
§1 MAXCLIQUES INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This is a simple program to find all maximal cliques of a graph, when the graph has at most
64 vertices and is given by its adjacency matrix.

The algorithm, due to Moody and Hollis, is described in Appendix 5 of the book Mathematical Taxonomy
by Jardine and Sibson (1971). I’m writing this program hastily today because it’s a nice example of bitwise
manipulation in graph theory, probably suitable for Section 7.1.3 of The Art of Computer Programming.

In brief, we have vectors ρv and δv for each vertex v, where ρv is v’s row in the adjacency matrix and
δv is all 1s except for 0 in position v. (Position v in ρv is always 1; in other words, we assume that each
vertex is adjacent to itself.) One can easily show that a set of vertices q is a clique if and only if q is
the bitwise intersection of (v∈q? ρv: δv) over all vertices v. To find all cliques, we could compute all 2n

such bitwise intersections, discarding duplicates. To find all maximal cliques, we could compute all 2n such
bitwise intersections and discard any clique q that is found to be contained in another. To speed the process
up, we can do those discards much more cleverly.

The input graph is specified by an ASCII file in Stanford GraphBase format. The name of that file, say
‘foo.gb’, is the one-and-only command-line parameter.

I’ve instrumented this program to see how many memory references it makes (mems) and how many words
of workspace it needs (space), exclusive of input-output.

(Note: I consider a “clique” to be any complete subgraph of a graph. Many of the older books on graph
theory define it to be a maximal complete subgraph; but that terminology is now dying out. The earlier
definition is less desirable, because for example we’d like a clique of G to be equivalent to an independent
set of G.)

Beware: Memory overflow is not checked. This is not intended to be a robust program; I wrote it only as
a experiment.

#define size 100000 /∗ size reserved for the workspace ∗/
#define o mems++

#define oo mems += 2

#include <stdio.h>

#include "gb_graph.h"

#include "gb_save.h"

unsigned long long rho [64]; /∗ rows of the adjacency matrix ∗/
unsigned long long work [size];
unsigned int mems ;
int space ;
char table [64];

main (int argc , char ∗argv [])
{

register int i, j, k, l,m, n, p, q, r;
register Graph ∗g;
register Arc ∗a;
unsigned long long u, v, w;

〈 Input the graph 2 〉;
〈Find the maximal cliques 6 〉;
〈Output the maximal cliques 4 〉;
printf ("(The computation took %u mems, using %d words of workspace.)\n",mems , space);
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO MAXCLIQUES §2

2. 〈 Input the graph 2 〉 ≡
if (argc 6= 2) {
fprintf (stderr , "Usage: %s inputgraph.gb\n", argv [0]);
exit (−1);
}
g = restore graph (argv [1]);
if (¬g) {
fprintf (stderr , "I can’t input the graph %s (panic code %ld)!\n", argv [1], panic code);
exit (−2);
}
n = g~n;
if (n > 64) {
fprintf (stderr , "Sorry, that graph has %d vertices; ", n);
fprintf (stderr , "I can’t handle more than 64!\n");
exit (−3);
}
〈Set up the rho table 3 〉;

This code is used in section 1.

3. 〈Set up the rho table 3 〉 ≡
for (j = 0; j < n; j++) {
w = 1LL � j;
for (a = (g~vertices + j)~arcs ; a; a = a~next) w |= 1LL � (a~ tip − g~vertices);
rho [j] = w;
}

This code is used in section 2.

4. #define deBruijn #03f79d71b4ca8b09 /∗ the least de Bruijn cycle of length 64 ∗/
〈Output the maximal cliques 4 〉 ≡
printf ("Graph %s has %d maximal cliques:\n", g~ id ,m);
〈Set up the de Bruijn table 5 〉;
for (k = 1; k ≤ m; k++) {

for (w = work [k]; w; w = w ⊕ v) {
v = w &−w;
u = v ∗ deBruijn ;
j = table [u� 58];
printf (" %s", (g~vertices + j)~name);

}
printf ("\n");
}

This code is used in section 1.

5. The ruler-function calculation in the previous section isn’t part of the inner loop; so I could use a slower,
brute-force scheme that simply examines each bit, one bit at a time. But I’m using the de Bruijn method
anyway, in order to get experience with it.

〈Set up the de Bruijn table 5 〉 ≡
for (j = 0, v = 1; v; j++, v �= 1) {
u = v ∗ deBruijn ;
table [u� 58] = j;
}

This code is used in section 4.

§6 MAXCLIQUES THE ALGORITHM 3

6. The algorithm. The work area holds all maximal elements of the 2i bitwise-ands of either ρv or δv
for the first i vertices. There are m of them.

A vertex that’s adjacent to all other vertices is just carried along in all entries, so we needn’t bother with
it.

〈Find the maximal cliques 6 〉 ≡
w = 1LL � (n− 1);
oo ,work [1] = work [size − 1] = (w � 1)− 1; /∗ n 1s ∗/
m = 1, space = 4;
for (i = 0; i < n; i++)

if (oo , rho [i] 6= work [size − 1]) {
v = 1LL � i; /∗ this is the new vertex we’re considering ∗/
〈Partition the work area, putting entries that contain v last 7 〉;
〈Convert the v-containing entries u into u& ρv, u& δv 8 〉;

}
This code is used in section 1.

7. To visualize the current situation, suppose bit v is the leftmost. Then we want to rearrange work [1]
thru work [m] so that they have the form

0α1
...

0αk

1β1
...

1βm−k

This loop is like the partitioning step of radix-exchange. There always is at least one element u with
u& v 6= 0. For convenience (and speed) we keep work [0] = 0.

〈Partition the work area, putting entries that contain v last 7 〉 ≡
j = 1, k = m;
while (1) {

while ((o,work [j] & v) ≡ 0) j++;
while ((o,work [k] & v) 6= 0) k−−;
if (j > k) break;
oo , u = work [j],work [j] = work [k],work [k] = u;
j++, k−−;
}

This code is used in section 6.

4 THE ALGORITHM MAXCLIQUES §8

8. Now comes the interesting part. At this point j = k + 1.
Entries 1 thru k of the workspace should simply be carried over to the next round. For if u = 0αi in the

notation above, we have u& ρi ⊆ u& δi = u; and u (which is currently maximal) won’t be contained in any
other entries.

Thus we focus our attention on the remaining entries in the current workspace, namely work [j] thru
work [m], which need to be “split.”

Let u be the current entry; we want to split it into u′ = u&ρv and u′′ = u&δv. The first one, u′ = (1β)&ρv,
must be checked against all other first entries before it is accepted for the new round. (It can’t be contained
in a second entry, because it has 1 in position v.) If it is contained in a first entry already generated, we
drop it. But if it contains one of those entries, we might need to drop more than one of them.

The second entry, u′′ = (1β) & δv = 0β, is fairly easy to deal with. It can be contained in some first entry
(1β′) &ρv only if β ⊆ β′; hence β = β′ and 1β ⊆ ρv. If 1β 6⊆ ρv, we accept 0β if and only if it isn’t contained
in any held-over entry 0α.

In the following steps, positions p thru size − 2 of the workspace hold the first entries u′ that have been
tentatively accepted. Positions k + 1 thru l hold the second entries u′ that have definitely been accepted.

Notice that the resulting algorithm avoids linked memory, so it ought to be cache-friendly.

〈Convert the v-containing entries u into u& ρv, u& δv 8 〉 ≡
for (l = k, p = size − 1; j ≤ m; j++) {
o, u = work [j], q = size − 2;
w = u& rho [i]; /∗ w = u′; we’ve already fetched rho [i] from memory ∗/
if (u 6= w) {

for (; q ≥ p; q−−) {
if ((o, w & work [q]) ≡ w) goto second entry ;
if ((w & work [q]) ≡ work [q]) goto absorb ;

}
o,work [−−p] = w; /∗ accept u′, tentatively ∗/
if (space < m+ 2 + size − p) space = m+ 2 + size − p;
goto second entry ;

}
absorb : 〈Handle the cases where w may absorb previous first entries 9 〉;

if (u ≡ w) continue;
second entry : w = u&∼v; /∗ w = u′′ ∗/

for (q = 1; q ≤ k; q++)
if ((o, w & work [q]) ≡ w) goto done with u ;

o,work [++l] = w; /∗ accept u′′ ∗/
done with u : continue;
}
for (m = l; p < size − 1; p++) oo ,work [++m] = work [p];

This code is used in section 6.

§9 MAXCLIQUES THE ALGORITHM 5

9. Finally, we need another loop analogous to radix-exchange partitioning. But this time we will move all
entries contained in w down, and all entries not contained in w up. (In fact we don’t really move anything
down, because those entries will be discarded.)

When we come here with u 6= w, the first test made is redundant. (I mean, we know that w & work [q] =
work [q], hence w | work [q] = w.) I could avoid that by reordering the loop, and recopying part of it to be
down only when u = w; but I decided not to bother with such a tricky optimization.

〈Handle the cases where w may absorb previous first entries 9 〉 ≡
o, r = p,work [p− 1] = 0;
while (1) {

while (o, (w | work [q]) 6= w) q−−;
while (o, (w | work [r]) ≡ w) r++;
if (q < r) break;
oo ,work [q] = work [r],work [r] = 0, q−−, r++;
}
o,work [q] = w, p = q;

This code is used in section 8.

6 INDEX MAXCLIQUES §10

10. Index.

a: 1.
absorb : 8.
Arc: 1.
arcs : 3.
argc : 1, 2.
argv : 1, 2.
deBruijn : 4, 5.
done with u : 8.
exit : 2.
fprintf : 2.
g: 1.
Graph: 1.
i: 1.
id : 4.
j: 1.
k: 1.
l: 1.
m: 1.
main : 1.
mems : 1.
n: 1.
name : 4.
next : 3.
o: 1.
oo : 1, 6, 7, 8, 9.
p: 1.
panic code : 2.
printf : 1, 4.
q: 1.
r: 1.
restore graph : 2.
rho : 1, 3, 6, 8.
second entry : 8.
size : 1, 6, 8.
space : 1, 6, 8.
stderr : 2.
table : 1, 4, 5.
tip : 3.
u: 1.
v: 1.
vertices : 3, 4.
w: 1.
work : 1, 4, 6, 7, 8, 9.

MAXCLIQUES NAMES OF THE SECTIONS 7

〈Convert the v-containing entries u into u& ρv, u& δv 8 〉 Used in section 6.

〈Find the maximal cliques 6 〉 Used in section 1.

〈Handle the cases where w may absorb previous first entries 9 〉 Used in section 8.

〈 Input the graph 2 〉 Used in section 1.

〈Output the maximal cliques 4 〉 Used in section 1.

〈Partition the work area, putting entries that contain v last 7 〉 Used in section 6.

〈Set up the de Bruijn table 5 〉 Used in section 4.

〈Set up the rho table 3 〉 Used in section 2.

MAXCLIQUES

Section Page
Intro . 1 1
The algorithm . 6 3
Index . 10 6

	Intro
	The algorithm
	Index
	Names of the sections
	Convert the v-containing entries u into u&_v, u&_v
	Find the maximal cliques
	Handle the cases where w may absorb previous first entries
	Input the graph
	Output the maximal cliques
	Partition the work area, putting entries that contain v last
	Set up the de Bruijn table
	Set up the rho table

