
§1 MOTLEY-DLX INTRO 1

1. Intro. This program generates DLX3 data that finds all “motley dissections” of an m × n rectangle
into subrectangles.

The allowable subrectangles [a . . b)× [c . . d) have 0 ≤ a < b ≤ m, 0 ≤ c < d ≤ n, with (a, b) 6= (0,m) and
(c, d) 6= (0, n); so there are

((
m+1
2

)
− 1

)
·
((

n+1
2

)
− 1

)
possibilities. Such a dissection is motley if the pairs

(a, b) are distinct, and so are the pairs (c, d); in other words, no two subrectangles have identical top-bottom
boundaries or left-right boundaries.

Furthermore we require that every x ∈ [0 . .m) occurs at least once among the a’s; every y ∈ [0 . . n) occurs
at least once among the c’s. Otherwise the dissection could be collapsed into a smaller one, by leaving out
that coordinate value.

It turns out that we can save a factor of (roughly) 2 by using symmetry, and looking at the unique
rectangles that lie within the top and bottom rows of every solution.

#define maxd 36 /∗ maximum value for m or n ∗/
#define encode (v) ((v) < 10 ? (v) + ’0’ : (v)− 10 + ’a’) /∗ encoding for values < 36 ∗/
#include <stdio.h>

#include <stdlib.h>

int m,n; /∗ command-line parameters ∗/
main (int argc , char ∗argv [])
{

register int a, b, c, d, j, k;

〈Process the command line 2 〉;
〈Output the first line 3 〉;
for (a = 0; a < m; a++)

for (b = a + 1; b ≤ m; b++)
if (a 6= 0 ∨ b 6= m) {

for (c = 0; c < n; c++)
for (d = c + 1; d ≤ n; d++)

if (c 6= 0 ∨ d 6= n) {〈Output the line for [a . . b]× [c . . d] 5 〉}
}

}

2. 〈Process the command line 2 〉 ≡
if (argc 6= 3 ∨ sscanf (argv [1], "%d",&m) 6= 1 ∨ sscanf (argv [2], "%d",&n) 6= 1) {
fprintf (stderr , "Usage: %s m n\n", argv [0]);
exit (−1);
}
if (m > maxd ∨ n > maxd) {
fprintf (stderr , "Sorry, m and n must be at most %d!\n",maxd);
exit (−2);
}
printf ("| motley−dlx %d %d\n",m, n);

This code is used in section 1.

2 INTRO MOTLEY-DLX §3

3. The main primary columns jk ensure that cell (j, k) is covered, for 0 ≤ j < m and 0 ≤ k < n. We also
have secondary columns xab and ycd, to ensure that no interval is repeated. And there are primary columns
xa and yc for the at-least-once conditions.

〈Output the first line 3 〉 ≡
for (j = 0; j < m; j++)

for (k = 0; k < n; k++) printf (" %c%c", encode (j), encode (k));
for (a = 1; a < m; a++) printf (" 1:%d|x%c",m− a, encode (a));
for (c = 1; c < n; c++) printf (" 1:%d|y%c", n− c, encode (c));
printf (" |");
for (a = 0; a < m; a++)

for (b = a + 1; b ≤ m; b++)
if (a 6= 0 ∨ b 6= m) printf (" x%c%c", encode (a), encode (b));

for (c = 0; c < n; c++)
for (d = c + 1; d ≤ n; d++)

if (c 6= 0 ∨ d 6= n) printf (" y%c%c", encode (c), encode (d));
〈Output also the secondary columns for symmetry breaking 6 〉;
printf ("\n");

This code is used in section 1.

4. Now let’s look closely at the problem of breaking symmetry. For concreteness, let’s suppose that m = 7
and n = 8. Every solution will have exactly one entry with interval x67, specifying a rectangle in the bottom
row (since m − 1 = 6). If that rectangle has y57, say, a left-right reflection would produce an equivalent
solution with y13; therefore we do not allow the rectangle for which (a, b, c, d) = (6, 7, 5, 7). Similarly we
disallow (6, 7, c, d) whenever 8− d < c, since we’ll find all solutions with (6, 7, 8− d, 8− c) that are left-right
reflections of the solutions excluded.

If a = 6, b = 7, and c + d = 8, left-right reflection doesn’t affect the rectangle in the bottom row. But we
can still break the symmetry by looking at the top row, the rectangle whose specifications (a′, b′, c′, d′) have
(a′, b′) = (0, 1). Let’s introduce secondary columns !1, !2, !3, using !c when c+d = 8 at the bottom. Then
if we put !1, !2, and !3 on every top-row rectangle with c′ + d′ > 8, we’ll forbid such rectangles whenever
the bottom-row policy has not already broken left-right symmetry. Furthermore, when c′ + d′ = 8 at the
top, we put !1 together with x01 y26, and we put both !1 and !2 together with x01 y35. It can be seen
that this completely breaks left-symmetry in all cases, because no solution has c = c′ and d = d′.

(Think about it.)
It’s tempting to believe, as the author once did, that the same idea will break top-bottom symmetry too.

But that would be fallacious: Once we’ve fixed attention on the bottommost row while breaking left-right
symmetry, we no longer have any symmetry between top and bottom.

(Think about that, too.)

§5 MOTLEY-DLX INTRO 3

5. 〈Output the line for [a . . b]× [c . . d] 5 〉 ≡
if (a ≡ m− 1 ∧ c + d > n) continue; /∗ forbid this case ∗/
for (j = a; j < b; j++)

for (k = c; k < d; k++) printf (" %c%c", encode (j), encode (k));
if (a ≡ m− 1 ∧ c + d ≡ n) printf (" !%d", c); /∗ flag a symmetric bottom row ∗/
if (b ≡ 1 ∧ c + d ≥ n) { /∗ disallow top rectangle if bottom one is symmetric ∗/

if (c + d 6= n)
for (k = 1; k + k < n; k++) printf (" !%d", k);

else
for (k = 1; k < c; k++) printf (" !%d", k);

}
if (a) printf (" x%c", encode (a));
if (c) printf (" y%c", encode (c));
printf (" x%c%c y%c%c\n", encode (a), encode (b), encode (c), encode (d));

This code is used in section 1.

6. 〈Output also the secondary columns for symmetry breaking 6 〉 ≡
for (k = 1; k + k < n; k++) printf (" !%d", k);

This code is used in section 3.

4 INDEX MOTLEY-DLX §7

7. Index.

a: 1.
argc : 1, 2.
argv : 1, 2.
b: 1.
c: 1.
d: 1.
encode : 1, 3, 5.
exit : 2.
fprintf : 2.
j: 1.
k: 1.
m: 1.
main : 1.
maxd : 1, 2.
n: 1.
printf : 2, 3, 5, 6.
sscanf : 2.
stderr : 2.

MOTLEY-DLX NAMES OF THE SECTIONS 5

〈Output also the secondary columns for symmetry breaking 6 〉 Used in section 3.

〈Output the first line 3 〉 Used in section 1.

〈Output the line for [a . . b]× [c . . d] 5 〉 Used in section 1.

〈Process the command line 2 〉 Used in section 1.

MOTLEY-DLX

Section Page
Intro . 1 1
Index . 7 4

	Intro
	Index
	Names of the sections
	Output also the secondary columns for symmetry breaking
	Output the first line
	Output the line for [ab][cd]
	Process the command line

