 54, 58, 60*, 65, 66, 67, 73,
75, 78*, 79*, 80*, 81*, 84*, 85, 87.

g: 32.
GADaborts : 3, 41, 87.
GADone : 3, 33, 41, 87.
GADstart : 3, 33, 41.
GADtot : 3, 33, 41, 87.
GADtries : 3, 33, 87.
girl : 32, 34, 37, 38, 43, 44, 45, 48, 53, 54, 55.
gmate : 12, 34, 37, 40, 44, 53, 54, 62.
i: 4.
ii : 78*, 79*.
itm : 11, 17*, 18, 34, 38, 48, 53, 55, 56, 57, 60*,

61*, 65, 67, 68, 69, 81*, 82*, 85.
j: 4.
jj : 78*, 79*.
k: 4, 25, 26, 29, 30, 84*.
kk : 78*, 79*.
l: 4, 29, 30, 84*, 85.
lboy : 39, 43, 44.
len : 18, 19, 30, 56, 57, 65, 66.
level : 28, 30, 66, 67, 70, 71, 84*, 85.
link : 12, 51, 53, 54.
m: 4, 25.
main : 1.
mainplayer : 67, 72.
malloc : 15.
mark : 12, 34, 38, 40, 42, 43, 44.
marked : 39, 40, 42.
marks : 35, 38, 40, 42.
matching : 12, 22, 23, 24, 30, 54, 55, 56, 60*, 71.
mate : 12.
maxl : 28, 67, 85, 87.
maxmchptr : 20, 54, 87.
maxn : 1, 6, 13, 39, 53, 55, 83*.
maxswaps : 79*, 83*.
maxtally : 63, 66.
maxvars : 13, 28.
mch : 20, 22, 23, 24, 25, 26, 33, 34, 37, 47, 48,

49, 54, 55, 56, 60*, 68, 69, 71.
mchptr : 20, 22, 23, 24, 27, 53, 54, 55, 65, 67, 71.
mchptrstart : 27, 30, 65, 67, 70, 71.
mchsize : 20, 21, 54.
mems : 3, 33, 41, 67, 84*, 85, 87.
mextra : 20, 21, 22, 23, 24, 54.
min : 12, 51, 52.
mina : 15, 28, 67, 85, 87.
move : 27, 28, 29, 30, 65, 67, 70, 71, 84*, 85.
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mparent : 20, 25, 54, 71.
mprev : 20, 22, 23, 24, 54, 71.
msize : 20, 22, 23, 24, 25, 26, 33, 54, 71.
mstamp : 20, 22, 23, 24, 33, 54, 55, 56, 60*, 68, 69.
n: 32.
name : 12, 16, 19, 25, 30, 33, 37, 38, 40, 44, 52,

58, 60*, 65, 66, 67, 73, 75, 85.
newn : 46, 53, 54.
next : 31, 38, 40, 43, 48, 52.
nn : 32, 33, 34, 37, 47, 49.
node: 27, 28.
nodeid : 27, 67, 85.
nodes : 3, 67, 87.
O: 1.
o: 3.
oo : 3, 15, 17*, 22, 23, 24, 33, 34, 38, 40, 42, 49,

51, 52, 53, 54, 55, 56, 57, 60*, 62, 65, 66,
67, 71, 79*, 81*, 82*.

ooo : 3, 15, 17*, 34, 38, 44, 45, 48, 52, 54, 60*,
61*, 81*, 82*.

oooo : 3.
opt : 53, 55, 58, 59, 60*, 61*, 63, 67, 68, 69, 70,

81*, 82*, 86.
optloc : 17*, 78*, 79*, 83*.
originaln : 3, 6, 86.
P : 1.
p: 4, 30, 80*, 84*.
parent : 12, 34, 45, 50, 52.
pboy : 46, 48.
pij : 60*, 61*, 62, 63, 81*, 82*.
pos : 12, 15, 19, 30, 34, 38, 48, 53, 55, 62, 81*, 82*.
print forced : 26.
print match prob : 22, 23, 24, 25, 54.
print options : 19.
print progress : 67, 84*.
print state : 67, 85, 86.
print swap list : 80*.
print swap quad : 78*, 80*.
print tofilter : 26.
print trail : 29.
printf : 86.
pruned : 26, 58.
q: 4, 19, 30, 80*.
qmod : 1, 26, 28, 55, 56, 60*, 68, 69.
qq : 35, 38, 40.
queue : 34, 38, 39, 40, 45.
R: 1.
r: 4.
rank : 12, 47, 49, 51, 52, 53, 55.
rik : 60*, 61*, 62, 63, 81*, 82*.
s: 4.
sanity : 30, 67.

sanity checking : 30, 67.
save tallies : 73, 87.
showcauses : 2, 41, 58, 60*, 65, 67.
showdomains : 2, 66.
showHK : 2, 36, 38, 40, 44.
showlong : 2, 67.
showmatches : 2, 33.
showmoves : 2, 60*.
shownodes : 2, 67.
showprunes : 2, 58, 78*, 81*.
showsols : 2, 67.
showsubproblems : 2, 22, 23, 24, 54.
showT : 2, 52.
sprintf : 16, 17*, 73, 75.
sscanf : 75.
stack : 46, 47, 51, 53, 81*, 82*.
stderr : 5, 6, 15, 19, 21, 25, 26, 29, 30, 33, 36, 37,

38, 40, 41, 44, 52, 54, 58, 60*, 65, 66, 67, 73,
75, 78*, 79*, 80*, 81*, 84*, 85, 87.

stdin : 1, 3, 6.
swap : 79*, 80*, 81*, 82*, 83*.
swapcount : 78*, 79*, 83*.
swapitemsize : 78*, 79*, 83*.
swapptr : 78*, 79*, 83*.
t: 4, 80*.
tally : 12, 56, 66, 73, 75.
tallyfile : 73, 74, 75.
tallyfilename : 73, 74, 75.
tallyfiletemplate : 73, 75.
tet : 13, 14, 15, 17*, 18, 19, 26, 29, 30, 34, 38, 48,

53, 55, 56, 57, 58, 59, 60*, 61*, 65, 66, 67, 68,
69, 79*, 80*, 81*, 82*, 85, 86.

tetrad: 11, 13, 15.
thresh : 3, 67.
tip : 31, 38, 40, 43, 48, 52, 81*, 82*, 83*.
tofilter : 22, 23, 24, 26, 28, 55, 56, 60*, 68, 69.
tofilterhead : 26, 28, 68, 69.
tofiltertail : 22, 23, 24, 26, 28, 55, 56, 60*, 68, 69.
totvars : 15, 17*, 18, 20, 21, 30, 65, 66, 75, 87.
trail : 26, 28, 29, 58, 60*, 70, 86.
trailptr : 27, 28, 29, 58, 60*, 67, 70, 86.
trailstart : 27, 29, 67, 70.
u: 4.
up : 11, 15, 17*, 30, 56, 57, 58, 59, 60*, 61*, 81*, 82*.
v: 4, 19, 30, 73, 85.
var : 12, 13, 15, 16, 19, 22, 23, 24, 25, 30, 33,

34, 37, 38, 40, 42, 43, 44, 45, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 60*, 62, 65, 66, 67,
71, 73, 75, 81*, 82*, 85.

variable: 12, 13.
vars : 12, 13, 15, 30, 62, 66.
vv : 63.
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why : 5.
x: 4.
y: 4.
z: 4, 73.
zerofound : 56, 58, 60*, 63.
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〈Apply GAD filtering to matching m; goto abort if there’s trouble 33 〉 Used in section 68.

〈Augment the current matching and continue 44 〉 Used in section 43.

〈Build the dag of shortest augmenting paths (SAPs) 38 〉 Used in section 36.

〈Build the digraph for the current matching 48 〉 Used in section 47.

〈Cancel all scheduled forcing and filtering 69 〉 Used in section 67.

〈Carry out all scheduled forcings and filterings until none remain 68 〉 Used in section 67.

〈Check for swap prevention 81* 〉 Used in section 60*.

〈Check for swap unprevention 82* 〉 Used in section 61*.

〈Choose the variable for branching 66 〉 Used in section 67.

〈Create a new matching subproblem for this strong component 54 〉 Used in section 53.

〈Create the matching problems of type cj 23 〉 Used in section 21.

〈Create the matching problems of type ri 22 〉 Used in section 21.

〈Create the matching problems of type vk 24 〉 Used in section 21.

〈Create the options 17* 〉 Used in section 15.

〈Create the swap record for (i, j, k, i′, j′, k′) 79* 〉 Used in section 78*.

〈Delete the superfluous option opt 58 〉 Used in section 55.

〈Enter boy into the dag 40 〉 Used in section 38.

〈Explore one step from the current vertex v, possibly moving to another current vertex and calling it v 52 〉
Used in section 50.

〈Find a matching, or goto abort 34 〉 Used in section 33.

〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 43 〉 Used in section 36.

〈Fix the len fields 18 〉 Used in section 15.

〈Force the option opt 60* 〉 Used in sections 67 and 68.

〈Global variables 3, 13, 20, 28, 39, 74, 83* 〉 Used in section 1.

〈Hide the tetrad t 56 〉 Used in sections 58, 60*, and 81*.

〈 If there are no SAPs, goto abort 41 〉 Used in section 36.

〈 Initialize the data structures 15, 21, 75, 78* 〉 Used in section 1.

〈 Input the partial latin square 6 〉 Used in section 1.

〈Local variables 4, 32, 35, 46, 63 〉 Used in section 1.

〈Main loop 67 〉 Used in section 72.

〈Make all vertices unseen and all arcs untagged 49 〉 Used in section 47.

〈Make vertex v active 51 〉 Used in sections 50 and 52.

〈Make pij , rik , cjk inactive 62 〉 Used in section 60*.

〈Name the variables 16 〉 Used in section 15.

〈Perform a depth-first search with v as the root, finding the strong components of all unseen vertices
reachable from v 50 〉 Used in section 47.

〈Prime the pump at the root node 65 〉 Used in section 72.

〈Print a solution 86 〉 Used in section 67.

〈Print the current matching 37 〉 Used in section 36.

〈Purge any options that belong to different strong components 55 〉 Used in section 33.

〈Refine this matching problem, if it splits into independent parts 47 〉 Used in section 33.

〈Remove g from the list of free girls 45 〉 Used in section 44.

〈Remove v and all its successors on the active stack from the tree, and mark them as a strong component
of the graph 53 〉 Used in section 52.

〈Reset all marks to zero 42 〉 Used in section 43.

〈Roll back the trail to the beginning of this level 70 〉 Used in section 67.

〈Say farewell 87 〉 Used in section 1.

〈Solve the problem 72 〉 Used in section 1.

〈Subroutines 5, 19, 25, 26, 29, 30, 73, 80*, 84*, 85 〉 Used in section 1.

〈Type definitions 11, 12, 27, 31 〉 Used in section 1.

〈Undelete the superfluous option opt 59 〉 Used in section 70.

〈Unforce the option opt 61* 〉 Used in section 70.
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〈Unhide the tetrad t 57 〉 Used in sections 59, 61*, and 82*.

〈Unrefine all refinements made at this level 71 〉 Used in section 67.

〈Use the Hopcroft–Karp algorithm to complete the matching, or goto abort 36 〉 Used in section 34.
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