
§1 LP INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. I’m writing this program in order to gain personal experience implementing the
simplex algorithm—even though I know that commercial codes do the job much, much better. My aim
is to learn, to make the logic “crystal clear” if not lightning fast, and perhaps also to watch and interact
with this magical process.

The computational task to be solved has been traditionally called Linear Programming, and it takes many
forms. The particular case considered here is to maximize b1v1 + · · ·+ bnvn subject to the constraints vj ≥ 0
for 1 ≤ j ≤ n and ai1v1 + · · ·+ ainvn ≤ ci for 1 ≤ i ≤ m, where aij is a given m× n matrix of integers and
the other parameters bj , ci are integers with ci ≥ 0. For example, what is the maximum of v1 + 3v2 − v3, if
we require that

3v1 − v2 + 5v3 ≤ 8, −v1 + 2v2 − v3 ≤ 1, 2v1 + 4v2 + v3 ≤ 5,

and v1, v2, v3 ≥ 0? [I took this example from Muroga’s book on threshold logic (1971).] The fact that the
constants ci on the right-hand side are nonnegative means that the trivial values v1 = · · · = vn = 0 always
satisfy the constraints; hence the maximum is always nonnegative.

The algorithm below also solves a “dual” problem as a special bonus. Namely, it tells us how to minimize
the quantity c1u1 + · · ·+ cmum subject to ui ≥ 0 and a1ju1 + · · ·+ amjum ≥ bj for 1 ≤ j ≤ n.

There may no values (u1, . . . , um) that meet those dual constraints. In such a case, the algorithm will
effectively prove the impossibility, and it will also demonstrate that the maximum in the original problem
is +∞. (For example, suppose m = n = 1, b1 = 1, c1 = 0, and a11 = −1. The problem of maximizing
v1 subject to −v1 ≤ 0 and v1 ≥ 0 obviously has +∞ as its answer; and +∞ is also the “minimum” of the
quantity 0 taken over all u1 such that u1 ≥ 0 and −u1 ≥ 1, because no such numbers u1 exist.)

The first line of the standard input file should contain the integers b1 b2 . . . bn in decimal notation,
separated by spaces. That first line should be followed by m further lines that each contain n + 1 integer
values ci ai1 ai2 . . . ain, for 1 ≤ i ≤ m.

To enhance this learning experience, I’m solving the problem both with floating-point arithmetic and with
an all-integer method that produces rational numbers as output. Hopefully the two answers will agree. But
the all-integer method might overflow, and the floating-point method may suffer from rounding errors.

#define maxm 10 /∗ of course these limits can be raised if desired ∗/
#define maxn 100 /∗ (up to a point) ∗/
#define buf size BUFSIZ

#include <stdio.h>

#include <ctype.h>

〈 Include tricky code for zapping 2 〉
typedef long intword; /∗ will be long long on my other computer ∗/
char buf [buf size];
intword a[maxm + 1][maxm + maxn + 1]; /∗ integer work area ∗/
intword denom [maxm + maxn + 1]; /∗ scale factors ∗/
double aa [maxm + 1][maxm + maxn + 1]; /∗ floating-point work area ∗/
double trial [maxm + maxn + 1]; /∗ pivot testing area ∗/
int verbose = 1; /∗ can be set positive for extra output ∗/
int count ; /∗ the number of steps taken so far ∗/
int p[maxm + 1], q[maxm + maxn + 1]; /∗ current basis and inverse ∗/
main ()
{

register intword h, i, j, k, l,m, n, s;
register double z;

〈Check the zap trick 3 〉;
〈Read the input matrix 4 〉;
〈Solve the problem 13 〉;
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION LP §2

2. The algorithm is very sensitive to zeroness or nonzeroness of numbers. I’ll try to avoid problems with
floating-point roundoff by zapping anything near 0.0 to 0.0. For speed, I do this in “machine language.”

〈 Include tricky code for zapping 2 〉 ≡
#define little endian 1 /∗ on less crazy machines I would define ‘big endian ’ instead ∗/
#ifdef big endian
#define bigend first
#else
#define bigend second
#endif
#define zap if ((zbuf .uint .bigend & #7fffffff) < #3e000000) zbuf .dbl = 0.0;

union {
struct { unsigned int first , second ; } uint ;
double dbl ;
} zbuf ;

This code is used in section 1.

3. Here’s a test that my intentions are being fulfilled by that trickery.

〈Check the zap trick 3 〉 ≡
zbuf .dbl = .000000001; /∗ this value should not be zapped ∗/
zap ;
if (zbuf .dbl) {

zbuf .dbl = −.0000000001; /∗ but this one should ∗/
zap ;
if (¬zbuf .dbl) goto zap OK ;
}
fprintf (stderr , "Zapping doesn’t work!\n");
exit (−666);

zap OK :

This code is used in section 1.

§4 LP INTRODUCTION 3

4. 〈Read the input matrix 4 〉 ≡
for (i = n = 0; ; i++) {

if (¬fgets (buf , buf size , stdin)) break;
if (i > maxm) {

fprintf (stderr , "Sorry, I’m set up only for m<=%d!\n",maxm);
exit (−9);

}
for (k = 0, j = (i ≡ 0); buf [k];) {

while (isspace (buf [k]) ∧ buf [k] 6= ’\n’) k++;
if (buf [k] ≡ ’\n’) break;
if (buf [k] ≡ ’−’) l = 1, k++; else l = 0;
for (s = 0; buf [k] ≥ ’0’ ∧ buf [k] ≤ ’9’; k++) s = 10 ∗ s + buf [k]− ’0’;
a[i][j++] = (l ? −s : s);

}
if (¬buf [k]) { /∗ no end-of-line in the buffer ∗/

fprintf (stderr , "Input line too long! (%s...)\n", buf);
exit (−1);

}
if (i ≡ 0) {

n = j − 1;
if (n > maxn) {

fprintf (stderr , "Sorry, I’m set up only for n<=%d, not n=%d!\n",maxn , n);
exit (−2);

}
} else {

if (n 6= j − 1) {
fprintf (stderr , "Row %d should have %d numbers!\n>%s", i, n + 1, buf);
exit (−3);

}
if (a[i][j] < 0) {

fprintf (stderr , "Row %d’s constant term shouldn’t be negative!\n>%s", i, buf);
exit (−4);

}
}
}
m = i− 1;

This code is used in section 1.

4 THE ALGORITHM: AN EXAMPLE LP §5

5. The algorithm: An example. The famous simplex procedure is subtle yet not difficult to fathom,
even when we are careful to avoid infinite loops. But I always tend to forget the details a short time after
seeing them explained in a book. Therefore I will try here to present the algorithm in my own favorite
way—which tends to be algebraic and combinatoric rather than geometric—in hopes that the ideas will then
be forever memorable, at least in my own mind. I’m not going to explain how the algorithm was invented,
but I am going to explain how and why it works.

To clarify the exposition, I’ll work through the simple example in the introduction, watching each step
in slow motion. That problem was to maximize the quantity v1 + 3v2 − v3 over all nonnegative real values
(v1, v2, v3) for which

3v1 − v2 + 5v3 ≤ 8, −v1 + 2v2 − v3 ≤ 1, 2v1 + 4v2 + v3 ≤ 5.

6. The first step in the simplex method is to introduce m additional nonnegative variables called “slack
variables” (s1, . . . , sm), which allow us to deal with equivalities instead of inequalities. For example, the
inequality 3v1 − v2 + 5v3 ≤ 8 becomes the equality s1 + 3v1 − v2 + 5v3 = 8 when we add in the nonnegative
variable s1. These slack variables lead to m further columns of the input matrix aij ; we conceptually place
these columns between the constant terms ci and the other coefficients ai1, . . . , ain.

The state of the computation is conveniently represented in a working array with m+1 rows and m+n+1
columns. In our example, the working array takes the following form:

Row (−1) (s1) (s2) (s3) (v1) (v2) (v3)

0 0 0 0 0 −1 −3 1
1 8 1 0 0 3 −1 5
2 1 0 1 0 −1 2 −1
3 5 0 0 1 2 4 1

Rows 1 through m represent the given equations, with coefficients to be multiplied by the column labels.
For example, the bottom row represents the equation s3 + 2v1 + 4v2 + v3 = 5, namely

5(−1) + 0(s1) + 0(s2) + 1(s3) + 2(v1) + 4(v2) + 1(v3) = 0.

The top row, row 0, is somewhat special, but it also represents an equation—in this case

v1 + 3v2 − v3 + 0(−1) + 0(s1) + 0(s2) + 0(s3)− 1(v1)− 3(v2) + 1(v3) = 0.

Let X be the set of all nonnegative vectors (s1, s2, s3, v1, v2, v3) that satisfy the equations in rows 1, 2,
and 3. The simplex algorithm will transform the array in such a way that the rows change, but the new set
of rows will still define exactly the same set X. Furthermore the special equation represented by row 0 will
also remain true, as we will see below.

7. The algorithm also maintains two other invariants. First, there will always be m special columns called
“basis columns,” one for each index i in the range 1 ≤ i ≤ m. All entries of basis column i are 0 except for a
1 in row i. When we begin, the initial basis columns are those for slack variables, labeled (s1) through (sm).

Second, all rows except row 0 will remain lexicographically nonnegative. In other words, the leftmost
nonzero entry of row i will always be positive, for 1 ≤ i ≤ m. (That row might begin with many zeros, but
it cannot be entirely zero, because of the 1 in its basis column.)

§8 LP THE ALGORITHM: AN EXAMPLE 5

8. Elementary row operations on this array do not change the set X. Namely, we can multiply each element
of row i by a nonzero constant, when i 6= 0; and we can also add any multiple of row i 6= 0 to any other row
j 6= i, even when j = 0.

Of course such row operations might mess up the basis columns. But a suitable combination of row
operations, called a “pivot step,” does allow us to change the position of a basis column. For example,
suppose we multiply row 2 by −1, then add multiples of that row to the other rows so as to zero out the
other entries in column (v1); we get a new basis column for row 2:

Row (−1) (s1) (s2) (s3) (v1) (v2) (v3)

0 −1 0 −1 0 0 −5 2
1 11 1 3 0 0 5 2
2 −1 0 −1 0 1 −2 1
3 7 0 2 1 0 8 −1

However, we don’t really want to do this, because row 2 has now become lexicographically negative.
Going back to the former matrix, let’s try pivoting in column (v1) on row 1 instead of row 2. This time

we divide row 1 by 3 and add suitable multiples to rows 0, 2, and 3, obtaining

Row (−1) (s1) (s2) (s3) (v1) (v2) (v3)

0 8/3 1/3 0 0 0 −10/3 8/3
1 8/3 1/3 0 0 1 −1/3 5/3
2 11/3 1/3 1 0 0 5/3 2/3
3 −2/3 0 7 1 0 14/3 −7/3

Hmm; it’s still no good. Now the bottom row is giving trouble.
If we want column (v1) to move into the basis, our only hope is to pivot on row 3. That works:

Row (−1) (s1) (s2) (s3) (v1) (v2) (v3)

0 5/2 0 0 1/2 0 −1 3/2
1 1/2 1 0 −3/2 0 −7 7/2
2 7/2 0 1 1/2 0 4 −1/2
3 5/2 0 0 1/2 1 2 1/2

All of the invariants mentioned above have now been preserved. And we’ve moved the basis, thereby obtaining
a new way to look at the set X over which we wish to take a maximum.

9. But oops, we’ve now run into fractions instead of nice, simple integers. No problem: We can also scale
the columns, by changing the labels:

Row (−1/2) (s1) (s2) (s3/2) (v1) (v2) (v3/2)

0 5 0 0 1 0 −1 3
1 1 1 0 −3 0 −7 7
2 7 0 1 1 0 4 −1
3 5 0 0 1 1 2 1

10. Okay, let’s continue. Another pivot operation, in column (v2) and row 2, followed by another rescaling,
yields

Row (−1/8) (s1) (s2/4) (s3/8) (v1) (v2) (v3/8)

0 27 0 1 5 0 0 11
1 53 1 7 −5 0 0 21
2 7 0 1 1 0 1 −1
3 6 0 −2 2 1 0 6

6 THE ALGORITHM: AN EXAMPLE LP §11

11. And now we’re done! From this tableau we can read off the answer to the maximization problem,
namely that the desired maximum of v1 + 3v2− v3 is 27/8, and that it is obtained when v1 = 6/8, v2 = 7/8,
and v3 = 0.

Buy why are we done, you ask? Good question. Here’s why: First, by looking at the three basis columns,
we see that the point (s1, s2, s3, v1, v2, v3) = (53/8, 0, 0, 6/8, 7/8, 0) is in X, since rows 1, 2, and 3 represent
equations that hold everywhere in that set.

Second, row 0 also represents a valid equation, namely

v1 + 3v2 − 3v3 + 27(−1/8) + 0(s1) + 1/(s2/4) + 5(s3/8) + 0(v1) + 0(v2) + 11(v3/8) = 0.

(Think about it: Pivot steps don’t change the validity of the equation represented by row 0, which always is
prefaced by ‘v1 + 3v2 − v3’, since they simply add or subtract multiples of zero.)

Thus, at all points (s1, s2, s3, v1, v2, v3) of X, the value of v1 + 3v2− 3v3 is equal to 27
8 −

1
4s2−

5
8s3−

11
8 v3;

it can’t possibly get any lower than 27/8.

12. There’s more good news, too: The solution to the corresponding minimization problem, namely to
minimize 8u1 + u2 + 5u3 subject to u1, u2, u3 ≥ 0 and

3u1 − u2 + 2u3 ≥ 1, −u1 + 2u2 + 4u3 ≥ 3, 5u1 − u2 + u3 ≥ −1,

can also be read from our final tableau, by looking at the slack-variable columns of row 0. The minimum
value 27/8 is attained when u1 = 0, u2 = 1/4, and u3 = 5/8.

Again you ask, why? Again it’s a good question. In the first place we can use the v’s from the maximization
problem to prove that 27/8 is indeed unbeatable, because the inequalities

6

8

(
3u1 − u2 + 2u3

)
≥ 6

8
,

7

8

(
−u1 + 2u2 + 4u3

)
≥ 21

8
, 0

(
5u1 − u2 + u3

)
≥ 0

can be added to give 11
8 u1 + u2 + 5u3 ≥ 27

8 ; increasing 11
8 u1 to 8u1 can’t make the value any smaller.

In general, if we multiply the inequalities that affect (u1, u2, u3) by any values (v1, v2, v3) ∈ X, we obtain a
lower bound 8u1 + u2 + 5u3 ≥ t1u1 + t2u2 + t3u3 ≥ v1 + 3v2 − v3, because t1 ≤ 8, t2 ≤ 1, and t3 ≤ 5.

Why, however, do the values (u1, u2, u3) from the slack-variable columns of row 0 actually attain the best
lower bound? To understand the answer, let’s look at the final tableau without suppressing the scale factors
that were used to avoid fractions:

Row (−1) (s1) (s2) (s3) (v1) (v2) (v3)

0 27/8 0 1/4 5/8 0 0 11/8
1 53/8 1 7/4 −5/8 0 0 21/8
2 7/8 0 1/4 1 0 1 −1/8
3 3/4 0 −1/2 1/4 1 0 3/4

Consider especially the (m + 1)×m submatrix in the slack columns; these entries encapsulate the effects of
all the pivot steps that brought us to the present state. Namely, we replaced row 0 by r0 + 0r1 + 1

4r2 + 5
8r3,

where r0, r1, r2, and r3 are the original contents of those rows. (We also replaced row 1 by 7
4r1 −

5
8r2; we

replaced row 2 by 1
4r1 + 1

8r2; and we replaced row 3 by − 1
2r1 + 1

4r2 + r3. These coefficients should suffice
to convince a skeptic that our final tableau does follow from the original constraints, without forcing him or
her to replay the actual pivot steps.)

In particular, we got the number 27
8 in the constant column by adding 0 · 5 + 1

4 · 1 + 5
8 · 5.

§13 LP THE ALGORITHM: AN IMPLEMENTATION 7

13. The algorithm: An implementation. We’ve been looking at a small example, but our reasoning
has been perfectly general. The main point is that we were able to find a sequence of pivot steps that
preserved the desired invariants and that also led to a tableau in which row 0 had no negative entries.
Whenever such a tableau is found, we have solved the maximization problem for (v1, . . . , vn) as well as the
minimization problem for (u1, . . . , um).

〈Solve the problem 13 〉 ≡
〈Set up the initial tableaux 14 〉;

loop : if (verbose) 〈Print out the current state 22 〉;
for (j = m + n; j > 0; j−−)

if (a[0][j] < 0) {
〈Try to pivot in column j 15 〉;
count ++;
goto loop ;

}
〈Report the answers 23 〉;

This code is used in section 1.

14. Instead of distinguishing slack variables si from ordinary variables vj , we will henceforth call the
variables w1, . . . , wm+n, with wi = si for 1 ≤ i ≤ m and wm+j = vj for 1 ≤ j ≤ n.

Here we set up an (m + 1)× (m + n + 1) working tableau a of integers, as well as a table of scale factors.
A column label like (s2/4) in the example above will be represented by denom [2] = 4 in this program.

A floating-point tableau aa is also inaugurated here, since we will compute everything in two ways.
The current basis is represented by arrays p and q. If the basis column for row i is column j, we have

p[i] = j and q[j] = i. Other entries of the q array are zero.

〈Set up the initial tableaux 14 〉 ≡
for (i = 0; i ≤ m; i++) {

for (j = n; j > 0; j−−)
if (i ≡ 0) a[0][j + m] = −a[0][j]; else a[i][j + m] = a[i][j];

for (j = m; j > 0; j−−) a[i][j] = (i ≡ j);
p[i] = q[i] = i;
}
for (j = m + n + 1; j ≥ 0; j−−) denom [j] = 1;
for (i = 0; i ≤ m; i++)

for (j = m + n + 1; j ≥ 0; j−−) aa [i][j] = a[i][j];

This code is used in section 13.

8 THE ALGORITHM: AN IMPLEMENTATION LP §15

15. At this point we have reached a tableau with a negative entry in row 0 and column (wj). Two cases
arise: The corresponding column might contain at least one positive entry; or it might not.

In the latter case, we can stop. Our tableau proves that the maximization problem has +∞ as its answer,
because arbitrarily large values of wj lie in X. These values increase c1v1 + · · ·+ cnvn without limit, because
of the negative coefficient in row 0. Moreover, there cannot be any values (u1, . . . , um) that satisfy the dual
inequalities; if they did, b1u1 + · · ·+ bmum would be an upper bound on c1v1 + · · ·+ cnvn.

〈Try to pivot in column j 15 〉 ≡
l = 0;
for (i = 1; i ≤ m; i++)

if (a[i][j] > 0) 〈Consider pivoting at (i, j) 16 〉;
if (l ≡ 0) {

printf ("The maximum is infinite; the dual has no solution!\n");
〈Print out the current state 22 〉;
exit (0);
}
〈Pivot at (l, j) 17 〉;

This code is used in section 13.

16. When a0j < 0 and aij > 0, a pivot step in row i and column j always increases the lexicographic value
of row 0, because it adds a positive multiple of the (lexicographically positive) row i. Therefore Pivoting is
a Good Thing: It leads to continual progress toward larger and larger top rows.

But which rows can we pivot on, without making another row lexicographically negative? Our example
above showed that random pivoting doesn’t always work. Perhaps we were just lucky to find a good pivot
in that problem; it’s conceivable that another example might run into a state from which no decent pivot is
possible.

Fortunately there is always a row on which to pivot, in fact a unique row, in any given column j that has
at least one positive entry aij . The reason is that the operation of pivoting on aij causes row k (call it rk)
to be replaced by rk − akjri/aij for each k 6= i; and it is easy to see that rk − akjri/aij is lexicographically
positive if and only if (rk/akj) − (ri/aij) is lexicographically positive. Hence we must pivot on the row for
which ri/aij is lexicographically smallest, among all rows i with aij > 0.

We cannot have rk/akj exactly equal to ri/aij when k 6= i, because those rows differ in basis columns k
and i.

Notice that this choice of pivot row does not depend on the scale factors in denom . We can safely use
floating-point arithmetic when making the choice, because such rounding errors are tightly controlled.

〈Consider pivoting at (i, j) 16 〉 ≡
if (l ≡ 0) l = i, s = 0;
else {

for (h = 0; ; h++) {
if (h ≡ s) trial [s++] = (double) a[l][h]/(double) a[l][j];
z = (double) a[i][h]/(double) a[i][j];
if (trial [h] 6= z) break;

}
if (trial [h] > z) l = i, trial [h] = z, s = h + 1; /∗ trial [h] is best so far, for 0 ≤ h < s ∗/
}

This code is used in section 15.

17. 〈Pivot at (l, j) 17 〉 ≡
〈Do floating-point pivoting 18 〉;
〈Do integer pivoting 20 〉;
q[p[l]] = 0, p[l] = j, q[j] = l;

This code is used in section 15.

§18 LP THE ALGORITHM: AN IMPLEMENTATION 9

18. Before we do any integer pivoting, we’d like to be sure that an all-floating-point method would make
the same decision. So this step repeats some of the work we’ve already done, but it uses the aa tableau
instead of a.

〈Do floating-point pivoting 18 〉 ≡
{

register int ii , jj , kk , ll ;

for (ll = 0, jj = m + n; jj > 0; jj −−)
if (aa [0][jj] < 0) {

if (jj 6= j) goto mismatch ;
for (ii = 1; ii ≤ m; ii ++)

if (aa [ii][j] > 0) {
if (ll ≡ 0) ll = ii , s = 0;
else {

for (h = 0; ; h++) {
if (h ≡ s) trial [s++] = aa [ll][h]/aa [ll][j];
z = aa [ii][h]/aa [ii][j];
zbuf .dbl = trial [h]− z; zap ;
if (zbuf .dbl) break;
}
if (zbuf .dbl > 0.0) ll = ii , trial [h] = z, s = h + 1;

}
}

if (ll 6= l) goto mismatch ;
〈Really do floating-point pivoting 19 〉;
goto fp pivot done ;

}
mismatch : printf ("The floating−point and fixed−point implementations disagree!\n");

printf ("(Floating−point pivoting at (%d,%d), not (%d,%d).)\n", ll , jj , l, j);
〈Print out the current state 22 〉;
exit (−99);
}

fp pivot done :

This code is used in section 17.

10 PIVOTING LP §19

19. Pivoting. We’re ready at last to update the tableaux: Arithmetic happens here, as we pivot on
column j of row l.

〈Really do floating-point pivoting 19 〉 ≡
for (k = 0, z = aa [l][j]; k ≤ m + n; k++)

if (aa [l][k]) aa [l][k] = aa [l][k]/z; /∗ no zap needed ∗/
for (i = 0; i ≤ m; i++)

if (i 6= l) {
for (k = 0, z = aa [i][j]; k ≤ m + n; k++)

if (k ≡ j) aa [i][k] = 0.0;
else {

zbuf .dbl = aa [i][k]− z ∗ aa [l][k]; zap ;
aa [i][k] = zbuf .dbl ;
}

}
This code is used in section 18.

20. In the all-integer version I’m hoping with fingers crossed that the numerators and denominators will
stay small, at least in the simple cases that are greatest interest to me at the moment.

〈Do integer pivoting 20 〉 ≡
if (verbose) printf ("Pivoting on (%d,%d).\n", l, j);
for (k = 0; k ≤ m + n; k++)

if (a[l][k] ∧ k 6= j) {
register intword t, u = a[l][k], v = a[l][j];

if (u < 0) u = −u;
if (v < 0) v = −v;
while (v) t = u, u = v, v = t % v; /∗ Euclid’s algorithm, sets u← gcd(u, v) ∗/
if (u ≡ a[l][j]) a[l][k] = a[l][k]/u;
else {
v = a[l][j]/u, denom [k] ∗= v; /∗ scale factor goes up in column k ∗/
for (i = 0; i ≤ m; i++) a[i][k] = (i ≡ l ? a[l][k]/u : a[i][k] ∗ v);

}
}

for (i = 0; i ≤ m; i++)
if (i 6= l) {

for (k = 0, h = a[i][j]; k ≤ m + n; k++) a[i][k] = (k ≡ j ? 0 : a[i][k]− h ∗ a[l][k]);
}

a[l][j] = 1;
if (denom [j] 6= 1) {

for (h = denom [j], denom [j] = 1, k = 0; k ≤ m + n; k++)
if (k 6= j) a[l][k] ∗= h;

}
This code is used in section 17.

§21 LP FINAL TOUCHES 11

21. Final touches. A few last-minute odds and ends remain.

22. 〈Print out the current state 22 〉 ≡
{

printf ("Step %d:\n", count);
for (i = 0; i ≤ m; i++) {

for (j = 0; j ≤ m + n; j++) printf (" %d", a[i][j]);
printf ("\n");

}
printf ("denom");
for (j = 0; j ≤ m + n; j++) printf (" %d", denom [j]);
printf ("\n");
for (i = 0; i ≤ m; i++) {

for (j = 0; j ≤ m + n; j++) printf (" %.15g", aa [i][j]);
printf ("\n");

}
}

This code is used in sections 13, 15, and 18.

23. 〈Report the answers 23 〉 ≡
printf ("Optimal value %.15g=%d/%d found after %d pivots.\n", aa [0][0], a[0][0], denom [0], count);
printf (" Optimal v’s:");
for (j = m + 1; j ≤ m + n; j++)

if (q[j]) printf (" %.15g=%d/%d", aa [q[j]][0], a[q[j]][0], denom [0]);
else printf (" 0");

printf ("\n Optimal u’s:");
for (j = 1; j ≤ m; j++) printf (" %.15g=%d/%d", aa [0][j], a[0][j], denom [j]);
printf ("\n");

This code is used in section 13.

24. Well, our little program is done. But an attentive reader may well have noticed that an important
point has not yet been considered: We haven’t proved that the algorithm must terminate.

An elementary knowledge of matrix theory suffices to close this final gap. We shall prove the following
lemma: Given any ordered choice of m columns, there is at most one achievable tableau for which those
columns are the basis.

Proof. Let A0 be rows 1 to m of the original tableau. At every stage of the algorithm, rows 1 to m of
the current tableau are equal to BA0, for some nonsingular matrix B determined by the pivot operations.
Furthermore, if we are told which columns are the basis columns, the matrix B is fully determined; only
one B can yield the correct values in those columns. Therefore the choice of basis columns also tells us the
entire contents of rows 1 to m. And row 0 is also known, because it is the original row 0 plus

∑m
i=1 c

′
iri,

where c′i = 0 if basis column i corresponds to a slack variable, c′i = cj if basis column i corresponds to vj .
QED.

But we have shown that row 0 continually increases, lexicographically. So the algorithm cannot get to the
same basis twice; and there are only finitely many bases. Termination is inevitable.

12 INDEX LP §25

25. Index.

a: 1.
aa : 1, 14, 18, 19, 22, 23.
basis columns: 7.
big endian : 2.
bigend : 2.
buf : 1, 4.
buf size : 1, 4.
BUFSIZ: 1.
count : 1, 13, 22, 23.
dbl : 2, 3, 18, 19.
denom : 1, 14, 16, 20, 22, 23.
exit : 3, 4, 15, 18.
fgets : 4.
first : 2.
fp pivot done : 18.
fprintf : 3, 4.
h: 1.
i: 1.
ii : 18.
intword: 1, 20.
isspace : 4.
j: 1.
jj : 18.
k: 1.
kk : 18.
l: 1.
little endian : 2.
ll : 18.
loop : 13.
m: 1.
main : 1.
maxm : 1, 4.
maxn : 1, 4.
mismatch : 18.
Muroga, Saburo: 1.
n: 1.
p: 1.
pivot step: 8.
printf : 15, 18, 20, 22, 23.
q: 1.
s: 1.
second : 2.
slack variables: 6.
stderr : 3, 4.
stdin : 4.
t: 20.
trial : 1, 16, 18.
u: 20.
uint : 2.
v: 20.
verbose : 1, 13, 20.

z: 1.
zap : 2, 3, 18, 19.
zap OK : 3.
zbuf : 2, 3, 18, 19.

LP NAMES OF THE SECTIONS 13

〈Check the zap trick 3 〉 Used in section 1.

〈Consider pivoting at (i, j) 16 〉 Used in section 15.

〈Do floating-point pivoting 18 〉 Used in section 17.

〈Do integer pivoting 20 〉 Used in section 17.

〈 Include tricky code for zapping 2 〉 Used in section 1.

〈Pivot at (l, j) 17 〉 Used in section 15.

〈Print out the current state 22 〉 Used in sections 13, 15, and 18.

〈Read the input matrix 4 〉 Used in section 1.

〈Really do floating-point pivoting 19 〉 Used in section 18.

〈Report the answers 23 〉 Used in section 13.

〈Set up the initial tableaux 14 〉 Used in section 13.

〈Solve the problem 13 〉 Used in section 1.

〈Try to pivot in column j 15 〉 Used in section 13.

LP

Section Page
Introduction . 1 1
The algorithm: An example . 5 4
The algorithm: An implementation . 13 7
Pivoting . 19 10
Final touches . 21 11
Index . 25 12

	Introduction
	The algorithm: An example
	The algorithm: An implementation
	Pivoting
	Final touches
	Index
	Names of the sections
	Check the zap trick
	Consider pivoting at (i,j)
	Do floating-point pivoting
	Do integer pivoting
	Include tricky code for zapping
	Pivot at (l,j)
	Print out the current state
	Read the input matrix
	Really do floating-point pivoting
	Report the answers
	Set up the initial tableaux
	Solve the problem
	Try to pivot in column j

