81 MOTLEY-DLX INTRO 1

1. Intro. This program generates DLX3 data that finds all “motley dissections” of an m X n rectangle
into subrectangles.

The allowable subrectangles [a..b) x [c..d) have 0 <a < b <m, 0 < ¢ < d <n, with (a,b) # (0,m) and
(¢,d) # (0,n); so there are ((mg'l) — 1) . ((";1) — 1) possibilities. Such a dissection is motley if the pairs
(a,b) are distinct, and so are the pairs (¢, d); in other words, no two subrectangles have identical top-bottom
boundaries or left-right boundaries.

Furthermore we require that every = € [0..m) occurs at least once among the a’s; every y € [0..n) occurs
at least once among the ¢’s. Otherwise the dissection could be collapsed into a smaller one, by leaving out
that coordinate value.

It turns out that we can save a factor of (roughly) 2 by using symmetry, and looking at the unique
rectangles that lie within the top and bottom rows of every solution.

#define mazd 36 /* maximum value for m or n */
#define encode(v) ((v) <107 (v)+°0’:(v) —10+ ’a’) /* encoding for values < 36 */

#include <stdio.h>
#include <stdlib.h>
int m,n; /* command-line parameters */

main (int argc, char xargu[])
{
register int a,b,c,d, j, k;
(Process the command line 2);
(Output the first line 3);
for (a =0; a <m; a++)
for (b=a+1; b<m; b++)
if (@#0Vb#m) {
for (¢c=0; ¢ <n; ct++)
for (d=c+1; d<mn; d++)
if (c#£0Vd#n) {(Output the line for [a..b] X [c..d] 5)}

2. (Process the command line 2) =

if (arge # 3V sscanf (argu[1],"%d", &m) # 1V sscanf (argv[2], "%d", &n) # 1) {
forintf (stderr, "Usage: hs.mun\n", argv[0]);
exit(—1);

}

if (m > mazd vV n > mazd) {
forintf (stderr, "Sorry, m and n, must_be at most, %d!\n", mazd);
exit (—2);

printf (" | motley-dlx %d,_%d\n",m,n);

This code is used in section 1.

2 INTRO MOTLEY-DLX §3

3. The main primary columns jk ensure that cell (4, k) is covered, for 0 < j < m and 0 < k < n. We also
have secondary columns xab and ycd, to ensure that no interval is repeated. And there are primary columns
xa and yc for the at-least-once conditions.

(Output the first line 3) =
for (j=0; j <m; j++)
for (k=0; k <n; k++) printf ("Jhche", encode(j), encode (k));
for (a =1; a <m; a++) printf ("L1:%d|x%c", m — a, encode(a));
for (c=1; c < n; c++) printf ("ul:%dly%he",n — ¢, encode(c));
printf ("u1");
for (a =0; a <m; a++)
for (b=a+1; b<m; b++)
if (a#0Vb#m) printf ("uxhche", encode(a), encode(b));
for (c=0; ¢ <n; ct++)
for (d=c+1; d <n; d++)
if (c#£0Vd#mn) printf ("Lyhche", encode(c), encode(d));
(Output also the secondary columns for symmetry breaking 6);
printf ("\n");

This code is used in section 1.

4. Now let’s look closely at the problem of breaking symmetry. For concreteness, let’s suppose that m =7
and n = 8. Every solution will have exactly one entry with interval x67, specifying a rectangle in the bottom
row (since m — 1 = 6). If that rectangle has y57, say, a left-right reflection would produce an equivalent
solution with y13; therefore we do not allow the rectangle for which (a,b,¢,d) = (6,7,5,7). Similarly we
disallow (6,7, ¢, d) whenever 8 — d < ¢, since we’ll find all solutions with (6,7,8 — d,8 — ¢) that are left-right
reflections of the solutions excluded.

Ifa=6,b=7, and c+ d = 8, left-right reflection doesn’t affect the rectangle in the bottom row. But we
can still break the symmetry by looking at the top row, the rectangle whose specifications (a’,¥’, ¢/, d’) have
(a/,0) = (0,1). Let’s introduce secondary columns !1, 12, 13, using !¢ when ¢+ d = 8 at the bottom. Then
if we put '1, !2, and '3 on every top-row rectangle with ¢’ + d’ > 8, we’ll forbid such rectangles whenever
the bottom-row policy has not already broken left-right symmetry. Furthermore, when ¢’ + d’ = 8 at the
top, we put !1 together with x01 y26, and we put both !1 and !2 together with x01 y35. It can be seen
that this completely breaks left-symmetry in all cases, because no solution has ¢ = ¢’ and d = d'.

(Think about it.)

It’s tempting to believe, as the author once did, that the same idea will break top-bottom symmetry too.
But that would be fallacious: Once we’ve fixed attention on the bottommost row while breaking left-right
symmetry, we no longer have any symmetry between top and bottom.

(Think about that, too.)

85
5.

MOTLEY-DLX INTRO

(Output the line for [a..b] X [c..d] 5) =
if (@a=m—1Ac+d>n) continue; /* forbid this case x/
for (j=a; j <b; j++)
for (k=c; k <d; k++) printf ("uhche", encode(j), encode (k));
if @a=m—1Ac+d=n) printf("u!%d",c); /x flag a symmetric bottom row #*/
if (b=1Ac+d>n) { /* disallow top rectangle if bottom one is symmetric */

if (c+d#n)
for (k=1; k+k <n; k++) printf (",'%d", k);
else

for (k=1; k <c¢; k++) printf ("u'%d", k);
}
if (a) printf ("ux%he", encode(a));
if (¢) printf ("uy%he", encode(c));
printf ("Uxhcheuyhehe\n", encode (a), encode (b), encode(c), encode(d));

This code is used in section 1.

6.

(Output also the secondary columns for symmetry breaking 6) =
for (k=1; k+k<n; k++) printf ("u'%d", k);

This code is used in section 3.

d: 1.
encode: 1,
exit: 2.
forintf: 2.

VE
k:
m:

= 1= =

main:

3, 5.

1.
mazxd: 1, 2.

n: 1.

printf: 2,
sscanf: 2.
stderr: 2.

3, 5, 6.

MOTLEY-DLX

87

MOTLEY-DLX NAMES OF THE SECTIONS 5

{ Output also the secondary columns for symmetry breaking 6) Used in section 3.
(Output the first line 3) Used in section 1.

(Output the line for [a..b] x [c..d] 5) Used in section 1.

(Process the command line 2) Used in section 1.

MOTLEY-DLX

Section Page

	Intro
	Index
	Names of the sections
	Output also the secondary columns for symmetry breaking
	Output the first line
	Output the line for [ab][cd]
	Process the command line

