
§1 MATULA-BIG-PLANTED INTRO 1

1*. Intro. This program determines whether a given free tree, S, is isomorphic to a subtree of another
free tree, T , using an algorithm published by David W. Matula [Annals of Discrete Mathematics 2 (1978),
91–106]. His algorithm is quite efficient; indeed, it runs even faster than he thought it did! If S has m nodes
and T has n nodes, the running time is at worst proportional to mn times the square root of the maximum
inner-degree of any node in S, where the inner degree of a node is the number of its nonleaf neighbors.

In this version, tree T is specified in a text file, using the “rectree format” defined in MATULA-BIG. Tree
S is obtained from T by deleting d leaves, one at a time, where each deletion is chosen uniformly from among
the existing leaves. (Thus S is definitely a subtree; I just want to see how long it takes for this algorithm to
find it.) The value of d is given on the command line.

I hacked this code from MATULA-BIG.

2*. The program is instrumented to record the number of mems, namely the number of times it accesses an
octabyte of memory. (Most of the memory accesses are actually to tetrabytes (ints), because this program
rarely deals with two tetrabytes that are known to be part of the same octabyte.)

#define maxn 2000
#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define oooo mems += 4 /∗ count four mems ∗/
#define suboverhead 10 /∗ mems charged per subroutine call ∗/
#define decode (c) ((c) ≥ ’0’ ∧ (c) ≤ ’9’ ? (c)− ’0’ : (c) ≥ ’a’ ∧ (c) ≤ ’z’ ? (c)− ’a’ + 10 :

(c) ≥ ’A’ ∧ (c) ≤ ’Z’ ? (c)− ’A’ + 36 : −1)
#define encode (p) ((p) < 10 ? (p) + ’0’ : (p) < 36 ? (p)− 10 + ’a’ : (p) < 62 ? (p)− 36 + ’A’ : ’?’)

#include <stdio.h>

#include <stdlib.h>

#include "gb_flip.h"

int del , seed ; /∗ command-line parameters ∗/
〈Type definitions 5* 〉;
〈Global variables 6* 〉;
unsigned long long mems ; /∗ memory references ∗/
unsigned long long imems ; /∗ mems during the input phase ∗/
〈Subroutines 7* 〉;
main (int argc , char ∗argv [])
{

register int d, e, g, i, j, k,m, n, p, q, r, s, v, z;

〈Process the command line 3* 〉;
imems = mems ,mems = 0;
if (m > n) fprintf (stderr , "There’s no solution, because m>n!\n");
else {
〈Solve the problem 28 〉;
〈Report the solution 47 〉;

}
fprintf (stderr , "Altogether %lld+%lld mems.\n", imems ,mems);
}

2 INTRO MATULA-BIG-PLANTED §3

3*. 〈Process the command line 3* 〉 ≡
if (argc 6= 4 ∨ sscanf (argv [2], "%d",&del) 6= 1 ∨ sscanf (argv [3], "%d",&seed) 6= 1) {

fprintf (stderr , "Usage: %s T_rectree deletions seed\n", argv [0]);
exit (−1);
}
gb init rand (seed);
〈 Input the tree S 14* 〉;
〈 Input the tree T 22* 〉;

This code is used in section 2*.

§4 MATULA-BIG-PLANTED RECURSIVE TREE FORMAT 3

4*. Recursive tree format. The definition of a free tree in rectree format has many redundancy checks
to keep you honest; so it is probably best to let a computer prepare it.

The opening lines of that file may contain optional comments, indicated by a ‘%’ sign at the very left.
Then comes the “main line,” which defines the overall context. The main line can have one of three forms:

a) ‘Tn_0.’ This means an n-node tree, beginning with node 0.
b) ‘Tm_0,Tm_m.’ This means a 2m-node tree, formed from the m-node trees Tm_0 and Tm_m, with their

nodes made adjacent.
c) ‘2Tm_0.’ This means a 2m-node tree, formed from two identical copies of the m-node tree Tm_0, with

their nodes made adjacent.

Options (b) and (c) are created by the Mathematica program randomfreetree.m when it’s creating a free
tree with two centroids. (But the trees in rectree format are allowed to have their centroids anywhere.)

All lines after the main line contain definitions of the subtrees of size 3 or more, always proceeding in
strictly last-in-first-out order. Subtree names have the form Tk_o, where k is the number of nodes and o is
the offset (the number of the root node). Each definition of a k-node subtree appears on a separate line,
beginning with the subtree name immediately followed by ‘=’, and a sum of terms that collectively define
subtrees totalling k − 1 nodes (and followed by ‘.’). Each subtree name in these terms is preceded by an
integer j, meaning that j copies are to appear. The offset after a term ‘jTk_o’ should therefore by o + jk.

4 DATA STRUCTURES FOR THE TREES MATULA-BIG-PLANTED §5

5*. Data structures for the trees. A node record is allocated for each node of a tree. It has four
fields: child (the index of its most recent child, if any), sib (the index of its parent’s previous child, if any),
deg (the number of neighbors), and arc (the number of the arc to its parent). The deg and arc fields aren’t
actually used for S, but we need them for T . Reference to the deg and arc fields in the same node counts
as only one mem.

〈Type definitions 5* 〉 ≡
typedef struct node struct {

int child ; /∗ who is my first child, if any? ∗/
int sib ; /∗ who is the next child of my parent, if any? ∗/
int deg ; /∗ how many neighbors do I have, including my parent (if any)? ∗/
int arc ; /∗ which arc corresponds to the link from me to my parent? ∗/
} node;

This code is used in section 2*.

6*. 〈Global variables 6* 〉 ≡
node snode [maxn + 1]; /∗ the m nodes of S, and one more ∗/
node tnode [maxn + 1]; /∗ the n nodes of T , and one more ∗/

See also sections 27, 33, 41, 46, 50, and 52*.

This code is used in section 2*.

7*. Here’s a subroutine that reads a rectree file and puts the associated tree into the tnode array.

#define bufsize 1� 12

〈Subroutines 7* 〉 ≡
FILE ∗infile ;
char buf [bufsize];

int read rectree (char ∗filename)
{

register i, j, k, p, q, r, s, typ , stack , n, size , off , rightoff , rep ;

mems += suboverhead ;
infile = fopen (filename , "r");
if (¬infile) {

fprintf (stderr , "I can’t open ‘%s’ for reading!\n",filename);
exit (−99);

}
while (1) {

if (¬fgets (buf , bufsize , infile)) {
fprintf (stderr , "Rectree file ‘%s’ ended before the main line\n",filename);
exit (−98);

}
if (o, buf [0] 6=)’%’) break;

}
〈Process the main line 8* 〉;
while (stack ≥ 0) 〈Process the top subtree definition on the stack 10* 〉;
〈Bring on the clones 12* 〉;
〈Adjust the tree if bicentroidal 13* 〉;
return o, tnode [0].deg ;
}

See also sections 16*, 17*, 21*, 23, and 29.

This code is used in section 2*.

§8 MATULA-BIG-PLANTED DATA STRUCTURES FOR THE TREES 5

8*. While the tree is being installed, we use the child field to link items in the stack of nodes to be finished.
We also use the deg field to record the subtree size, and the arc field to record the number of clones that
should be made.

〈Process the main line 8* 〉 ≡
if (buf [0] ≡ ’2’) o, typ = tnode [0].arc = 2, p = 1; else o, typ = p = tnode [0].arc = 0;
〈Scan a subtree name 9* 〉;
if (off) {

fprintf (stderr , "The main subtree must start at 0!\n...%s", buf + q);
exit (−104);
}
oo , n = tnode [0].deg = size , tnode [0].child = −1, tnode [0].sib = 0, stack = 0;
if (typ ≡ 2) n += n;
else if (o, buf [p] ≡ ’,’) {

typ = 1, p++;
〈Scan a subtree name 9* 〉;
if (off 6= n) {

fprintf (stderr , "The second main subtree should start at %d!\n...%s", off , buf + q);
exit (−105);

}
o, tnode [0].sib = n, stack = n, n += size ;
}
if (n > maxn) {

fprintf (stderr , "Tree too big, because maxn=%d!\n...%s",maxn , buf + q);
exit (−102);
}
for (k = 1; k ≤ n; k++) oo , tnode [k].child = tnode [k].sib = tnode [k].deg = tnode [k].arc = 0;
if (typ ≡ 1) o, tnode [stack].deg = n− stack ; /∗ tnode [stack].child = 0 ∗/
if (o, buf [p] 6= ’.’) {

fprintf (stderr , "The main line didn’t end with ‘.’!\n%s", buf);
exit (−106);
}

This code is used in section 7*.

9*. 〈Scan a subtree name 9* 〉 ≡
if (o, buf [p] 6= ’T’) {

fprintf (stderr , "Subtree name doesn’t start with T!\n...%s", buf + p);
exit (−100);
}
for (q = p++, size = 0; o, (buf [p] ≥ ’0’ ∧ buf [p] ≤ ’9’); p++) size = 10 ∗ size + buf [p]− ’0’;
if (size ≡ 0) {

fprintf (stderr , "Subtree size is missing or zero!\n...%s", buf + q);
exit (−101);
}
if (buf [p++] 6= ’_’) {

fprintf (stderr , "Subtree name missing ‘_’!\n...%s", buf + q);
exit (−103);
}
for (off = 0; o, (buf [p] ≥ ’0’ ∧ buf [p] ≤ ’9’); p++) off = 10 ∗ off + buf [p]− ’0’;

This code is used in sections 8*, 10*, and 11*.

6 DATA STRUCTURES FOR THE TREES MATULA-BIG-PLANTED §10

10*. 〈Process the top subtree definition on the stack 10* 〉 ≡
{

oo , k = stack , stack = tnode [k].child , s = tnode [k].deg ;
o, tnode [k].child = (s ≥ 2 ? k + 1 : 0);
if (s > 2) {

if (¬fgets (buf , bufsize , infile)) {
fprintf (stderr , "Rectree file ‘%s’ ended before defining T%d_%d!\n",filename , s, k);
exit (−107);

}
p = 0; 〈Scan a subtree name 9* 〉;
if (size 6= s ∨ off 6= k) {

fprintf (stderr , "Rectree file ‘%s’ doesn’t define T%d_%d!\n %s",filename , s, k, buf);
exit (−108);

}
if (o, buf [p++] 6= ’=’) {

fprintf (stderr , "Missing ‘=’ in definition of T%d_%d!\n %s", s, k, buf);
exit (−109);

}
rightoff = k + 1;
〈Define the subtrees of node k 11* 〉;
if (buf [p] 6= ’.’) {

fprintf (stderr , "Missing ‘.’ after definition of T%d_%d!\n %s", s, k, buf);
exit (−112);

}
if (rightoff 6= k + s) {

fprintf (stderr , "The definition of T%d_%d has %d nodes!\n %s", s, k, rightoff − k, buf);
exit (−113);

}
}
}

This code is used in section 7*.

11*. 〈Define the subtrees of node k 11* 〉 ≡
while (o, buf [p] ≡ ’+’) {

for (q = p++, rep = 0; o, (buf [p] ≥ ’0’ ∧ buf [p] ≤ ’9’); p++) rep = 10 ∗ rep + buf [p]− ’0’;
if (rep ≡ 0) {

fprintf (stderr , "Replication count missing or zero!\n...%s", buf + q);
exit (−110);

}
〈Scan a subtree name 9* 〉;
if (off 6= rightoff) {

fprintf (stderr , "That subtree should start at %d!\n...%s", rightoff , buf + q);
exit (−111);

}
oo , j = rightoff , tnode [j].deg = size , tnode [j].child = stack ;
if (rep > 1) tnode [j].arc = rep ; /∗ that mem was already charged ∗/
stack = j;
rightoff += rep ∗ size ;
if (buf [p] ≡ ’+’) tnode [j].sib = rightoff ;
}

This code is used in section 10*.

§12 MATULA-BIG-PLANTED DATA STRUCTURES FOR THE TREES 7

12*. At this point the entire tree is in place, except that no cloning has yet been done to copy the subtrees
that are supposed to be repeated.

Clones can appear inside of clones. But everything is easily patched up, if we look at the tree from bottom
up when finding work to do, then clone from top down. (Kind of cute.) And we know that the total work
will take linear time, because nothing is done twice.

〈Bring on the clones 12* 〉 ≡
for (p = n− 1; p ≥ 0; p−−)

if (o, tnode [p].arc) {
s = tnode [p].deg , j = s ∗ tnode [p].arc ;
o, tnode [p].arc = 0; /∗ erase tracks ∗/
oo , i = tnode [p].sib , tnode [p].sib = p + s; /∗ the clone will be a sibling ∗/
for (k = p + s; k < p + j; k++) {
o, q = tnode [k − s].child , r = tnode [k − s].sib ;
if (q) o, tnode [k].child = q + s;
if (r) o, tnode [k].sib = r + s;

}
o, tnode [k − s].sib = i; /∗ the rightmost sibling is original sibling of p ∗/

}
This code is used in section 7*.

13*. 〈Adjust the tree if bicentroidal 13* 〉 ≡
if (typ) {
o, p = tnode [0].sib ; /∗ sibling of the root will become its child ∗/
oo , tnode [p].sib = tnode [0].child , tnode [0].child = p, tnode [0].sib = 0;
o, tnode [0].deg = n;
}

This code is used in section 7*.

14*. To get tree S, we start by constructing tree T , so that we can chop some of its leaves away.

〈 Input the tree S 14* 〉 ≡
n = read rectree (argv [1]);
if (n ≤ del + 2) {

fprintf (stderr , "I don’t want to delete %d nodes from a tree of size %d!\n", del , n);
exit (−200);
}
〈Remove del leaves, one by one 15* 〉;

See also section 18*.

This code is used in section 3*.

8 DATA STRUCTURES FOR THE TREES MATULA-BIG-PLANTED §15

15*. The following approach to leaf deletion keeps the rooted tree structure, but will optionally remove the
root if it becomes a leaf. First we identify the nonroot leaves, by calculating the degree of all nodes (not
including their parents), simultaneously identifying all parents and putting all leaves into a sequential list.
Then we remove random elements from that list; the removal of a leaf decreases the degree of its parent, so
that its parent might become a leaf for the next round.

The parents are temporarily stored in arc fields of tnode , and the leaves are temporarily stored in arc
fields of snode (because those fields are currently unused).

In this process, z is the current root, and gg is the current number of leaves. When a leaf has been deleted,
we reset its parent to −1.

#define leaf (k) snode [k].arc
#define parent (k) tnode [k].arc

〈Remove del leaves, one by one 15* 〉 ≡
z = gg = 0; leafprep(0);
m = n− del ;
for (; del ; del −−) {
d = (o, tnode [z].deg ≡ 1); /∗ is the root also a leaf? ∗/
r = gb unif rand (gg + d); /∗ choose a random leaf ∗/
if (r ≡ gg) ooo , z = tnode [z].child ; /∗ delete the root ∗/
else {
o, q = leaf (r);
oo , p = parent (q), parent (q) = −1;
oo , tnode [p].deg −−;
if (tnode [p].deg) o, p = leaf (−−gg);
o, leaf (r) = p; /∗ replace q by another leaf ∗/

}
}
restructure (z); /∗ now really remove the nodes with negative parent ∗/

This code is used in section 14*.

16*. 〈Subroutines 7* 〉 +≡
int gg ; /∗ a global counter ∗/
int leafprep(int p)
{

register int d, q;

mems += suboverhead ;
for (o, d = 0, q = tnode [p].child ; q; o, q = tnode [q].sib) {
d++, parent (q) = p;
if (leafprep(q) ≡ 0) o, leaf (gg ++) = q;

}
o, tnode [p].deg = d;
return d;
}

§17 MATULA-BIG-PLANTED DATA STRUCTURES FOR THE TREES 9

17*. The restructure routine makes the child and sib fields great again.

〈Subroutines 7* 〉 +≡
void restructure (int p)
{

register int q;

mems += suboverhead ;
o, q = tnode [p].child ;
while (q ∧ (o, parent (q) < 0)) o, q = tnode [q].sib ;
o, tnode [p].child = q;
while (q) {

if (o, tnode [q].child) restructure (q);
o, p = q, q = tnode [q].sib ;
while (q ∧ (o, parent (q) < 0)) o, q = tnode [q].sib ;
o, tnode [p].sib = q;

}
}

18*. OK, we’ve pruned away the desired number of leaves; but we’re still not done, because this program
also wants the root of S to be a leaf. All the nodes must be renumbered internally.

So we transform the tnode array so that the root is a leaf. Then we copy tnode to snode , remapping all
node numbers as we go.

〈 Input the tree S 14* 〉 +≡
〈Make the root of tnode into a leaf 19* 〉;
〈Copy and remap tnode into snode 20* 〉;

19*. I thought this would be easier than it has turned out to be. Did I miss something? It’s a nice little
exercise in datastructurology.

Node z moves to node n, so that it can become a child or a sibling (in case z = 0).

〈Make the root of tnode into a leaf 19* 〉 ≡
oo , r = n, p = tnode [z].child , tnode [r].child = p;
while (o, q = tnode [p].child) { /∗ make p the root, retaining its child q ∗/
o, k = tnode [p].sib , s = tnode [q].sib ;
o, tnode [p].sib = 0;
o, tnode [q].sib = r;
o, tnode [r].child = k, tnode [r].sib = s;
r = p, p = q;
}
ooo , s = tnode [p].sib , tnode [p].sib = 0, tnode [p].child = r, tnode [r].child = s; /∗ now p is the root ∗/

This code is used in section 18*.

20*. 〈Copy and remap tnode into snode 20* 〉 ≡
gg = 0; copyremap(p);
if (gg 6= m) {

fprintf (stderr , "I’m confused!\n");
exit (−666);
}
oo , snode [z].arc = snode [n].arc ;

This code is used in section 18*.

10 DATA STRUCTURES FOR THE TREES MATULA-BIG-PLANTED §21

21*. This recursion is a bit tricky, and I wonder what’s the best way to explain it. (An exercise for the
reader.)

〈Subroutines 7* 〉 +≡
void copyremap(int r)
{

register int p, q;

mems += suboverhead ;
gg ++;
o, p = tnode [r].child ;
if (¬p) return;
o, snode [gg − 1].child = gg ; /∗ copy a (remapped) child pointer ∗/
while (1) {

q = gg ; /∗ the future interior name of p ∗/
copyremap(p);
o, p = tnode [p].sib ;
if (¬p) return;
o, snode [q].sib = gg ; /∗ copy a (remapped) sibling pointer ∗/

}
}

22*. 〈 Input the tree T 22* 〉 ≡
n = read rectree (argv [1]);
〈Allocate the arcs 24 〉;
fprintf (stderr , "OK, I’ve got %d nodes for S and %d nodes for T, max degree %d.\n",m, n,

maxdeg);

This code is used in section 3*.

23. The target tree T has 2(n − 1) arcs, from each nonroot node to its parent and vice versa. The arcs
from u to v are assigned consecutive integers, from 0 to 2n−3, in lexicographic order of (deg(v), v, u). (Well,
the second and third components might not be in numerical order; but all d arcs from a vertex of degree d
are consecutive, beginning with the arc to the parent.)

In order to assign these numbers, we keep lists of all nodes having a given degree, using the arc fields
temporarily to link them together.

〈Subroutines 7* 〉 +≡
void fixdeg (int p)
{

register int d, q;

mems += suboverhead ;
for (o, d = 1, q = tnode [p].child ; q; o, d++, q = tnode [q].sib) fixdeg (q);
if (p) ooo , tnode [p].arc = head [d], tnode [p].deg = d, head [d] = p;

/∗ p is not the root; it has d neighbors including its parent ∗/
else ooo , tnode [0].arc = head [d− 1], tnode [0].deg = d− 1, head [d− 1] = −1;

/∗ root is temporarily renamed −1 ∗/
}

§24 MATULA-BIG-PLANTED DATA STRUCTURES FOR THE TREES 11

24. We set thresh [d] to the number of the first arc for a node of degree d or more.

〈Allocate the arcs 24 〉 ≡
fixdeg (0);
for (d = 1, e = 0; e < 2 ∗ n− 2; d++) {
o, thresh [d] = e;
for (o, p = head [d]; p; e += d, p = q) {

if (p < 0) p = 0;
oo , q = tnode [p].arc , tnode [p].arc = e;

}
}
for (maxdeg = d− 1, emax = e; d < m; d++) o, thresh [d] = emax ;
〈Allocate the dual arcs 26 〉;

This code is used in section 22*.

25. The arc from u to v has a dual, namely the arc from v to u. (And conversely.) We’ve assigned numbers
to the arcs that go to a parent; the other arcs are their duals.

26. 〈Allocate the dual arcs 26 〉 ≡
for (p = 0; p < n; p++) {

for (oo , e = (p ? tnode [p].arc : tnode [p].arc − 1), q = tnode [p].child ; q; o, q = tnode [q].sib) {
ooo , dual [tnode [q].arc] = ++e, dual [e] = tnode [q].arc ;
oooo , uert [dual [e]] = vert [e] = p, uert [e] = vert [dual [e]] = q;

}
}

This code is used in section 24.

27. 〈Global variables 6* 〉 +≡
int head [maxn]; /∗ heads of lists by degree ∗/
int maxdeg ; /∗ maximum degree seen ∗/
int thresh [maxn]; /∗ where the arcs from large degree nodes start ∗/
int vert [maxn + maxn]; /∗ the source vertex of each arc ∗/
int uert [maxn + maxn]; /∗ the target vertex of each arc ∗/
int dual [maxn + maxn]; /∗ the dual of each arc ∗/
int emax ; /∗ the total number of arcs ∗/

12 THE MASTER CONTROL MATULA-BIG-PLANTED §28

28. The master control. There’s a two-dimensional array called sol that pretty much governs the
computation. The first index, p, is a node of S; the second index, e, is an arc of T . If e is the arc from u
to v, consider the subtree of T that’s rooted at u and includes v; we call it “subtree e.” If there’s no way to
embed the subtree of S rooted at p to subtree e, by mapping p to v, then we’ll set sol [p][e] to zero. Otherwise
we’ll set sol [p][e] to a nonzero value, with which we could deduce such an embedding if called on to do so.

The basic idea is simple, working recursively up from small subtrees to larger ones: Suppose p has
r children, q1, . . . , qr; and suppose v has s + 1 neighbors, u0, . . . , us. Suppose further that we’ve already
computed sol [qi][ej], for 1 ≤ i ≤ r and 0 ≤ j ≤ s, where ej is the arc from v to uj . Matula’s algorithm will
tell us how to compute sol [p][dual [ej]] for 0 ≤ j ≤ s. Thus we can fill in the rows of sol from bottom to top;
eventually sol [1] will tell us if we can embed all of S.

Let’s look closely at that crucial subproblem: How, for example, do we know if sol [p][dual [e0]] should be
zero or nonzero? That subproblem means that we want to embed subtree p into the subtree below the arc
from u0 to v. And the subproblem is clearly solvable if and only if we can match up each child qi of p with a
distinct child uj of v, in such a way that sol [pi][qj] is nonzero. Aha, yes: It’s a bipartite matching problem!
And there are good algorithms for bipartite matching!

More generally, consider the subproblem in which uj is a parent of v in T , while u0, . . . , uj−1, uj+1, . . . , us

are children. Matula discovered that these subproblems are essentially the same, for all j between 0 and s.
It’s a beautiful way to save a factor of n by combining similar subproblems.

So that’s what we’ll do, with a recursive procedure called solve .

〈Solve the problem 28 〉 ≡
z = solve (1);

This code is used in section 2*.

29. The task of solve , given a node p of S, is to set the values of sol [p][e] for each arc e.
The base case of this recursion occurs when p is a leaf; a leaf can be embedded anywhere.
Another easy case occurs when subtree e of T has too small a degree to support any embedding.
If some descendant d of p can’t be embedded, solve returns −d. Otherwise solve returns the number of

1s in sol [p].

〈Subroutines 7* 〉 +≡
int solve (int p)
{

register int e,m, n, q, r, z;

mems += suboverhead ;
o, q = snode [p].child ;
if (q ≡ 0) {

for (e = 0; e < emax ; e++) o, sol [p][e] = 1;
return emax ;

}
for (r = 0; q; o, r++, q = snode [q].sib) {
z = solve (q);
if (z ≤ 0) return (z ? z : −q); /∗ if we can’t embed a subtree, we can’t embed S ∗/

} /∗ now sol [q][e] is known for all children q of p and all arcs e ∗/
for (o, z = e = 0; e < thresh [r + 1]; e++) o, sol [p][e] = 0; /∗ degree too small ∗/
for (n = r + 1; e < emax ; e += n) {
〈Local variables for the HK algorithm 35 〉;
while (o, e ≡ thresh [n + 1]) n++; /∗ advance n to the degree of vert [e] ∗/
〈Set up Matula’s bipartite matching problem for p and e 30* 〉;
〈Solve that problem and update sol [p][e . . e + n− 1] 43 〉;

}
return z;
}

§30 MATULA-BIG-PLANTED BIPARTITE MATCHING CHEZ HOPCROFT AND KARP 13

30*. Bipartite matching chez Hopcroft and Karp. Now we implement the classic HK algorithm
for bipartite matching, stealing most of the code from the program HOPCROFT-KARP. (The reader should
consult that program for further remarks and proofs.) The children of p play the role of “boys” in that
algorithm, and the arcs for neighbors of v play the role of “girls.” That algorithm is slightly simplified here,
because we are interested only in cases where all the boys can be matched. (There always are more girls
than boys, in our case.)

In Matula’s matching problem, p is a vertex of S that has children q1, . . . , qr; e is an arc of T from
v = vert [e] to u = uert [e], where v has s + 1 neighbors u0, . . . , us. The matching problem will have m ≤ r
boys and n = s + 1 girls.

We use a simple data structure to represent the bipartite graph: The potential partners for girl j are in
a linked list beginning at glink [j], linked in next , and terminated by a zero link. The partner at link l is
stored in tip [l].

〈Set up Matula’s bipartite matching problem for p and e 30* 〉 ≡
〈 Initialize the tables needed for n girls 32 〉;
for (o, t = m = 0, b = snode [p].child ; b; o, b = snode [b].sib) 〈Record the potential matches for boy b 31 〉;
if (m ≡ 0) goto yes sol ; /∗ every boy matches every girl ∗/
if (m ∗ n > record) {

record = m ∗ n;
fprintf (stderr , " ...matching %d boys to %d girls\n",m, n);
}

This code is used in section 29.

31. If b is matched to every girl, we needn’t include him in the bipartite graph. (This situation happens
rather often, for example whenever b is a leaf, so it’s wise to test for it.) On the other hand, if some boy
isn’t matched to any girl, we know in advance that there will be no bipartite matching.

The HK algorithm uses a mate table, to indicate the current mate of every boy as it constructs tentative
matchings. There’s also an inverse table, imate , for the girls. If b has no mate, mate [b] = 0; if g has no
mate, imate [g] = 0. But if b is tentatively matched to g, we have mate [b] = g and imate [g] = b.

〈Record the potential matches for boy b 31 〉 ≡
{

for (g = e; g < e + n; g++)
if (oo , sol [b][dual [g]] ≡ 0) break;

if (g ≡ e + n) continue; /∗ boy b fits anywhere, so omit him ∗/
oo ,m++,mate [b] = mark [b] = 0;
for (k = t, gg = e; gg < g; gg ++) oooo , tip [++t] = b,next [t] = glink [gg], glink [gg] = t;
for (g++; g < e + n; g++)

if (oo , sol [b][dual [g]]) oooo , tip [++t] = b,next [t] = glink [g], glink [g] = t;
if (k ≡ t) goto no sol ; /∗ boy b fits nowhere, so give up ∗/
}

This code is used in section 30*.

14 BIPARTITE MATCHING CHEZ HOPCROFT AND KARP MATULA-BIG-PLANTED §32

32. We’ve now created a bipartite graph with m boys, n girls, and t edges.
The HK algorithm proceeds in rounds, where each round finds a maximal set of so-called SAPs, which are

are vertex-disjoint augmenting paths of the shortest possible length. If a round finds k such paths, it reduces
the number of free boys (and free girls) by k. Eventually, after at most 2

√
n rounds, we reach a state where

no more SAPs exist. And then we have a solution, if and only if no boys are still free (hence n−m girls are
still free).

Variable f in the algorithm denotes the current number of free girls. They all appear in the first f positions
of any array called queue , which governs a breadth-first search. This array has an inverse, iqueue : If g is
free, we have queue [iqueue [g]] = g.

〈 Initialize the tables needed for n girls 32 〉 ≡
for (g = e; g < e + n; g++) oooo , glink [g] = 0, imate [g] = 0, queue [g − e] = g, iqueue [g] = g − e;
f = n;

This code is used in section 30*.

33. The key idea of the HK algorithm is to create a directed acyclic graph in which the paths from a
dummy node called > to a dummy node called ⊥ correspond one-to-one with the augmenting paths of
minimum length. Each of those paths will contain final level existing matches.

This dag has a representation something like our representation of the girls’ choices, but even sparser:
The first arc from boy i to a suitable girl is in blink [i], with tip and next as before. Each girl, however, has
exactly one outgoing arc in the dag, namely her imate . An imate of 0 is a link to ⊥. The other dummy
node, >, has a list of free boys, beginning at dlink .

An array called mark keeps track of the level (plus 1) at which a boy has entered the dag. All marks must
be zero when we begin.

The next and tip arrays must be able to accommodate 2t + m entries: t for the original graph, t for the
edges at round 0, and m for the edges from >.

#define maxg (2 ∗maxn) /∗ upper limit on the number of girls ∗/
#define maxt (maxn ∗maxg) /∗ upper limit on the number of bipartite edges ∗/
〈Global variables 6* 〉 +≡

int blink [maxn], glink [maxg]; /∗ list heads for potential partners ∗/
int next [maxt + maxt + maxn], tip [maxt + maxt + maxn]; /∗ links and suitable partners ∗/
int mate [maxn], imate [maxg];
int queue [maxg]; /∗ girls seen during the breadth-first search ∗/
int iqueue [maxg]; /∗ inverse permutation, for the first f entries ∗/
int mark [maxn]; /∗ where boys appear in the dag ∗/
int marked [maxn]; /∗ which boys have been marked ∗/
int dlink ; /∗ head of the list of free boys in the dag ∗/

§34 MATULA-BIG-PLANTED BIPARTITE MATCHING CHEZ HOPCROFT AND KARP 15

34. 〈Build the dag of shortest augmenting paths (SAPs) 34 〉 ≡
final level = −1, tt = t;
for (marks = l = i = 0, q = f ; ; l++) {

for (qq = q; i < qq ; i++) {
o, g = queue [i];
for (o, k = glink [g]; k; o, k = next [k]) {

oo , b = tip [k], pp = mark [b];
if (pp ≡ 0) 〈Enter b into the dag 36 〉
else if (pp ≤ l) continue;
oooo , tip [++tt] = g,next [tt] = blink [b], blink [b] = tt ;

}
}
if (q ≡ qq) break; /∗ nothing new on the queue for the next level ∗/
}

This code is used in section 43.

35. 〈Local variables for the HK algorithm 35 〉 ≡
register int b, f , g, i, j, k, l, t, gg , pp , qq , tt ,final level ,marks ;

This code is used in section 29.

36. Once we know we’ve reached the final level, we don’t allow any more boys at that level unless they’re
free. We also reset q to qq , so that the dag will not reach a greater level.

〈Enter b into the dag 36 〉 ≡
{

if (final level ≥ 0 ∧ (o,mate [b])) continue;
else if (final level < 0 ∧ (o,mate [b] ≡ 0)) final level = l, dlink = 0, q = qq ;
ooo ,mark [b] = l + 1,marked [marks ++] = b, blink [b] = 0;
if (mate [b]) oo , queue [q++] = mate [b];
else oo , tip [++tt] = b,next [tt] = dlink , dlink = tt ;
}

This code is used in section 34.

37. We have no SAPs if and only no free boys were found.

〈 If there are no SAPs, break 37 〉 ≡
if (final level < 0) break;

This code is used in section 43.

38. 〈Reset all marks to zero 38 〉 ≡
while (marks) oo ,mark [marked [−−marks]] = 0;

This code is used in section 39.

16 BIPARTITE MATCHING CHEZ HOPCROFT AND KARP MATULA-BIG-PLANTED §39

39. We’ve just built the dag of shortest augmenting paths, by starting from dummy node ⊥ at the bottom
and proceeding breadth-first until discovering final level and essentially reaching the dummy node >. Now
we more or less reverse the process: We start at > and proceed depth-first, harvesting a maximal set of
vertex-disjoint augmenting paths as we go. (Any maximal set will be fine; we needn’t bother to look for an
especially large one.)

The dag is gradually dismantled as SAPs are removed, so that their boys and girls won’t be reused. A
subtle point arises here when we look at a girl g who was part of a previous SAP: In that case her mate will
have been changed to a boy whose mark is negative. This is true even if l = 0 and g was previously free.

〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 39 〉 ≡
while (dlink) {

oo , b = tip [dlink], dlink = next [dlink];
l = final level ;

enter level : o, boy [l] = b;
advance : if (o, blink [b]) {

ooo , g = tip [blink [b]], blink [b] = next [blink [b]];
if (o, imate [g] ≡ 0) 〈Augment the current matching and continue 40 〉;
if (o,mark [imate [g]] < 0) goto advance ;
b = imate [g], l−−;
goto enter level ;

}
if (++l > final level) continue;
o, b = boy [l];
goto advance ;
}
〈Reset all marks to zero 38 〉;

This code is used in section 43.

40. At this point g = g0 and b = boy [0] = b0 in an augmenting path. The other boys are boy [1], boy [2],
and so on.

〈Augment the current matching and continue 40 〉 ≡
{

if (l) fprintf (stderr , "I’m confused!\n"); /∗ a free girl should occur only at level 0 ∗/
〈Remove g from the list of free girls 42 〉;
while (1) {

o,mark [b] = −1;
ooo , j = mate [b],mate [b] = g, imate [g] = b;
if (j ≡ 0) break; /∗ b was free ∗/
o, g = j, b = boy [++l];

}
continue;
}

This code is used in section 39.

41. 〈Global variables 6* 〉 +≡
int boy [maxn]; /∗ the boys being explored during the depth-first search ∗/

42. 〈Remove g from the list of free girls 42 〉 ≡
f−−; /∗ f is the number of free girls ∗/
o, j = iqueue [g]; /∗ where is g in queue? ∗/
ooo , i = queue [f], queue [j] = i, iqueue [i] = j; /∗ OK to clobber queue [f] ∗/

This code is used in section 40.

§43 MATULA-BIG-PLANTED BIPARTITE MATCHING CHEZ HOPCROFT AND KARP 17

43. Hey folks, we’ve now got all the infrastructure and machinery of the HK algorithm in place. It only
remains to actually perform the algorithm.

〈Solve that problem and update sol [p][e . . e + n− 1] 43 〉 ≡
while (1) {
〈Build the dag of shortest augmenting paths (SAPs) 34 〉;
〈 If there are no SAPs, break 37 〉;
〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 39 〉;
}
if (f ≡ n−m) 〈Store the solution in sol [p] 44 〉
else
no sol : for (k = 0; k < n; k++) o, sol [p][e + k] = 0;
continue; /∗ resume the loop on e ∗/

yes sol : for (k = 0; k < n; k++) o, sol [p][e + k] = 1;
z += n;

This code is used in section 29.

18 THE CLIMAX MATULA-BIG-PLANTED §44

44. The climax. But it’s still necessary to don our thinking cap and figure out exactly what we’ve got,
when the HK algorithm has found a perfect matching of m boys to n > m girls.

Our job is to update n entries of sol , one for each girl. That entry should be 0 if and only if the girl has
a mate in every perfect match. (Because the subgraph isomorphism will assign her to the parent of v in T ,
while the mated girls will be assigned to some of v’s children in the embedding.)

Suppose, for example, that the bipartite matching is unique. In that case we’ll want to set sol [p][g] = 0 if
and only if imate [g] 6= 0.

Usually, however, there will be a number of perfect matchings, involving different sets of girls. Matula
noticed, in Theorem 3.4 of his paper, that it’s actually easy to distinguish the forcibly matched girls from
the others. Moreover — fortunately for us — the necessary information is sitting conveniently in the dag,
when the HK algorithm ends!

Indeed, it’s not difficult to verify that every perfect matching either includes g or corresponds to a path
from g to ⊥ in the dag. Therefore — ta da — the freeable girls are precisely the girls in the first q positions
of queue !

〈Store the solution in sol [p] 44 〉 ≡
{

for (k = 0; k < n; k++) o, sol [p][e + k] = 0;
for (k = 0; k < q; k++) ooo , z++, sol [p][queue [k]] = 1;
〈Store the mate information too 45 〉;
}

This code is used in section 43.

45. If we’re interested only in whether or not an embedding of S into T exists, the sol array tells us
everything we need to know.

But if we want to actually see an embedding, we might wish to store the solutions to the matching problems
we’ve solved, so that we don’t need to repeat those calculations later.

In a way that’s foolish: Only a small number of matching problems will need to be redone. So we’re
wasting space by storing this extra information — which doesn’t fit in sol . And we’re gaining only an
insignificant amount of time.

Still, the details are interesting, so I’m plunging ahead. Let solx and soly be arrays, such that the
solution to the bipartite matching problem in sol [p][e . . e + n − 1] is recorded in solx [p][e . . e + n − 1] and
soly [p][e . . e + n − 1]. (Both solx and soly are arrays of int, while sol itself could have been an array of
single bits.)

It suffices to store the final imate table in solx , and to store links of a path from g to ⊥ in soly .

〈Store the mate information too 45 〉 ≡
for (g = e; g < e + n; g++) oo , solx [p][g] = imate [g];
for (k = 0; k < q; k++) {
o, g = queue [k];
if (o, imate [g]) oooo , soly [p][g] = tip [blink [imate [g]]];
}

This code is used in section 44.

46. 〈Global variables 6* 〉 +≡
int sol [maxn][maxg]; /∗ the master control matrix ∗/
int solx [maxn][maxg]; /∗ imate info for bipartite solutions ∗/
int soly [maxn][maxg]; /∗ final dag info for bipartite solutions ∗/

§47 MATULA-BIG-PLANTED THE ANTICLIMAX 19

47. The anticlimax. When all has been done but not yet said, we want to tell the user what happened.
At this point z holds the value of solve (1). It’s negative, say −d, if the subtree of S rooted at node d

and its parent cannot be isomorphically embedded in T . Otherwise z is zero if S itself cannot be embedded,
although every subtree of node 1 is embeddable. Otherwise z is the number of arcs e of T for which there’s
an embedding with node 0 of S mapped into the root of subtree e.

(In the latter case, notice that z is probably not the actual total number of embeddings. It’s just the
number of places where we could start an embedding and obtain at least one success.)

〈Report the solution 47 〉 ≡
if (z < 0)

fprintf (stderr , "Failure; We can’t even embed node %d and its parent.\n", encode (−z));
else {

fprintf (stderr , "There %s %d place%s to anchor an embedding of node 1.\n",
z ≡ 1 ? "is" : "are", z, z ≡ 1 ? "" : "s");

if (z) 〈Print a solution 49* 〉;
}

This code is used in section 2*.

48. Our final task is to harvest the information in sol , solx , and soly , in order to present the user with
the images of nodes 0, 1, . . . of S, in one of the possible embeddings found.

To do this, we assign an edge called solarc [p] to each nonroot vertex p of S. If this arc runs from v to u,
it means that the embedding maps p to v and p’s parent to u. These arcs are assigned top-down, starting
with the rightmost e such that sol [1][e] = 1.

49*. 〈Print a solution 49* 〉 ≡
{

for (e = emax − 1; o, sol [1][e] ≡ 0; e−−) ;
oo , solarc [1] = e;
for (p = 1; p < m; p++)

if (o, snode [p].child) {
for (q = snode [p].child ; q; o, q = snode [q].sib) o,mate [q] = 0;
oo , z = solarc [p], v = vert [z];
o, e = tnode [v].arc , n = tnode [v].deg ;
for (g = e; g < e + n; g++) ooo , q = imate [g] = solx [p][g],mate [q] = g;
〈Find a matching in which imate [z] = 0 51 〉;
for (o, g = e, q = snode [p].child ; q; o, q = snode [q].sib) {

if (o,mate [q]) oo , solarc [q] = dual [mate [q]];
else { /∗ choose mate for a universally matchable boy ∗/

while (g ≡ z ∨ (o, imate [g])) g++;
oo , solarc [q] = dual [g++];

}
}
}

oo , printf ("%d", uert [solarc [1]]);
for (p = 1; p < m; p++) oo , printf (" %d", vert [solarc [p]]);
printf ("\n");
}

This code is used in section 47.

50. 〈Global variables 6* 〉 +≡
int solarc [maxn]; /∗ key arcs in the solution ∗/

20 THE ANTICLIMAX MATULA-BIG-PLANTED §51

51. Here finally is a kind of cute way to end, using the theory of non-augmenting paths. (That theory
can be understood from the construction of the final, incomplete dag in the HK algorithm, whose critical
structure we stored in soly [p].)

〈Find a matching in which imate [z] = 0 51 〉 ≡
for (k = 0, g = z; o, q = imate [g]; k = q) {
o, imate [g] = k;
o, g = soly [p][g];
o,mate [q] = g;
}
o, imate [g] = k;

This code is used in section 49*.

52*. 〈Global variables 6* 〉 +≡
int record ; /∗ the largest bipartite matching problem encountered so far ∗/

§53 MATULA-BIG-PLANTED INDEX 21

53*. Index.

The following sections were changed by the change file: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

30, 49, 52, 53.

advance : 39.
arc : 5*, 8*, 11*, 12*, 15*, 20*, 23, 24, 26, 49*.
argc : 2*, 3*.
argv : 2*, 3*, 14*, 22*.
b: 35.
blink : 33, 34, 36, 39, 45.
boy : 39, 40, 41.
buf : 7*, 8*, 9*, 10*, 11*.
bufsize : 7*, 10*.
child : 5*, 8*, 10*, 11*, 12*, 13*, 15*, 16*, 17*, 19*, 21*,

23, 26, 29, 30*, 49*.
copyremap : 20*, 21*.
d: 2*, 16*, 23.
decode : 2*.
deg : 5*, 7*, 8*, 10*, 11*, 12*, 13*, 15*, 16*, 23, 49*.
del : 2*, 3*, 14*, 15*.
dlink : 33, 36, 39.
dual : 26, 27, 28, 31, 49*.
e: 2*, 29.
emax : 24, 27, 29, 49*.
encode : 2*, 47.
enter level : 39.
exit : 3*, 7*, 8*, 9*, 10*, 11*, 14*, 20*.
f : 35.
fgets : 7*, 10*.
filename : 7*, 10*.
final level : 33, 34, 35, 36, 37, 39.
fixdeg : 23, 24.
fopen : 7*.
fprintf : 2*, 3*, 7*, 8*, 9*, 10*, 11*, 14*, 20*, 22*, 30*, 40, 47.
g: 2*, 35.
gb init rand : 3*.
gb unif rand : 15*.
gg : 15*, 16*, 20*, 21*, 31, 35.
glink : 30*, 31, 32, 33, 34.
head : 23, 24, 27.
i: 2*, 7*, 35.
imate : 31, 32, 33, 39, 40, 44, 45, 46, 49*, 51.
imems : 2*.
infile : 7*, 10*.
iqueue : 32, 33, 42.
j: 2*, 7*, 35.
k: 2*, 7*, 35.
l: 35.
leaf : 15*, 16*.
leafprep : 15*, 16*.
m: 2*, 29.
main : 2*.
mark : 31, 33, 34, 36, 38, 39, 40.

marked : 33, 36, 38.
marks : 34, 35, 36, 38.
mate : 31, 33, 36, 40, 49*, 51.
maxdeg : 22*, 24, 27.
maxg : 33, 46.
maxn : 2*, 6*, 8*, 27, 33, 41, 46, 50.
maxt : 33.
mems : 2*, 7*, 16*, 17*, 21*, 23, 29.
n: 2*, 7*, 29.
next : 30*, 31, 33, 34, 36, 39.
no sol : 31, 43.
node: 5*, 6*.
node struct: 5*.
o: 2*.
off : 7*, 8*, 9*, 10*, 11*.
oo : 2*, 8*, 10*, 11*, 12*, 13*, 15*, 19*, 20*, 24, 26, 31,

34, 36, 38, 39, 45, 49*.
ooo : 2*, 15*, 19*, 23, 26, 36, 39, 40, 42, 44, 49*.
oooo : 2*, 26, 31, 32, 34, 45.
p: 2*, 7*, 16*, 17*, 21*, 23, 29.
parent : 15*, 16*, 17*.
pp : 34, 35.
printf : 49*.
q: 2*, 7*, 16*, 17*, 21*, 23, 29.
qq : 34, 35, 36.
queue : 32, 33, 34, 36, 42, 44, 45.
r: 2*, 7*, 21*, 29.
read rectree : 7*, 14*, 22*.
record : 30*, 52*.
rep : 7*, 11*.
restructure : 15*, 17*.
rightoff : 7*, 10*, 11*.
s: 2*, 7*.
seed : 2*, 3*.
sib : 5*, 8*, 11*, 12*, 13*, 16*, 17*, 19*, 21*, 23, 26,

29, 30*, 49*.
size : 7*, 8*, 9*, 10*, 11*.
snode : 6*, 15*, 18*, 20*, 21*, 29, 30*, 49*.
sol : 28, 29, 31, 43, 44, 45, 46, 48, 49*.
solarc : 48, 49*, 50.
solve : 28, 29, 47.
solx : 45, 46, 48, 49*.
soly : 45, 46, 48, 51.
sscanf : 3*.
stack : 7*, 8*, 10*, 11*.
stderr : 2*, 3*, 7*, 8*, 9*, 10*, 11*, 14*, 20*, 22*, 30*, 40, 47.
suboverhead : 2*, 7*, 16*, 17*, 21*, 23, 29.
t: 35.
thresh : 24, 27, 29.

22 INDEX MATULA-BIG-PLANTED §53

tip : 30*, 31, 33, 34, 36, 39, 45.
tnode : 6*, 7*, 8*, 10*, 11*, 12*, 13*, 15*, 16*, 17*, 18*,

19*, 21*, 23, 24, 26, 49*.
tt : 34, 35, 36.
typ : 7*, 8*, 13*.
uert : 26, 27, 30*, 49*.
v: 2*.
vert : 26, 27, 29, 30*, 49*.
yes sol : 30*, 43.
z: 2*, 29.

MATULA-BIG-PLANTED NAMES OF THE SECTIONS 23

〈Adjust the tree if bicentroidal 13* 〉 Used in section 7*.

〈Allocate the arcs 24 〉 Used in section 22*.

〈Allocate the dual arcs 26 〉 Used in section 24.

〈Augment the current matching and continue 40 〉 Used in section 39.

〈Bring on the clones 12* 〉 Used in section 7*.

〈Build the dag of shortest augmenting paths (SAPs) 34 〉 Used in section 43.

〈Copy and remap tnode into snode 20* 〉 Used in section 18*.

〈Define the subtrees of node k 11* 〉 Used in section 10*.

〈Enter b into the dag 36 〉 Used in section 34.

〈Find a matching in which imate [z] = 0 51 〉 Used in section 49*.

〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 39 〉 Used in section 43.

〈Global variables 6*, 27, 33, 41, 46, 50, 52* 〉 Used in section 2*.

〈 If there are no SAPs, break 37 〉 Used in section 43.

〈 Initialize the tables needed for n girls 32 〉 Used in section 30*.

〈 Input the tree S 14*, 18* 〉 Used in section 3*.

〈 Input the tree T 22* 〉 Used in section 3*.

〈Local variables for the HK algorithm 35 〉 Used in section 29.

〈Make the root of tnode into a leaf 19* 〉 Used in section 18*.

〈Print a solution 49* 〉 Used in section 47.

〈Process the command line 3* 〉 Used in section 2*.

〈Process the main line 8* 〉 Used in section 7*.

〈Process the top subtree definition on the stack 10* 〉 Used in section 7*.

〈Record the potential matches for boy b 31 〉 Used in section 30*.

〈Remove del leaves, one by one 15* 〉 Used in section 14*.

〈Remove g from the list of free girls 42 〉 Used in section 40.

〈Report the solution 47 〉 Used in section 2*.

〈Reset all marks to zero 38 〉 Used in section 39.

〈Scan a subtree name 9* 〉 Used in sections 8*, 10*, and 11*.

〈Set up Matula’s bipartite matching problem for p and e 30* 〉 Used in section 29.

〈Solve that problem and update sol [p][e . . e + n− 1] 43 〉 Used in section 29.

〈Solve the problem 28 〉 Used in section 2*.

〈Store the mate information too 45 〉 Used in section 44.

〈Store the solution in sol [p] 44 〉 Used in section 43.

〈Subroutines 7*, 16*, 17*, 21*, 23, 29 〉 Used in section 2*.

〈Type definitions 5* 〉 Used in section 2*.

MATULA-BIG-PLANTED

Section Page
Intro . 1 1
Recursive tree format . 4 3
Data structures for the trees . 5 4
The master control . 28 12
Bipartite matching chez Hopcroft and Karp . 30 13
The climax . 44 18
The anticlimax . 47 19
Index . 53 21

	Intro
	Recursive tree format
	Data structures for the trees
	The master control
	Bipartite matching chez Hopcroft and Karp
	The climax
	The anticlimax
	Index
	Names of the sections
	Adjust the tree if bicentroidal
	Allocate the arcs
	Allocate the dual arcs
	Augment the current matching and continue
	Bring on the clones
	Build the dag of shortest augmenting paths (SAPs)
	Copy and remap tnode into snode
	Define the subtrees of node k
	Enter b into the dag
	Find a matching in which imate[z]=0
	Find a maximal set of disjoint SAPs, and incorporate them into the current matching
	Global variables
	If there are no SAPs, break
	Initialize the tables needed for n girls
	Input the tree S
	Input the tree T
	Local variables for the HK algorithm
	Make the root of tnode into a leaf
	Print a solution
	Process the command line
	Process the main line
	Process the top subtree definition on the stack
	Record the potential matches for boy b
	Remove del leaves, one by one
	Remove g from the list of free girls
	Report the solution
	Reset all marks to zero
	Scan a subtree name
	Set up Matula's bipartite matching problem for p and e
	Solve that problem and update sol[p][ee+n-1]
	Solve the problem
	Store the mate information too
	Store the solution in sol[p]
	Subroutines
	Type definitions

