
§1 OTHELLO INTRO 1

1. Intro. I’m (hastily) writing this program in order to get some basic experience with a generalization
of the game of Reversi (which is popularly called “Othello” in its principal variant).

I consider an m× n board, whose rows are numbered 1, 2, 3, . . . , and whose columns are named a, b, c,
. . . . A cell is identified by letter and digit. (I don’t forbid m > 9 or n > 26; but bugs will show up if those
parameters get too big.)

When prompted, the user should provide (on stdin) the name of the cell where the next move is to be
made, followed by a newline (aka ‘return’). The newline can optionally be preceded by ‘!’, in which case the
contents of the current board will be printed (on stdout).

The first four moves simply place pieces on the board; they are made without captures. (They are
considered to be moves −3, −2, −1, and 0, so that move 1 will be the normal first move.) In standard
Othello we have m = n = 9, and the preliminary moves are d5, e5, e4, d4; the first move might then be d3,
in which case the color of d4 will be reversed.

This program actually allows more than two players. With p players, we start with move 1− p2, and use
the first p2 moves to set up the initial position.

I don’t attempt to do anything tricky. Cells of the board contain −1 if they’re unoccupied, c if they are
occupied and the top color is c. The colors are 0, 1, . . . , p − 1. The value of board [i][j] is maintained for
0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1, but the boundary cells remain unoccupied.

#define m 8 /∗ this many rows ∗/
#define n 8 /∗ this many columns ∗/
#define p 2 /∗ this many players ∗/
#include <stdio.h>

#include <stdlib.h>

char board [m + 2][n + 2]; /∗ cells of the current board position ∗/
int move ; /∗ the current move number ∗/
char deli [8] = {−1,−1,−1, 0, 0, 1, 1, 1}, delj [8] = {−1, 0, 1,−1, 1,−1, 0, 1}; /∗ the eight directions ∗/
char buffer [8]; /∗ used for input ∗/
int total [p]; /∗ how many pieces show this color? ∗/
〈Subroutines 3 〉;
void main (void)
{

register int i, j, k, l, pass , player ;

for (i = 0; i ≤ m + 1; i++)
for (j = 0; j ≤ n + 1; j++) board [i][j] = −1;

for (move = 1− p ∗ p, player = 0; ; move ++, player = (player + 1) % p) {
for (pass = 0; pass < p; pass ++) {

for (i = 1; i ≤ m; i++)
for (j = 1; j ≤ n; j++)

if (islegal (i, j, player)) goto nextmove ;
printf ("(player %c cannot move)\n", ’0’ + player));
player = (player + 1) % p;

}
break; /∗ the game is over: p passes in a row ∗/

nextmove : printf ("Move %d, player %c: ",move , ’0’ + player);
fflush (stdout); /∗ make sure the user sees the prompt ∗/
〈Set i and j to the coordinates of the next move 2 〉;
makemove (i, j, player);
if (buffer [2] ≡ ’!’) print board ();

}
print board ();
}

2 INTRO OTHELLO §2

2. 〈Set i and j to the coordinates of the next move 2 〉 ≡
if (¬fgets (buffer , 8, stdin)) {

fprintf (stderr , "Unexpected end of input!\n");
exit (−1);
}
j = buffer [0]− ’a’ + 1, i = buffer [1]− ’0’;
if (i < 1 ∨ i > m ∨ j < 1 ∨ j > n) {

fprintf (stderr , "Cell ‘%c%c’ doesn’t exist!\n", buffer [0], buffer [1]);
print board ();
goto nextmove ;
}
if (¬islegal (i, j, player)) {

fprintf (stderr , "No! ‘%c%c’ isn’t a legal move for %c.\n", buffer [0], buffer [1], ’0’ + player);
print board ();
goto nextmove ;
}

This code is used in section 1.

3. 〈Subroutines 3 〉 ≡
void print board (void)
{

register i, j, k;

for (k = 0; k < p; k++) total [k] = 0;
for (i = 1; i ≤ m; i++) {

for (j = 1; j ≤ n; j++) {
k = board [i][j];
if (k ≥ 0) total [k]++;
printf ("%c", k < 0 ? ’.’ : ’0’ + k);

}
if (i ≡ m)

for (k = 0; k < p; k++) printf (" %d", total [k]);
printf ("\n");

}
}

See also sections 4 and 6.

This code is used in section 1.

4. This subroutine decides whether or not it’s OK to place a piece of color c in cell (i, j) of the board. We
assume (without checking) that 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 0 ≤ c < p.

〈Subroutines 3 〉 +≡
int islegal (int i, int j, int c)
{

register int ii , jj , k, l;

if (board [i][j] ≥ 0) return 0; /∗ already occupied ∗/
if (move ≤ 0) return 1; /∗ we’re just gettin’ started ∗/
for (k = 0; k < 8; k++) 〈 If direction k allows a move, return 1; otherwise continue 5 〉;
return 0;
}

§5 OTHELLO INTRO 3

5. 〈 If direction k allows a move, return 1; otherwise continue 5 〉 ≡
{

for (ii = i + deli [k], jj = j + delj [k], l = 0; board [ii][jj] ≥ 0; ii += deli [k], jj += delj [k], l++)
if (board [ii][jj] ≡ c) goto maybe ;

continue; /∗ no occurrences of c in direction k ∗/
maybe : if (l) return 1; /∗ yes, that move reverses at least l cells ∗/

continue; /∗ two adjacent c’s ∗/
}

This code is used in section 4.

6. 〈Subroutines 3 〉 +≡
void makemove (int i, int j, int c)
{

register int ii , jj , k;

board [i][j] = c;
if (move ≤ 0) return; /∗ just gettin’ started ∗/
for (k = 0; k < 8; k++) 〈Do all reversals in direction k 7 〉;
}

7. 〈Do all reversals in direction k 7 〉 ≡
{

for (ii = i + deli [k], jj = j + delj [k]; board [ii][jj] ≥ 0; ii += deli [k], jj += delj [k])
if (board [ii][jj] ≡ c) goto reverse ;

continue; /∗ no occurrences of c in direction k ∗/
reverse : for (ii −= deli [k], jj −= delj [k]; ii 6= i ∨ jj 6= j; ii −= deli [k], jj −= delj [k]) board [ii][jj] = c;
}

This code is used in section 6.

4 INDEX OTHELLO §8

8. Index.

board : 1, 3, 4, 5, 6, 7.
buffer : 1, 2.
c: 4, 6.
deli : 1, 5, 7.
delj : 1, 5, 7.
exit : 2.
fflush : 1.
fgets : 2.
fprintf : 2.
i: 1, 3, 4, 6.
ii : 4, 5, 6, 7.
islegal : 1, 2, 4.
j: 1, 3, 4, 6.
jj : 4, 5, 6, 7.
k: 1, 3, 4, 6.
l: 1, 4.
m: 1.
main : 1.
makemove : 1, 6.
maybe : 5.
move : 1, 4, 6.
n: 1.
nextmove : 1, 2.
p: 1.
pass : 1.
player : 1, 2.
print board : 1, 2, 3.
printf : 1, 3.
reverse : 7.
stderr : 2.
stdin : 1, 2.
stdout : 1.
total : 1, 3.

OTHELLO NAMES OF THE SECTIONS 5

〈Do all reversals in direction k 7 〉 Used in section 6.

〈 If direction k allows a move, return 1; otherwise continue 5 〉 Used in section 4.

〈Set i and j to the coordinates of the next move 2 〉 Used in section 1.

〈Subroutines 3, 4, 6 〉 Used in section 1.

OTHELLO

Section Page
Intro . 1 1
Index . 8 4

	Intro
	Index
	Names of the sections
	Do all reversals in direction k
	If direction k allows a move, return 1; otherwise continue
	Set i and j to the coordinates of the next move
	Subroutines

