
§1 MATULA INTRO 1

1. Intro. This program determines whether a given free tree, S, is isomorphic to a subtree of another
free tree, T , using an algorithm published by David W. Matula [Annals of Discrete Mathematics 2 (1978),
91–106]. His algorithm is quite efficient; indeed, it runs even faster than he thought it did! If S has m nodes
and T has n nodes, the running time is at worst proportional to mn times the square root of the maximum
inner-degree of any node in S, where the inner degree of a node is the number of its nonleaf neighbors.
The trees are given on the command line, each as a string of “parent pointers”; this string has one

character per node. The first character is always ‘.’, standing for the (nonexistent) parent of the root; the
next character is always ‘0’, standing for the parent of node 1; and the (k + 1)st character stands for the
parent of node k, which can be any number less than k. Numbers larger than 9 are encoded by lowercase
letters; numbers larger than z (which represents 35) are encoded by uppercase letters. Numbers larger than Z

(which represents 61) are presently disallowed; but some day I’ll make another version of this program, with
different conventions for the input.
The root of S is assumed to have degree 1. Thus it is actually both a root and a leaf, and the string for S

will have only one occurrence of 0.
For example, here are some trees used in an early test:

S = .0111444759a488cfch;

T = .011345676965cc5ffh5cklfn55qjstuuwxxwwuCCuFCpppqrtGOHJRLMNO;

can you find S within T?
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2 INTRO MATULA §2

2. The program is instrumented to record the number of mems, namely the number of times it accesses an
octabyte of memory. (Most of the memory accesses are actually to tetrabytes (ints), because this program
rarely deals with two tetrabytes that are known to be part of the same octabyte.)

#define maxn 62 /∗ could be greatly increased if I had another input convention ∗/
#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define oooo mems += 4 /∗ count four mems ∗/
#define suboverhead 10 /∗ mems charged per subroutine call ∗/
#define decode (c) ((c) ≥ ’0’ ∧ (c) ≤ ’9’ ? (c)− ’0’ : (c) ≥ ’a’ ∧ (c) ≤ ’z’ ? (c)− ’a’ + 10 :

(c) ≥ ’A’ ∧ (c) ≤ ’Z’ ? (c)− ’A’ + 36 : −1)
#define encode (p) ((p) < 10 ? (p) + ’0’ : (p) < 36 ? (p)− 10 + ’a’ : (p) < 62 ? (p)− 36 + ’A’ : ’?’)

#include <stdio.h>

#include <stdlib.h>

⟨Type definitions 4 ⟩;
⟨Global variables 5 ⟩;
unsigned long long mems ; /∗ memory references ∗/
unsigned long long imems ; /∗ mems during the input phase ∗/
⟨ Subroutines 8 ⟩;
main (int argc , char ∗argv [ ])
{
register int d, e, g, i, j, k,m, n, p, q, r, s, v, z;

⟨Process the command line 3 ⟩;
imems = mems ,mems = 0;
if (m > n) fprintf (stderr , "There’s␣no␣solution,␣because␣m>n!\n");
else {
⟨ Solve the problem 13 ⟩;
⟨Report the solution 32 ⟩;

}
fprintf (stderr , "Altogether␣%lld+%lld␣mems.\n", imems ,mems );

}

3. ⟨Process the command line 3 ⟩ ≡
if (argc ̸= 3) {
fprintf (stderr , "Usage:␣%s␣S_parents␣T_parents\n", argv [0]);
exit (−1);

}
⟨ Input the tree S 6 ⟩;
⟨ Input the tree T 7 ⟩;

This code is used in section 2.
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4. Data structures for the trees. A node record is allocated for each node of a tree. It has four
fields: child (the index of its most recent child, if any), sib (the index of its parent’s previous child, if any),
deg (the number of neighbors), and arc (the number of the arc to its parent). The deg and arc fields aren’t
actually used for S, but we need them for T . Reference to the deg and arc fields in the same node counts
as only one mem.

⟨Type definitions 4 ⟩ ≡
typedef struct node struct {
int child ; /∗ who is my first child, if any? ∗/
int sib ; /∗ who is the next child of my parent, if any? ∗/
int deg ; /∗ how many neighbors do I have, including my parent (if any)? ∗/
int arc ; /∗ which arc corresponds to the link from me to my parent? ∗/

} node;

This code is used in section 2.

5. ⟨Global variables 5 ⟩ ≡
node snode [maxn ]; /∗ the m nodes of S ∗/
node tnode [maxn ]; /∗ the n nodes of T ∗/

See also sections 12, 18, 26, 31, and 35.

This code is used in section 2.

6. ⟨ Input the tree S 6 ⟩ ≡
if (o, argv [1][0] ̸= ’.’) {
fprintf (stderr , "The␣root␣of␣S␣should␣have␣‘.’␣as␣its␣parent!\n");
exit (−10);

}
for (m = 1; o, argv [1][m]; m++) {
if (m ≡ maxn ) {

fprintf (stderr , "Sorry,␣S␣must␣have␣at␣most␣%d␣nodes!\n",maxn );
exit (−11);

}
p = decode (argv [1][m]);
if (p < 0) {
fprintf (stderr , "Illegal␣character␣‘%c’␣in␣S!\n", argv [1][m]);
exit (−12);

}
if (p ≥ m) {

fprintf (stderr , "The␣parent␣of␣%c␣must␣be␣less␣than␣%c!\n", encode (m), encode (m));
exit (−13);

}
if (p ≡ 0 ∧m > 1) {
fprintf (stderr , "The␣root␣of␣S␣must␣have␣only␣one␣child!\n");
exit (−13);

}
oo , q = snode [p].child , snode [p].child = m; /∗ m becomes the first child ∗/
o, snode [m].sib = q;

}
This code is used in section 3.
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7. ⟨ Input the tree T 7 ⟩ ≡
if (o, argv [2][0] ≠ ’.’) {
fprintf (stderr , "The␣root␣of␣T␣should␣have␣‘.’␣as␣its␣parent!\n");
exit (−20);

}
for (n = 1; o, argv [2][n]; n++) {
if (n ≡ maxn ) {
fprintf (stderr , "Sorry,␣T␣must␣have␣at␣most␣%d␣nodes!\n",maxn );
exit (−21);

}
p = decode (argv [2][n]);
if (p < 0) {
fprintf (stderr , "Illegal␣character␣‘%c’␣in␣T!\n", argv [2][n]);
exit (−22);

}
if (p ≥ n) {
fprintf (stderr , "The␣parent␣of␣%c␣must␣be␣less␣than␣%c!\n", encode (n), encode (n));
exit (−23);

}
oo , q = tnode [p].child , tnode [p].child = n; /∗ n becomes the first child ∗/
o, tnode [n].sib = q;

}
⟨Allocate the arcs 9 ⟩;
fprintf (stderr , "OK,␣I’ve␣got␣%d␣nodes␣for␣S␣and␣%d␣nodes␣for␣T,␣max␣degree␣%d.\n",m, n,

maxdeg );

This code is used in section 3.

8. The target tree T has 2(n− 1) arcs, from each nonroot node to its parent and vice versa. The arcs from
u to v are assigned consecutive integers, from 0 to 2n− 3, in lexicographic order of (deg(v), v, u). (Well, the
second and third components might not be in numerical order; but all d arcs from a vertex of degree d are
consecutive, beginning with the arc to the parent.)
In order to assign these numbers, we keep lists of all nodes having a given degree, using the arc fields

temporarily to link them together.

⟨ Subroutines 8 ⟩ ≡
void fixdeg (int p)
{
register int d, q;

mems += suboverhead ;
for (o, d = 1, q = tnode [p].child ; q; o, d++, q = tnode [q].sib) fixdeg (q);
if (p) ooo , tnode [p].arc = head [d], tnode [p].deg = d, head [d] = p;

/∗ p is not the root; it has d neighbors including its parent ∗/
else ooo , tnode [0].arc = head [d− 1], tnode [0].deg = d− 1, head [d− 1] = −1;

/∗ root is temporarily renamed −1 ∗/
}

See also section 14.

This code is used in section 2.
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9. We set thresh [d] to the number of the first arc for a node of degree d or more.

⟨Allocate the arcs 9 ⟩ ≡
fixdeg (0);
for (d = 1, e = 0; e < 2 ∗ n− 2; d++) {
o, thresh [d] = e;
for (o, p = head [d]; p; e += d, p = q) {

if (p < 0) p = 0;
oo , q = tnode [p].arc , tnode [p].arc = e;

}
}
for (maxdeg = d− 1, emax = e; d < m; d++) o, thresh [d] = emax ;
⟨Allocate the dual arcs 11 ⟩;

This code is used in section 7.

10. The arc from u to v has a dual, namely the arc from v to u. (And conversely.) We’ve assigned numbers
to the arcs that go to a parent; the other arcs are their duals.

11. ⟨Allocate the dual arcs 11 ⟩ ≡
for (p = 0; p < n; p++) {
for (oo , e = (p ? tnode [p].arc : tnode [p].arc − 1), q = tnode [p].child ; q; o, q = tnode [q].sib) {

ooo , dual [tnode [q].arc ] = ++e, dual [e] = tnode [q].arc ;
oooo , uert [dual [e]] = vert [e] = p, uert [e] = vert [dual [e]] = q;

}
}

This code is used in section 9.

12. ⟨Global variables 5 ⟩ +≡
int head [maxn ]; /∗ heads of lists by degree ∗/
int maxdeg ; /∗ maximum degree seen ∗/
int thresh [maxn ]; /∗ where the arcs from large degree nodes start ∗/
int vert [maxn +maxn ]; /∗ the source vertex of each arc ∗/
int uert [maxn +maxn ]; /∗ the target vertex of each arc ∗/
int dual [maxn +maxn ]; /∗ the dual of each arc ∗/
int emax ; /∗ the total number of arcs ∗/
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13. The master control. There’s a two-dimensional array called sol that pretty much governs the
computation. The first index, p, is a node of S; the second index, e, is an arc of T . If e is the arc from u
to v, consider the subtree of T that’s rooted at u and includes v; we call it “subtree e.” If there’s no way to
embed the subtree of S rooted at p to subtree e, by mapping p to v, then we’ll set sol [p][e] to zero. Otherwise
we’ll set sol [p][e] to a nonzero value, with which we could deduce such an embedding if called on to do so.
The basic idea is simple, working recursively up from small subtrees to larger ones: Suppose p has

r children, q1, . . . , qr; and suppose v has s + 1 neighbors, u0, . . . , us. Suppose further that we’ve already
computed sol [qi][ej ], for 1 ≤ i ≤ r and 0 ≤ j ≤ s, where ej is the arc from v to uj . Matula’s algorithm will
tell us how to compute sol [p][dual [ej ]] for 0 ≤ j ≤ s. Thus we can fill in the rows of sol from bottom to top;
eventually sol [1] will tell us if we can embed all of S.

Let’s look closely at that crucial subproblem: How, for example, do we know if sol [p][dual [e0]] should be
zero or nonzero? That subproblem means that we want to embed subtree p into the subtree below the arc
from u0 to v. And the subproblem is clearly solvable if and only if we can match up each child qi of p with a
distinct child uj of v, in such a way that sol [pi][qj ] is nonzero. Aha, yes: It’s a bipartite matching problem!
And there are good algorithms for bipartite matching!
More generally, consider the subproblem in which uj is a parent of v in T , while u0, . . . , uj−1, uj+1, . . . , us

are children. Matula discovered that these subproblems are essentially the same, for all j between 0 and s.
It’s a beautiful way to save a factor of n by combining similar subproblems.
So that’s what we’ll do, with a recursive procedure called solve .

⟨ Solve the problem 13 ⟩ ≡
z = solve (1);

This code is used in section 2.

14. The task of solve , given a node p of S, is to set the values of sol [p][e] for each arc e.
The base case of this recursion occurs when p is a leaf; a leaf can be embedded anywhere.
Another easy case occurs when subtree e of T has too small a degree to support any embedding.
If some descendant d of p can’t be embedded, solve returns −d. Otherwise solve returns the number of

1s in sol [p].

⟨ Subroutines 8 ⟩ +≡
int solve (int p)
{
register int e,m, n, q, r, z;

mems += suboverhead ;
o, q = snode [p].child ;
if (q ≡ 0) {
for (e = 0; e < emax ; e++) o, sol [p][e] = 1;
return emax ;

}
for (r = 0; q; o, r++, q = snode [q].sib) {

z = solve (q);
if (z ≤ 0) return (z ? z : −q); /∗ if we can’t embed a subtree, we can’t embed S ∗/

} /∗ now sol [q][e] is known for all children q of p and all arcs e ∗/
for (o, z = e = 0; e < thresh [r + 1]; e++) o, sol [p][e] = 0; /∗ degree too small ∗/
for (n = r + 1; e < emax ; e += n) {
⟨Local variables for the HK algorithm 20 ⟩;
while (o, e ≡ thresh [n+ 1]) n++; /∗ advance n to the degree of vert [e] ∗/
⟨ Set up Matula’s bipartite matching problem for p and e 15 ⟩;
⟨ Solve that problem and update sol [p][e . . e+ n− 1] 28 ⟩;

}
return z;

}
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15. Bipartite matching chez Hopcroft and Karp. Now we implement the classic HK algorithm
for bipartite matching, stealing most of the code from the program HOPCROFT-KARP. (The reader should
consult that program for further remarks and proofs.) The children of p play the role of “boys” in that
algorithm, and the arcs for neighbors of v play the role of “girls.” That algorithm is slightly simplified here,
because we are interested only in cases where all the boys can be matched. (There always are more girls
than boys, in our case.)
In Matula’s matching problem, p is a vertex of S that has children q1, . . . , qr; e is an arc of T from

v = vert [e] to u = uert [e], where v has s+ 1 neighbors u0, . . . , us. The matching problem will have m ≤ r
boys and n = s+ 1 girls.
We use a simple data structure to represent the bipartite graph: The potential partners for girl j are in

a linked list beginning at glink [j], linked in next , and terminated by a zero link. The partner at link l is
stored in tip [l].

⟨ Set up Matula’s bipartite matching problem for p and e 15 ⟩ ≡
⟨ Initialize the tables needed for n girls 17 ⟩;
for (o, t = m = 0, b = snode [p].child ; b; o, b = snode [b].sib) ⟨Record the potential matches for boy b 16 ⟩;
if (m ≡ 0) goto yes sol ; /∗ every boy matches every girl ∗/

This code is used in section 14.

16. If b is matched to every girl, we needn’t include him in the bipartite graph. (This situation happens
rather often, for example whenever b is a leaf, so it’s wise to test for it.) On the other hand, if some boy
isn’t matched to any girl, we know in advance that there will be no bipartite matching.
The HK algorithm uses a mate table, to indicate the current mate of every boy as it constructs tentative

matchings. There’s also an inverse table, imate , for the girls. If b has no mate, mate [b] = 0; if g has no
mate, imate [g] = 0. But if b is tentatively matched to g, we have mate [b] = g and imate [g] = b.

⟨Record the potential matches for boy b 16 ⟩ ≡
{
for (g = e; g < e+ n; g++)

if (oo , sol [b][dual [g]] ≡ 0) break;
if (g ≡ e+ n) continue; /∗ boy b fits anywhere, so omit him ∗/
oo ,m++,mate [b] = mark [b] = 0;
for (k = t, gg = e; gg < g; gg ++) oooo , tip [++t] = b,next [t] = glink [gg ], glink [gg ] = t;
for (g++; g < e+ n; g++)
if (oo , sol [b][dual [g]]) oooo , tip [++t] = b,next [t] = glink [g], glink [g] = t;

if (k ≡ t) goto no sol ; /∗ boy b fits nowhere, so give up ∗/
}

This code is used in section 15.

17. We’ve now created a bipartite graph with m boys, n girls, and t edges.
The HK algorithm proceeds in rounds, where each round finds a maximal set of so-called SAPs, which are

are vertex-disjoint augmenting paths of the shortest possible length. If a round finds k such paths, it reduces
the number of free boys (and free girls) by k. Eventually, after at most 2

√
n rounds, we reach a state where

no more SAPs exist. And then we have a solution, if and only if no boys are still free (hence n−m girls are
still free).
Variable f in the algorithm denotes the current number of free girls. They all appear in the first f positions

of any array called queue , which governs a breadth-first search. This array has an inverse, iqueue : If g is
free, we have queue [iqueue [g]] = g.

⟨ Initialize the tables needed for n girls 17 ⟩ ≡
for (g = e; g < e+ n; g++) oooo , glink [g] = 0, imate [g] = 0, queue [g − e] = g, iqueue [g] = g − e;
f = n;

This code is used in section 15.
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18. The key idea of the HK algorithm is to create a directed acyclic graph in which the paths from a
dummy node called ⊤ to a dummy node called ⊥ correspond one-to-one with the augmenting paths of
minimum length. Each of those paths will contain final level existing matches.
This dag has a representation something like our representation of the girls’ choices, but even sparser:

The first arc from boy i to a suitable girl is in blink [i], with tip and next as before. Each girl, however, has
exactly one outgoing arc in the dag, namely her imate . An imate of 0 is a link to ⊥. The other dummy
node, ⊤, has a list of free boys, beginning at dlink .

An array called mark keeps track of the level (plus 1) at which a boy has entered the dag. All marks must
be zero when we begin.
The next and tip arrays must be able to accommodate 2t +m entries: t for the original graph, t for the

edges at round 0, and m for the edges from ⊤.

#define maxg (2 ∗maxn ) /∗ upper limit on the number of girls ∗/
#define maxt (maxn ∗maxg ) /∗ upper limit on the number of bipartite edges ∗/
⟨Global variables 5 ⟩ +≡
int blink [maxn ], glink [maxg ]; /∗ list heads for potential partners ∗/
int next [maxt +maxt +maxn ], tip [maxt +maxt +maxn ]; /∗ links and suitable partners ∗/
int mate [maxn ], imate [maxg ];
int queue [maxg ]; /∗ girls seen during the breadth-first search ∗/
int iqueue [maxg ]; /∗ inverse permutation, for the first f entries ∗/
int mark [maxn ]; /∗ where boys appear in the dag ∗/
int marked [maxn ]; /∗ which boys have been marked ∗/
int dlink ; /∗ head of the list of free boys in the dag ∗/

19. ⟨Build the dag of shortest augmenting paths (SAPs) 19 ⟩ ≡
final level = −1, tt = t;
for (marks = l = i = 0, q = f ; ; l++) {
for (qq = q; i < qq ; i++) {
o, g = queue [i];
for (o, k = glink [g]; k; o, k = next [k]) {
oo , b = tip [k], pp = mark [b];
if (pp ≡ 0) ⟨Enter b into the dag 21 ⟩
else if (pp ≤ l) continue;
oooo , tip [++tt ] = g, next [tt ] = blink [b], blink [b] = tt ;

}
}
if (q ≡ qq ) break; /∗ nothing new on the queue for the next level ∗/

}
This code is used in section 28.

20. ⟨Local variables for the HK algorithm 20 ⟩ ≡
register int b, f , g, i, j, k, l, t, gg , pp , qq , tt ,final level ,marks ;

This code is used in section 14.
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21. Once we know we’ve reached the final level, we don’t allow any more boys at that level unless they’re
free. We also reset q to qq , so that the dag will not reach a greater level.

⟨Enter b into the dag 21 ⟩ ≡
{
if (final level ≥ 0 ∧ (o,mate [b])) continue;
else if (final level < 0 ∧ (o,mate [b] ≡ 0)) final level = l, dlink = 0, q = qq ;
ooo ,mark [b] = l + 1,marked [marks ++] = b, blink [b] = 0;
if (mate [b]) oo , queue [q++] = mate [b];
else oo , tip [++tt ] = b,next [tt ] = dlink , dlink = tt ;

}
This code is used in section 19.

22. We have no SAPs if and only no free boys were found.

⟨ If there are no SAPs, break 22 ⟩ ≡
if (final level < 0) break;

This code is used in section 28.

23. ⟨Reset all marks to zero 23 ⟩ ≡
while (marks ) oo ,mark [marked [−−marks ]] = 0;

This code is used in section 24.

24. We’ve just built the dag of shortest augmenting paths, by starting from dummy node ⊥ at the bottom
and proceeding breadth-first until discovering final level and essentially reaching the dummy node ⊤. Now
we more or less reverse the process: We start at ⊤ and proceed depth-first, harvesting a maximal set of
vertex-disjoint augmenting paths as we go. (Any maximal set will be fine; we needn’t bother to look for an
especially large one.)
The dag is gradually dismantled as SAPs are removed, so that their boys and girls won’t be reused. A

subtle point arises here when we look at a girl g who was part of a previous SAP: In that case her mate will
have been changed to a boy whose mark is negative. This is true even if l = 0 and g was previously free.

⟨Find a maximal set of disjoint SAPs, and incorporate them into the current matching 24 ⟩ ≡
while (dlink ) {
oo , b = tip [dlink ], dlink = next [dlink ];
l = final level ;

enter level : o, boy [l] = b;
advance : if (o, blink [b]) {

ooo , g = tip [blink [b]], blink [b] = next [blink [b]];
if (o, imate [g] ≡ 0) ⟨Augment the current matching and continue 25 ⟩;
if (o,mark [imate [g]] < 0) goto advance ;
b = imate [g], l−−;
goto enter level ;

}
if (++l > final level ) continue;
o, b = boy [l];
goto advance ;

}
⟨Reset all marks to zero 23 ⟩;

This code is used in section 28.
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25. At this point g = g0 and b = boy [0] = b0 in an augmenting path. The other boys are boy [1], boy [2],
and so on.

⟨Augment the current matching and continue 25 ⟩ ≡
{
if (l) fprintf (stderr , "I’m␣confused!\n"); /∗ a free girl should occur only at level 0 ∗/
⟨Remove g from the list of free girls 27 ⟩;
while (1) {
o,mark [b] = −1;
ooo , j = mate [b],mate [b] = g, imate [g] = b;
if (j ≡ 0) break; /∗ b was free ∗/
o, g = j, b = boy [++l];

}
continue;

}
This code is used in section 24.

26. ⟨Global variables 5 ⟩ +≡
int boy [maxn ]; /∗ the boys being explored during the depth-first search ∗/

27. ⟨Remove g from the list of free girls 27 ⟩ ≡
f−−; /∗ f is the number of free girls ∗/
o, j = iqueue [g]; /∗ where is g in queue? ∗/
ooo , i = queue [f ], queue [j] = i, iqueue [i] = j; /∗ OK to clobber queue [f ] ∗/

This code is used in section 25.

28. Hey folks, we’ve now got all the infrastructure and machinery of the HK algorithm in place. It only
remains to actually perform the algorithm.

⟨ Solve that problem and update sol [p][e . . e+ n− 1] 28 ⟩ ≡
while (1) {
⟨Build the dag of shortest augmenting paths (SAPs) 19 ⟩;
⟨ If there are no SAPs, break 22 ⟩;
⟨Find a maximal set of disjoint SAPs, and incorporate them into the current matching 24 ⟩;

}
if (f ≡ n−m) ⟨ Store the solution in sol [p] 29 ⟩
else
no sol : for (k = 0; k < n; k++) o, sol [p][e+ k] = 0;
continue; /∗ resume the loop on e ∗/

yes sol : for (k = 0; k < n; k++) o, sol [p][e+ k] = 1;
z += n;

This code is used in section 14.
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29. The climax. But it’s still necessary to don our thinking cap and figure out exactly what we’ve got,
when the HK algorithm has found a perfect matching of m boys to n > m girls.
Our job is to update n entries of sol , one for each girl. That entry should be 0 if and only if the girl has

a mate in every perfect match. (Because the subgraph isomorphism will assign her to the parent of v in T ,
while the mated girls will be assigned to some of v’s children in the embedding.)
Suppose, for example, that the bipartite matching is unique. In that case we’ll want to set sol [p][g] = 0 if

and only if imate [g] ̸= 0.
Usually, however, there will be a number of perfect matchings, involving different sets of girls. Matula

noticed, in Theorem 3.4 of his paper, that it’s actually easy to distinguish the forcibly matched girls from
the others. Moreover — fortunately for us — the necessary information is sitting conveniently in the dag,
when the HK algorithm ends!
Indeed, it’s not difficult to verify that every perfect matching either includes g or corresponds to a path

from g to ⊥ in the dag. Therefore — ta da — the freeable girls are precisely the girls in the first q positions
of queue !

⟨ Store the solution in sol [p] 29 ⟩ ≡
{
for (k = 0; k < n; k++) o, sol [p][e+ k] = 0;
for (k = 0; k < q; k++) ooo , z++, sol [p][queue [k]] = 1;
⟨ Store the mate information too 30 ⟩;

}
This code is used in section 28.

30. If we’re interested only in whether or not an embedding of S into T exists, the sol array tells us
everything we need to know.
But if we want to actually see an embedding, we might wish to store the solutions to the matching problems

we’ve solved, so that we don’t need to repeat those calculations later.
In a way that’s foolish: Only a small number of matching problems will need to be redone. So we’re

wasting space by storing this extra information — which doesn’t fit in sol . And we’re gaining only an
insignificant amount of time.
Still, the details are interesting, so I’m plunging ahead. Let solx and soly be arrays, such that the

solution to the bipartite matching problem in sol [p][e . . e + n − 1] is recorded in solx [p][e . . e + n − 1] and
soly [p][e . . e + n − 1]. (Both solx and soly are arrays of int, while sol itself could have been an array of
single bits.)
It suffices to store the final imate table in solx , and to store links of a path from g to ⊥ in soly .

⟨ Store the mate information too 30 ⟩ ≡
for (g = e; g < e+ n; g++) oo , solx [p][g] = imate [g];
for (k = 0; k < q; k++) {
o, g = queue [k];
if (o, imate [g]) oooo , soly [p][g] = tip [blink [imate [g]]];

}
This code is used in section 29.

31. ⟨Global variables 5 ⟩ +≡
int sol [maxn ][maxg ]; /∗ the master control matrix ∗/
int solx [maxn ][maxg ]; /∗ imate info for bipartite solutions ∗/
int soly [maxn ][maxg ]; /∗ final dag info for bipartite solutions ∗/
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32. The anticlimax. When all has been done but not yet said, we want to tell the user what happened.
At this point z holds the value of solve (1). It’s negative, say −d, if the subtree of S rooted at node d

and its parent cannot be isomorphically embedded in T . Otherwise z is zero if S itself cannot be embedded,
although every subtree of node 1 is embeddable. Otherwise z is the number of arcs e of T for which there’s
an embedding with node 0 of S mapped into the root of subtree e.

(In the latter case, notice that z is probably not the actual total number of embeddings. It’s just the
number of places where we could start an embedding and obtain at least one success.)

⟨Report the solution 32 ⟩ ≡
if (z < 0)
fprintf (stderr , "Failure;␣We␣can’t␣even␣embed␣node␣%d␣and␣its␣parent.\n", encode (−z));

else {
fprintf (stderr , "There␣%s␣%d␣place%s␣to␣anchor␣an␣embedding␣of␣node␣1.\n",

z ≡ 1 ? "is" : "are", z, z ≡ 1 ? "" : "s");
if (z) ⟨Print a solution 34 ⟩;

}
This code is used in section 2.

33. Our final task is to harvest the information in sol , solx , and soly , in order to present the user with
the images of nodes 0, 1, . . . of S, in one of the possible embeddings found.
To do this, we assign an edge called solarc [p] to each nonroot vertex p of S. If this arc runs from v to u,

it means that the embedding maps p to v and p’s parent to u. These arcs are assigned top-down, starting
with the rightmost e such that sol [1][e] = 1.

34. ⟨Print a solution 34 ⟩ ≡
{
for (e = emax − 1; o, sol [1][e] ≡ 0; e−−) ;
oo , solarc [1] = e;
for (p = 1; p < m; p++)
if (o, snode [p].child ) {
for (q = snode [p].child ; q; o, q = snode [q].sib) o,mate [q] = 0;
oo , z = solarc [p], v = vert [z];
o, e = tnode [v].arc , n = tnode [v].deg ;
for (g = e; g < e+ n; g++) ooo , q = imate [g] = solx [p][g],mate [q] = g;
⟨Find a matching in which imate [z] = 0 36 ⟩;
for (o, g = e, q = snode [p].child ; q; o, q = snode [q].sib) {

if (o,mate [q]) oo , solarc [q] = dual [mate [q]];
else { /∗ choose mate for a universally matchable boy ∗/
while (g ≡ z ∨ (o, imate [g])) g++;
oo , solarc [q] = dual [g++];

}
}

}
oo , printf ("%c", encode (uert [solarc [1]]));
for (p = 1; p < m; p++) oo , printf ("␣%c", encode (vert [solarc [p]]));
printf ("\n");

}
This code is used in section 32.

35. ⟨Global variables 5 ⟩ +≡
int solarc [maxn ]; /∗ key arcs in the solution ∗/
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36. Here finally is a kind of cute way to end, using the theory of non-augmenting paths. (That theory
can be understood from the construction of the final, incomplete dag in the HK algorithm, whose critical
structure we stored in soly [p].)

⟨Find a matching in which imate [z] = 0 36 ⟩ ≡
for (k = 0, g = z; o, q = imate [g]; k = q) {
o, imate [g] = k;
o, g = soly [p][g];
o,mate [q] = g;

}
o, imate [g] = k;

This code is used in section 34.

37. Did you solve the puzzle?
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38. Index.

advance : 24.
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b: 20.
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boy : 24, 25, 26.
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deg : 4, 8, 34.
dlink : 18, 21, 24.
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emax : 9, 12, 14, 34.
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exit : 3, 6, 7.
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imems : 2.
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maxn : 2, 5, 6, 7, 12, 18, 26, 31, 35.
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no sol : 16, 28.
node: 4, 5.
node struct: 4.
o: 2.
oo : 2, 6, 7, 9, 11, 16, 19, 21, 23, 24, 30, 34.

ooo : 2, 8, 11, 21, 24, 25, 27, 29, 34.
oooo : 2, 11, 16, 17, 19, 30.
p: 2, 8, 14.
pp : 19, 20.
printf : 34.
q: 2, 8, 14.
qq : 19, 20, 21.
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sol : 13, 14, 16, 28, 29, 30, 31, 33, 34.
solarc : 33, 34, 35.
solve : 13, 14, 32.
solx : 30, 31, 33, 34.
soly : 30, 31, 33, 36.
stderr : 2, 3, 6, 7, 25, 32.
suboverhead : 2, 8, 14.
t: 20.
thresh : 9, 12, 14.
tip : 15, 16, 18, 19, 21, 24, 30.
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tt : 19, 20, 21.
uert : 11, 12, 15, 34.
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yes sol : 15, 28.
z: 2, 14.
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