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(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. The purpose of this program is to implement a pretty algorithm that has a very
pleasant theory. But I apologize at the outset that the algorithm seems to be rather subtle, and I have
not been able to think of any way to explain it to dummies. Readers who like discrete mathematics and
computer science are encouraged to persevere nonetheless.
The companion program called KODA-RUSKEY should probably be read first, because it solves a sig-

nificantly simpler problem. After I wrote that program, Frank Ruskey told me that he had developed a
much more general procedure, in yet-unpublished work with his student Gang (Kenny) Li. I wasn’t able to
refrain from pondering what their method might be, so I came up with the algorithm below, which probably
produces the same sequence of outputs as theirs.

#include <stdio.h>

⟨Type definitions 6 ⟩
⟨Global variables 4 ⟩
⟨ Subroutines 15 ⟩
int main (int argc , char ∗argv [ ])
{
⟨Local variables 5 ⟩;
⟨Parse the command line 2 ⟩;
⟨ Initialize the data structures 7 ⟩;
⟨Generate the answers 46 ⟩;
return 0;
}

https://cs.stanford.edu/~knuth/programs.html
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2. Given a digraph that is totally acyclic, in the sense that it has no cycles when we ignore the arc directions,
we want to find all ways to label its vertices with 0s and 1s in such a way that x→ y implies bit [x] ≤ bit [y].
Moreover, we want to list all such labelings as a Gray path, changing only one bit at a time. The algorithm
below does this, with an extra proviso: Given a designated “root” vertex v, bit [v] begins at 0 and changes
exactly once.
The simple three-vertex digraph with x→ y ← z has only five such labelings, and they form a Gray path

in essentially only one way, namely (000, 010, 011, 111, 110). This example shows that we cannot require
the Gray path to end at a convenient prespecified labeling like 11 . . . 1; and the dual graph, obtained by
reversing all the arrows and complementing all the bits, shows that we can’t require the path to start at
00 . . . 0. [Generalizations of this example, in which the vertices are {x0, x1, . . . , xn} and each arc is either
xk−1 → xk or xk−1 ← xk, have solutions related to continued fractions. Interested readers will enjoy working
out the details.]
We may assume that the given graph is connected. It is convenient to describe a connected, rooted totally

acyclic digraph by calling the root 0, and by assigning the integer names {1, . . . , n} to the other vertices in
such a way that the undirected path connecting each vertex to 0 runs through vertex names monotonically.
In other words, we specify for each vertex k > 0 a vertex jk < k such that either jk → k or jk ← k. Notice
that there are 2n n! ways to do this. The program below works on the graph defined by a sequence of the
form ±j1±j2 . . .±jn, using a plus sign when jk → k and a minus sign when jk ← k. For example, the
digraph 0→ 1← 2 would be defined by +0−1, while 1→ 0← 2 would be −0−0.
We may assume further that the vertices of the tree have been numbered in preorder, namely that we do

not have jk < jl < k < l for any k and l. This assumption limits the number of possibilities to 2n
(
2n
n

)
1

n+1 .
Breaking the arc between jk and k disconnects the graph into two pieces, one of which is a totally acyclic

digraph rooted at k. Our algorithm will use the Gray paths obtained from these smaller subgraphs to
construct a Gray path for the whole graph.

#define maxn 100 /∗ limit in number of vertices ∗/
#define abort (f, d, n)

{ fprintf (stderr , f , d); exit (−n); }
⟨Parse the command line 2 ⟩ ≡
{
register char ∗c = argv [1];

if (argc ̸= 2) abort ("Usage:␣%s␣graphspec\n", argv [0], 1);
for (k = 1; ∗c; k++) {

if (k ≥ maxn ) abort ("Sorry,␣I␣can␣only␣handle␣%d␣vertices!\n",maxn , 2);
if (∗c ≡ ’+’) js [k] = 0;
else if (∗c ≡ ’−’) js [k] = 1;
else abort ("Parsing␣error:␣‘%s’␣should␣start␣with␣+␣or␣−!\n", c, 3);
for (j = 0, c++; ∗c ≥ ’0’ ∧ ∗c ≤ ’9’; c++) j = 10 ∗ j + ∗c− ’0’;
⟨Abort if j is not a legal value for jk 3 ⟩;
jj [k] = j;

}
n = k − 1;
}

This code is used in section 1.
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3. Here we test the preorder condition, using the fact that stack [0] = 0 and that l is initially 0.

⟨Abort if j is not a legal value for jk 3 ⟩ ≡
if (j ≥ k) {
fprintf (stderr , "Parsing␣error:␣‘%d%s’␣should␣start␣", j, c);
abort ("with␣a␣number␣less␣than␣%d!\n", k, 4);
}
while (j < stack [l]) l−−;
if (j ̸= stack [l]) {
fprintf (stderr , "Parsing␣error:␣‘%d%s’␣shouldn’t␣start␣", j, c);
fprintf (stderr , "with␣a␣number␣between␣%d␣", stack [l]);
abort ("and␣%d!\n", stack [l + 1], 5);
}
stack [++l] = k;

This code is used in section 2.

4. ⟨Global variables 4 ⟩ ≡
char jj [maxn ]; /∗ the vertex jk ∗/
char js [maxn ]; /∗ 0 if jk → k, 1 if jk ← k ∗/
char stack [maxn ]; /∗ values that are legitimate for the next jk ∗/

See also sections 8, 14, 24, 30, 32, 37, 47, 57, and 60.

This code is used in section 1.

5. ⟨Local variables 5 ⟩ ≡
register int j, k, l = 0; /∗ heavily-used miscellaneous indices ∗/
int n; /∗ size of the input graph ∗/

See also sections 9 and 45.

This code is used in section 1.
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6. Consider the example

3

8

4

6

1

0

2

5

7

in which all arcs are directed upward; it would be written +0+1−2+1+0−5−0+7 in the notation above. A
nonroot vertex k is called positive if jk → k and negative if jk ← k; thus {1, 2, 4, 5, 8} are positive in this
example, and {3, 6, 7} are negative.

We write x ⪯ y if there is a directed path from x to y. Removing all vertices x such that x ⪯ 0
disconnects the graph into a number of pieces having positive roots; in our example, removing {0, 7} leaves
three components rooted at {1, 5, 8}. We call these roots the set of positive vertices near 0, and denote that
set by A. Similarly, the negative vertices near 0 are obtained when we remove all y such that 0 ⪯ y; the set
of resulting roots, denoted by B, is {3, 6, 7} in our example.
Why are the sets A and B so important? Because the labelings for which bit [0] = 0 are precisely those

that we obtain by setting bit [x] = 0 for all x ⪯ 0 and then labeling the subgraphs rooted at a for a ∈ A.
Similarly, all labelings for which bit [0] = 1 are obtained by setting bit [y] = 1 for all 0 ⪯ y and labeling the
subgraphs rooted at b for b ∈ B.

Thus if nk is the number of labelings of the subgraph rooted at k, the total number of labelings of the
whole graph is

∏
a∈A na +

∏
b∈B nb.

For each subgraph rooted at k, we define the positive and negative vertices near k in the same way as we
did for the case k = 0, calling those sets Ak and Bk.
Every positive vertex adjacent to 0 appears in A, and every negative vertex adjacent to 0 appears in B.

These are called the principal elements of A and B. Every nonprincipal member of A is a member of Ab for
some unique principal vertex b ∈ B. Similarly, every nonprincipal member of B is a member of Ba for some
unique principal vertex a ∈ A. For example, 8 belongs to A7, and 3 ∈ B1.

⟨Type definitions 6 ⟩ ≡
typedef struct info struct {
char id ; /∗ name of vertex in an A or B set ∗/
⟨Other fields of an info record 12 ⟩;
struct info struct ∗sib ; /∗ previous element in the set ∗/
struct info struct ∗ref ; /∗ further info about nonprincipal element ∗/
} info;

See also sections 29 and 55.

This code is used in section 1.

7. ⟨ Initialize the data structures 7 ⟩ ≡
list [0][0] = list [0][1] = Λ;
for (k = 1, i = &infonode [0]; k ≤ n; k++, i++)
for (j = jj [k], ii = Λ; ; ii = i++, j = jj [j]) {

i⃗ id = k, i⃗ ref = ii ;
i⃗ sib = list [j][js [k]], list [j][js [k]] = i;
if (j ≡ 0 ∨ js [j] ≡ js [k]) break;

}
See also sections 13, 16, 23, 31, and 61.

This code is used in section 1.

8. ⟨Global variables 4 ⟩ +≡
info infonode [((maxn ∗maxn )≫ 2) + (maxn ≫ 1)]; /∗ elements of Ak and Bk ∗/
info ∗list [maxn ][2]; /∗ heads of those sets ∗/
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9. ⟨Local variables 5 ⟩ +≡
info ∗i, ∗ii ; /∗ pointers to info nodes ∗/

10. Aha! We can begin to see how to get the desired Gray path. The well-known reflected Gray code
for mixed-radix number systems tells us how to obtain a path P0 of length

∏
a∈A na for the labelings with

bit [0] = 0 as well as a path P1 of length
∏

b∈B nb for the labelings with bit [0] = 1. All we have to do is figure
out a way to end P0 with a labeling that differs only in bit [0] from the starting point of P1.

Suppose P0 begins with bit [a] = αa for each a ∈ A, and P1 ends with bit [b] = βb for each b ∈ B. Then P0

ends with bit [a] = α′
a = (αa + δa) mod 2 and P1 begins with bit [b] = β′

b = (βb + ϵb) mod 2, where

δa =
∏
a′<a
a′∈A

na′ , ϵb =
∏
b′<b
b′∈B

nb′ .

These equations have a unique solution such that the final labeling of P0 is adjacent to the first labeling
of P1. Namely, we set α′

a = 1 for all principal elements a ∈ A, and β′
b = 0 for all principal elements b ∈ B.

And if a is nonprincipal but a ∈ Ab, where b is principal, we let α
′
a = αba, the value of bit [a] at the beginning

of the Gray path for the subgraph rooted at b. Similarly, if b is nonprincipal but b ∈ Ba, where a is principal,
we let β′

b = βab. These formulas and those of the previous paragraph determine the values of αa and βb for
all a ∈ A and b ∈ B.
For example, the calculations yield the following numbers when we apply them to the smaller subgraphs,

from the bottom up:

A8 = ∅ B8 = ∅ n8 = 1 + 1 = 2
A7 = {8} α′

78 = 1; α78 = 0 B7 = ∅ n7 = 2 + 1 = 3
A6 = ∅ B6 = ∅ n6 = 1 + 1 = 2
A5 = ∅ B5 = {6} β′

56 = 0; β56 = 1 n5 = 1 + 2 = 3
A4 = ∅ B4 = ∅ n4 = 1 + 1 = 2
A3 = ∅ B3 = ∅ n3 = 1 + 1 = 2
A2 = ∅ B2 = {3} β′

23 = 0; β23 = 1 n2 = 1 + 2 = 3
A1 = {2, 4} α′

12 = 1, α′
14 = 1; α12 = 0, α14 = 0 B1 = {3} β′

13 = 1; β13 = 0 n1 = 6 + 2 = 8

For the graph as a whole, therefore, which has A0 = {1, 5, 8} and B0 = {3, 6, 7}, we have α′
1 = 1, α′

5 = 1,
α′
8 = α78 = 0; α1 = 0, α5 = 1, α8 = 0; β′

3 = β13 = 0, β′
6 = β56 = 1, β′

7 = 0; β3 = 1, β6 = 1, β7 = 0. There
are n0 = 48 + 12 = 60 possible labelings altogether.
The Gray path for a trivial subgraph like G8, G6, G4, or G3 is simply ‘0, 1’. For G7 on bits 7 and 8, the

path is ‘00, 01, 11’. For G5 on bits 5 and 6, or G2 on bits 2 and 3, the path is ‘00, 10, 11’. And for G1 on
bits 1234, the path of length 8 is

0000, 0001, 0101, 0100, 0110, 0111, 1111, 1101.

(Notice that it ends with bit [3] = β13 = 0.)
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11. The overall Gray path for our example starts out with bit [1] = α1 = 0, bit [5] = α5 = 1, and bit [8] =
α8 = 0, so the first n1n5n8 = 48 labelings bit [0] . . . bit [8] are

0 0000 11 0 0
0 0000 11 0 1
0 0000 10 0 1
0 0000 10 0 0
0 0000 00 0 0
0 0000 00 0 1
0 0001 00 0 1
0 0001 00 0 0

...
0 1101 11 0 0 .

Then comes the change to bit [0], and we finish up with n3n6n7 = 12 more:

1 11 0 11 1 00
1 11 0 11 1 01
1 11 0 11 1 11
1 11 0 11 0 11
1 11 0 11 0 01
1 11 0 11 0 00
1 11 1 11 0 00

...
1 11 1 11 1 00 .

12. ⟨Other fields of an info record 12 ⟩ ≡
char alfprime ; /∗ α′

ka or β′
kb ∗/

char del ; /∗ δka mod 2 or ϵkb mod 2 ∗/
This code is used in section 6.
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13. We need not actually calculate the values nk exactly; we only need to know if nk is even or odd.
However, this program does compute the exact values (unless they exceed our computer’s word size).

⟨ Initialize the data structures 7 ⟩ +≡
for (k = n; k ≥ 0; k−−) {
register int s, t;

for (s = 1, i = list [k][0], ii = Λ; i; s ∗= nn [i⃗ id ], i = i⃗ sib) {
i⃗ del = 1;
if ((nn [i⃗ id ] & 1) ≡ 0) ii = i;
if (i⃗ ref ) i⃗ alfprime = i⃗ ref⃗alfprime ⊕ i⃗ ref⃗del ;
else i⃗ alfprime = 1;

}
for (i = list [k][0]; ii ; i = i⃗ sib)

if (i ≡ ii ) ii = Λ; else i⃗ del = 0;
for (t = 1, i = list [k][1], ii = Λ; i; t ∗= nn [i⃗ id ], i = i⃗ sib) {

i⃗ del = 1;
if ((nn [i⃗ id ] & 1) ≡ 0) ii = i;
if (i⃗ ref ) i⃗ alfprime = i⃗ ref⃗alfprime ⊕ i⃗ ref⃗del ;
else i⃗ alfprime = 0;

}
for (i = list [k][1]; ii ; i = i⃗ sib)

if (i ≡ ii ) ii = Λ; else i⃗ del = 0;
nn [k] = s+ t;

}

14. ⟨Global variables 4 ⟩ +≡
int nn [maxn ]; /∗ nk, the number of labelings of Gk ∗/

15. Here are two subroutines that I used when debugging.

⟨ Subroutines 15 ⟩ ≡
void print info(int k)
{
register info ∗i;
printf ("Info␣for␣vertex␣%d:␣A␣=", k);
for (i = list [k][0]; i; i = i⃗ sib) printf ("␣%d", i⃗ id );
if (list [k][0]) printf (",␣B␣="); else printf ("␣(),␣B␣=");
for (i = list [k][1]; i; i = i⃗ sib) printf ("␣%d", i⃗ id );
if (list [k][1]) printf ("\n"); else printf ("␣()\n");
for (i = list [k][0]; i; i = i⃗ sib)
printf ("␣alf%d=%d,␣alf%d’=%d\n", i⃗ id , i⃗ alfprime ⊕ i⃗ del , i⃗ id , i⃗ alfprime );

for (i = list [k][1]; i; i = i⃗ sib)
printf ("␣bet%d=%d,␣bet%d’=%d\n", i⃗ id , i⃗ alfprime ⊕ i⃗ del , i⃗ id , i⃗ alfprime );

}
void print all info(int n)
{
register int k;

for (k = 0; k ≤ n; k++) print info(k);
}

See also sections 58 and 59.

This code is used in section 1.
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16. ⟨ Initialize the data structures 7 ⟩ +≡
if (verbose ) {
print all info(n);
printf ("(Altogether␣%d␣solutions.)\n",nn [0]);
}
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17. Coroutines. As in the program KODA-RUSKEY, we can represent the path-generation process by
considering a system of cooperating programs, each of which has the same basic structure. There is one
coroutine for each pair of nodes (k, l) such that k ∈ Al or k ∈ Bl, and it looks essentially like this:

coroutine p( )
{
while (1) {

while (p⃗ child A( )) return true ;
p⃗ bit = 1; return true ;
while (p⃗ child B ( )) return true ;
return p⃗ sib( );
while (p⃗ child B ( )) return true ;
p⃗ bit = 0; return true ;
while (p⃗ child A( )) return true ;
return p⃗ sib( );

}
}

Here p⃗ child A is a pointer to the rightmost element of Ak, and p⃗ child B points to the rightmost element
of Bk; p⃗ sib points to the nearest sibling of p to the left, in Al or Bl. If any of these pointers is Λ, the
corresponding coroutine Λ( ) is assumed to simply return false .
The reader is urged to compare this coroutine with the analogous one in KODA-RUSKEY, which is the

special case where p⃗ child A = Λ for all p.
Suppose p⃗ child A( ) first returns false after it has been called α times; thus p⃗ child A( ) generates α

different labelings, including the initial one. Similarly, suppose that p⃗ child B ( ) and p⃗ sib( ) generate β and
σ different labelings, respectively, before first returning false . Then the coroutine p( ) itself will generate
σ(α+ β) labelings between the times when it returns false . The final labeling for p will be the final labeling
for p⃗ sib , together with either the initial or final labeling of the subtree rooted at k, depending on whether
σ is even or odd, respectively.
After the coroutine has first returned false , invoking it again will cause it to generate the labelings in

reverse order before returning false a second time. Then the process repeats.

18. How many coroutines can there be? Our example graph defines a total of 13 coroutines (including a
coroutine 0, which corresponds to the special case where k = 0 and there are no siblings).
It isn’t difficult to prove that the worst case, about n2/4, occurs in graphs that have a specification

like +0+1+2+3+4−5−5−5−5−5. Such graphs have roughly n times 2n/2 labelings, so we do not have to be
embarrassed about the nonlinear initialization time needed to set up data structures and to compute the
values αka, α

′
ka, βkb, and β′

kb.
Indeed, if k is a positive vertex, it appears in r coroutines (k, l1), . . . , (k, lr) if and only if the path

from k to 0 has the form k ← l1 → · · · → lr = 0 or begins with k ← l1 → · · · → lr ← lr+1. If k is a
negative vertex, it appears in r coroutines (k, l1), . . . , (k, lr) if and only if the path from k to 0 has the form
k → l1 ← · · · ← lr = 0 or begins with k → l1 ← · · · ← lr → lr+1. Only the coroutine (k, l1) is principal.
Notice that if r > 1, nodes (l1, . . . , lr−1) appear only in their principal coroutine, because a nonprincipal
coroutine arises only at points where the path to 0 switches directions.
If there are s direction-switching vertices k such that the path to 0 begins k → l1 ← l2, the 2

s independent
settings of their bits all appear in at least one labeling. And if there are t direction-switching vertices k
such that the path to 0 begins k ← l1 → l2, the same remark applies to the 2t independent settings of their
individual bits. Therefore if the number of coroutines (k, l) exceeds (c+ 1)n, the number of labelings must
exceed 2max(s,t) ≥ 2 c/2.
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19. In Section 1.4.2 of Fundamental Algorithms, I wrote, “Initialization of coroutines tends to be a little
tricky, although not really difficult.” Perhaps I should reconsider that statement in the light of the present
program, because the initialization of all the coroutines considered here is more than a little tricky.
In fact, I’ve decided not to implement the coroutines directly, although a simulation along the lines of

KODA-RUSKEY would make a nice exercise. My real goal is to come up with a loopless implementation,
because I was told that no such implementation (nor even an implementation with constant amortized time)
was presently known.
[Readers who do take the time to work out the exercise suggested in the previous paragraph will notice a

interesting difference with respect to the previous case: The parent pointers in the coroutine implementation
of KODA-RUSKEY are essentially static, but now they must in general be dynamic. For example, in a graph
like 0 ← 1 → 2 ← 3, coroutine (3, 2) is called by both (2, 0) and (2, 1). This is related to the key difficulty
we will face in coming up with a loopless way to solve our more general problem.]
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20. A generalized fringe. The loopless implementation in KODA-RUSKEY is based on a notion called
the fringe, which is a linear list containing nodes that are either active or passive. We are dealing here with
a generalization of the problem solved there, so we naturally seek an extension of the fringe concept in hopes
that fringes will help us again.
Each loopless KODA-RUSKEY step consists of four basic operations:

1) Find the rightmost active node, p;
2) Complement bit [p];
3) Insert or delete appropriate fringe nodes at the right of p;
4) Make p passive and activate all nodes to its right.

Suitable data structures make all these operations efficient. Fortunately, the same scheme does in fact handle
our more general problem, except that operation (3) must now involve both insertion and deletion.
The root node 0 is always present in the fringe. And if k is any node in the fringe, it is immediately

followed by its current descendants, which are defined as follows: If bit [k] = 0, the descendants of k are the
nodes a for a ∈ Ak and their descendants. If bit [k] = 1, the descendants of k are the nodes b for b ∈ Bk and
their descendants.

21. An example will make this clear; for simplicity, we will consider only the subgraph G1 on the vertices
{1, 2, 3, 4} of our larger example. The initial labeling 0000 means that the fringe begins with three nodes

10 20 40 ,

where the subscript on k indicates the value of bit [k]. Nodes 20 and 40 have no descendants, because
A2 = A4 = ∅. All nodes are initially active.
Since 40 is the rightmost active node, we complement bit [4], and the fringe becomes

10 20 41 .

The bar over 4 indicates that this node is now passive. Again, 41 has no descendants, this time because
B4 = ∅.
The next step complements bit [2], and B2 = {3} now enters the fringe:

10 21 30 41 .

The initial value of bit [3] is β′
23 = 0.
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22. Proceeding in this way, the first eight steps can be summarized as follows:

10 20 40 · · · complement bit [4]
10 20 41 · · · complement bit [2]
10 21 30 41 · · · complement bit [4]
10 21 30 40 · · · complement bit [3]
10 21 31 40 · · · complement bit [4]
10 21 31 41 · · · complement bit [1]
11 31 · · · complement bit [3]
11 30

and at this point all of the labelings have been generated. Restarting the process causes them to be
regenerated in reverse order, stopping again when the original starting point is reached:

11 30 · · · complement bit [3]
11 31 · · · complement bit [1]
10 21 31 41 · · · complement bit [4]
10 21 31 40 · · · complement bit [3]
10 21 30 40 · · · complement bit [4]
10 21 30 41 · · · complement bit [2]
10 20 41 · · · complement bit [4]
10 20 40

23. Let’s look more closely at what happens when bit [k] changes its state. Suppose the rightmost active
node is k0. Then k0 is immediately followed in the fringe by its descendants; those descendants were all
passive, but we can reactivate them in anticipation of step (4). The current descendants of k0 are the
elements of Ak and their descendants, and each element a ∈ Ak has bit [a] = α′

ka.
We will say that the entourage of k0 is the contents of the fringe at the beginning of the process that

would generate the Gray path for the subgraph rooted at k; and the entourage of k1 is the contents of the
fringe at the end of that process. Thus, the small example we’ve just seen shows us that the entourage of 10
is 10 20 40, and the entourage of 11 is 11 30.
In general, the entourage of k0 consists of k0 itself followed by the consecutive entourages of at for each

a ∈ Ak, with t = αka, in order of increasing a. We find therefore that the entourage of 00 in our main
example is

00 10 20 40 51 61 80 ;

this is the initial contents of the fringe. The corresponding entourage of 01—the final fringe—is

01 31 61 70 80 .

The final element of an entourage always has the form js where either s = 0 and Aj = ∅ or s = 1 and
Bj = ∅. Here is a short program that locates the final j value at the end of the entourage for kt:

⟨ Initialize the data structures 7 ⟩ +≡
for (k = n; k ≥ 0; k−−)
for (j = 0; j ≤ 1; j++) {
i = list [k][j];
if (i) fj [k][j] = fj [i⃗ id ][i⃗ alfprime ⊕ i⃗ del ];
else fj [k][j] = k;

}

24. ⟨Global variables 4 ⟩ +≡
char fj [maxn ][2]; /∗ final vertices in the entourages of k0, k1 ∗/
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25. At the point where bit [k] is about to change from 0 to 1, the fringe following k0 contains k’s transition
string τk0, which consists again of the consecutive entourages at of all a ∈ Ak, but this time with t = α′

ka

instead of t = αka. The fringe is then modified from ‘. . . k0 τk0 . . .’ to ‘. . . k1 τk1 . . .’, where the transition
string τk1 consists of the consecutive entourages bt of all b ∈ Bk, with t = β′

kb.
Thus the two transition strings for vertex 0 in our main example are τ00 = 11 30 51 61 80 and τ01 =

30 61 70 80. At the moment bit [0] changes from 0 to 1, the fringe changes from 00 11 30 51 61 80 to 01 30 61 70 80;
and if we run the sequence backwards, it will go from 01 30 61 70 80 to 00 11 30 51 61 80 when bit [0] becomes 0.

26. Now comes a key observation: Recall that some elements of Ak and Bk are called “principal,” namely
the vertices adjacent to k (the “children” of k in tree terminology). The nonprincipal vertices of Ak and Bk

appear in both transition strings τk0 and τk1, with their entourages in the same states. Indeed, the entourage
of each principal vertex a of Ak is a1 followed by the entourages of all b ∈ Ba; and all such b are nonprincipal,
because α′

ka = 1 and Ba ⊆ Bk when a is principal. Similarly, the entourage of each principal vertex b of Bk

is b0 followed by the entourages of all a ∈ Ab; and all such a are nonprincipal, because β′
kb = 0 and Ab ⊆ Ak

when b is principal.
Therefore, if we maintain the fringe as a doubly linked list—which we definitely want to do—the task

of replacing one of k’s transition strings by the other is fairly easy to describe at link level: When bit [k]
changes from 0 to 1, we remove the existing substring τk0 from the fringe and replace it by the entourages
of each b ∈ B, in increasing order of the b’s. If b is principal, the entourage of b consists of b0 followed
by the entourages of all a ∈ Ab, and the latter vertices are nonprincipal; therefore the entourages of every
such a are already properly linked within themselves, because they appear as substrings of τk0. Moreover,
our assumption that the tree vertices were labeled in preorder guarantees that the entourages of all a ∈ Ab

appear consecutively in τk0; thus they are properly linked to each other, and all we need to do when forming
the entourage of a principal vertex b ∈ B is link it to the leftmost element of Ab. If on the other hand b is
nonprincipal, none of its internal links need to be changed at all, because its entourage was already present
as a substring of τk0.

All these entourages appear in preorder, in both τk0 and τk1. Therefore, to change τk0 to τk1 we simply
need to remove all of the principal members of Ak and insert all of the principal members of Bk, in their
appropriate preorder position. For example, we saw a moment ago that the task of going from τ00 to τ01
consists of removing 11 and 51, then inserting 70. The total number of link-pairs we need to change is at
most twice the number of elements of Ak plus twice the number of elements of Bk.

27. The preorder assumption makes still further simplification possible. Indeed, we know that the spe-
cial case in KODA-RUSKEY requires at most two splices per transition, so we can expect to discover a
generalization of the principle that led to such an improvement.
Suppose all of the elements of Ak ∪Bk have been merged into preorder, thus giving us the “union” of τk0

and τk1. Suppose further that two vertices b b′ of Bk are adjacent in this union, where b is principal. It follows
that b′ is also principal; otherwise some element of Ak would intervene. When τk0 is being replaced by τk1
in the fringe, we therefore need to insert both b and b′. Fortunately, they were properly linked to each other
when they last left the fringe, and neither one has entered the fringe since then; so they still are properly
linked. (We also need to be sure that they were linked properly to each other during the initialization, before
processing starts.) The same argument applies when two vertices a a′ of Ak are adjacent and a is principal.
One can often, but not always, avoid some of the link-updating with respect to τk0 and τk1 by cleverly

reordering the subtrees of k.
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28. An algorithm that changes transition strings as just described will run in constant amortized time per
output, because the cost of changing links in the fringe can be charged to the processing time when the
corresponding fringe element next becomes passive.
But it looks like bad news for our goal of loopless computation, because we might need to do Ω(n)

operations when bit [k] changes.
No, all is not lost: We can leave “stale” links in the fringe, fixing them one at a time, just before the

algorithm needs to look at them!
Namely, suppose the transition string τk1 consists of substrings σ1σ2 . . . σs that are properly linked within

themselves but not necessarily to each other. We can prepare a list of “fixup instructions” (x1, . . . , xs), where
xj says that the first element of σj should be joined to the last element of σj−1, or to element k1 if j = 1.
And we can plant a flag that will cause xj to be performed just as the first element of σj becomes passive.
The execution of xj will then move the flag in preparation for xj−1, or it will remove the flag if j = 1.
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29. Data structures. Now that we know basically what needs to be done, we are ready to design the
records that will be linked together to form the fringe. These records, which we will call fnodes, naturally
contain left and right fields, because the fringe is doubly linked (modulo stale pointers). An fnode also
contains a fixup field, which (if non-Λ) points to information that will correct a stale left pointer. And of
course there’s also a bit field, giving the status of bit [k] in fnode number k.

Each fnode also has a focus pointer, which implicitly classifies fringe elements as active or passive, just
as it did in the KODA-RUSKEY program: Usually p⃗ focus = p, except when p is a passive node to the
immediate left of an active node. In the latter case, p⃗ focus points to the first active node to the left of p.

Besides these dynamically changing fields, each fnode also contains two static fields that are precomputed
during the initialization, namely tau [0] and tau [1]. These fields refer to sequential lists that specify the
transition strings τk0 and τk1 for fnode number k.

⟨Type definitions 6 ⟩ +≡
typedef struct fnode struct {
char bit ; /∗ either 0 or 1; always 0 when an A-child’s bit is 0, always 1 when a B-child’s bit is 1 ∗/
struct fnode struct ∗left , ∗right ; /∗ neighbors in the fringe ∗/
struct fnode struct ∗∗fixup ; /∗ remedy for a stale left link ∗/
struct fnode struct ∗focus ; /∗ red-tape cutter for efficiency ∗/
struct fnode struct ∗∗tau [2]; /∗ list of transition string link points ∗/
} fnode;

30. The fringe is extended to contain a special fnode called head , which makes the list circular. In other
words, head⃗right and head⃗ left are the leftmost and rightmost elements of the fringe. Also, head⃗ left⃗ focus
is the rightmost active element.

#define head (vertex + 1 + n)

⟨Global variables 4 ⟩ +≡
fnode vertex [maxn + 1]; /∗ the collection of all potential fringe nodes ∗/

31. And how should we store the tau information? Let’s “compile” the set of necessary link changes into
a sequential list (r1, l1, . . . , rt, lt,Λ) with the meaning that we want to set lj⃗ right = rj and rj⃗ left = lj . The
case j = 1 is, however, an exception, because it refers to a potentially unknown part of the fringe (lying to
the right of τk0 and τk1); in that case we want to set we want to set lj⃗ right = rj⃗ right and rj⃗ right⃗ left = lj .

⟨ Initialize the data structures 7 ⟩ +≡
tau ptr = tau table ;
for (k = 0; k ≤ n; k++) {
⟨Merge the sets Ak and Bk, retaining preorder 33 ⟩;
⟨Compile the link-change strings vertex [k].tau [ ] 34 ⟩;
}

32. ⟨Global variables 4 ⟩ +≡
fnode ∗tau table [((maxn ∗maxn )≫ 1) +maxn +maxn ]; /∗ elements of tau fields ∗/
fnode ∗∗tau ptr ; /∗ the first unused place in tau table ∗/
char ct [maxn ]; /∗ ct [l] = 0 if ab [l] ∈ Ak, otherwise ct [l] = 1 ∗/
char verbose = 1; /∗ should details of tau compilation be printed? ∗/
info ∗ab [maxn ]; /∗ an element of Ak or Bk ∗/
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33. It is most convenient to sort in decreasing order here, so that the rightmost link-updates are listed
first, because we have stored them in that order and we will need them in that order.
This part of the program is the most subtle, so I’ve included a provision for verbose printing dur-

ing debugging sessions. A simple case in which Ak = {5} and Bk = ∅ will be printed as (a5). A
slightly more complicated case in which Ak = {2} and Bk = {4} would be (a2)(b4) if both are prin-
cipal, or (a2b4) if only 2 is principal. A more complicated case, used as an example below, has Ak =
{1, 2, 5, 8, 11} and Bk = {3, 4, 6, 7, 9, 10}, with elements {1, 2, 5, 7, 9, 10} principal; this would be printed as
(a1)(a2b3b4)(a5b6)(b7a8)(b9)(b10a11).
Recall that an element j of Ak ∪ Bk is principal if and only if it is a child of k. The parentheses in the

verbose printout are used to group k’s children with their nonprincipal descendants.

#define principal (l) (jj [ab [l]⃗ id ] ≡ k)

⟨Merge the sets Ak and Bk, retaining preorder 33 ⟩ ≡
for (i = list [k][0], ii = list [k][1], l = 0; i ∨ ii ; l++) {
if (¬ii ∨ (i ∧ i⃗ id > ii⃗ id )) ab [l] = i, ct [l] = 0, i = i⃗ sib ;
else ab [l] = ii , ct [l] = 1, ii = ii⃗sib ;

}
if (l ∧ verbose ) {
printf ("Union%d:␣(", k);
for (j = l − 1; ; ) {
printf ("%c%d", ’a’ + ct [j], ab [j ]⃗ id );
if (j ≡ 0) break;
j−−;
if (principal (j)) printf (")(");

}
printf (")\n");

}
This code is used in section 31.

34. ⟨Compile the link-change strings vertex [k].tau [ ] 34 ⟩ ≡
if (¬l) vertex [k].tau [0] = vertex [k].tau [1] = Λ;
else {
ab [l] = Λ; /∗ sentinel at end of list ∗/
vertex [k].tau [1] = tau ptr ;
⟨Compile vertex [k].tau [1] 35 ⟩;
vertex [k].tau [0] = tau ptr ;
⟨Compile vertex [k].tau [0] 40 ⟩;
⟨Link siblings together 44 ⟩;
}

This code is used in section 31.
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35. Our job here is to specify the links that must change when the principal elements of Ak are deleted
and the principal elements of Bk are inserted. In the simple example (a5) mentioned above, we simply set
r1 = &vertex [5] and l1 = vertex [k]. The verbose printout will say ‘k:5+’, meaning that vertex [k] is to be
followed in the fringe by the vertex that currently follows vertex [5].
In the next simplest example, (a2)(b4), we will set r1 = &vertex [2], l1 = &vertex [4], r2 = &vertex [4],

l2 = &vertex [k]; the verbose printout will symbolize this by ‘4:2+ k:4’. The result of (a2b4) would, on
the other hand, be ‘k:2+’, because only vertex [2] needs to be removed from the fringe when vertex [4] is
nonprincipal.
Finally, the instructions compiled from the complex example (a1)(a2b3b4)(a5b6)(b7a8)(b9)(b10a11)

would be
10:8r+ 8r:9 7:8 6r:7 4r:6 k:3.

The ‘r’ here denotes the rightmost element of a nonprincipal vertex’s entourage. (As explained earlier, the
instruction ‘9:10’ need not be compiled.)

The reader might be able to understand from these examples why the author took time out to think before
writing this part of the code.

⟨Compile vertex [k].tau [1] 35 ⟩ ≡
⟨Find r1 for tau [1] 36 ⟩;
⟨Find l1 for tau [1] 38 ⟩;
while (ab [l]) ⟨Find the next rj and lj for tau [1] 39 ⟩;
tau ptr ++; /∗ the tau list terminates with Λ ∗/

This code is used in section 34.

36. ⟨Find r1 for tau [1] 36 ⟩ ≡
for (l = 0; ¬principal (l); l++) ; /∗ nonprincipals at the end can be ignored ∗/
if (ct [l]) { /∗ principal b ∗/
for (j = l + 1; ab [j] ∧ ct [j]; j++) ;
if (ab [j]) {
if (verbose ) sprintf (rbuf , "%dr+", ab [j ]⃗ id );
∗tau ptr ++ = vertex + fj [ab [j ]⃗ id ][ab [j ]⃗ alfprime ];

} else {
if (verbose ) sprintf (rbuf , "%d+", k);
∗tau ptr ++ = vertex + k;

}
} else { /∗ principal a ∗/
if (verbose ) sprintf (rbuf , "%d+", ab [l]⃗ id );
∗tau ptr ++ = vertex + ab [l]⃗ id ;
}

This code is used in section 35.

37. ⟨Global variables 4 ⟩ +≡
char rbuf [8]; /∗ symbolic form of r1 for verbose printing ∗/
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38. Once we’ve found r1, principal a’s at the end can be ignored.

⟨Find l1 for tau [1] 38 ⟩ ≡
while (ab [l] ∧ ¬ct [l] ∧ principal (l)) l++;
if (¬ab [l]) {
if (verbose ) printf ("␣%d:%s\n", k, rbuf );
∗tau ptr ++ = vertex + k;
} else if (principal (l)) {
if (verbose ) printf ("␣%d:%s", ab [l]⃗ id , rbuf );
∗tau ptr ++ = vertex + ab [l]⃗ id ;
} else {
if (verbose ) printf ("␣%dr:%s", ab [l]⃗ id , rbuf );
∗tau ptr ++ = vertex + fj [ab [l]⃗ id ][ab [l]⃗ alfprime ];
}

This code is used in section 35.

39. At this point ab [l] is the info node from which we produced lj−1. If it refers to a principal element,
it’s an element b that is absent from τk0 but present in τk1. Otherwise it’s a nonprincipal element, which
appears in both τk0 and τk1.

⟨Find the next rj and lj for tau [1] 39 ⟩ ≡
{
if (principal (l))

for (l++; ab [l] ∧ ct [l] ∧ principal (l); l++) ;
else for (l++; ¬principal (l); l++) ;
∗tau ptr ++ = vertex + ab [l − 1]⃗ id ;
if (ab [l] ∧ ¬ct [l] ∧ principal (l))
for (l++; ab [l] ∧ ¬ct [l] ∧ principal (l); l++) ;

if (¬ab [l]) {
if (verbose ) printf ("␣%d:%d\n", k, ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + k;

} else if (principal (l)) {
if (verbose ) printf ("␣%d:%d", ab [l]⃗ id , ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + ab [l]⃗ id ;

} else {
if (verbose ) printf ("␣%dr:%d", ab [l]⃗ id , ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + fj [ab [l]⃗ id ][ab [l]⃗ alfprime ];

}
}

This code is used in section 35.

40. The next few sections are identical to the previous ones, with a’s and b’s swapped. (Unless I have
erred.) The compiled instructions for tau [0] in the complex example are

8r:10+ 6r:8 5:6 4r:5 2:3 k:1 .

⟨Compile vertex [k].tau [0] 40 ⟩ ≡
⟨Find r1 for tau [0] 41 ⟩;
⟨Find l1 for tau [0] 42 ⟩;
while (ab [l]) ⟨Find the next rj and lj for tau [0] 43 ⟩;
tau ptr ++; /∗ the tau list terminates with Λ ∗/

This code is used in section 34.
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41. ⟨Find r1 for tau [0] 41 ⟩ ≡
for (l = 0; ¬principal (l); l++) ; /∗ nonprincipals at the end can be ignored ∗/
if (¬ct [l]) { /∗ principal a ∗/
for (j = l + 1; ab [j] ∧ ¬ct [j]; j++) ;
if (ab [j]) {
if (verbose ) sprintf (rbuf , "%dr+", ab [j ]⃗ id );
∗tau ptr ++ = vertex + fj [ab [j ]⃗ id ][ab [j ]⃗ alfprime ];

} else {
if (verbose ) sprintf (rbuf , "%d+", k);
∗tau ptr ++ = vertex + k;

}
} else { /∗ principal b ∗/
if (verbose ) sprintf (rbuf , "%d+", ab [l]⃗ id );
∗tau ptr ++ = vertex + ab [l]⃗ id ;
}

This code is used in section 40.

42. ⟨Find l1 for tau [0] 42 ⟩ ≡
while (ab [l] ∧ ct [l] ∧ principal (l)) l++;
if (¬ab [l]) {
if (verbose ) printf ("␣%d:%s\n", k, rbuf );
∗tau ptr ++ = vertex + k;
} else if (principal (l)) {
if (verbose ) printf ("␣%d:%s", ab [l]⃗ id , rbuf );
∗tau ptr ++ = vertex + ab [l]⃗ id ;
} else {
if (verbose ) printf ("␣%dr:%s", ab [l]⃗ id , rbuf );
∗tau ptr ++ = vertex + fj [ab [l]⃗ id ][ab [l]⃗ alfprime ];
}

This code is used in section 40.



20 DATA STRUCTURES LI-RUSKEY §43

43. At this point ab [l] is the info node from which we produced lj−1. If it refers to a principal element,
it’s an element a that is absent from τk1 but present in τk0. Otherwise it’s a nonprincipal element, which
appears in both τk0 and τk1.

⟨Find the next rj and lj for tau [0] 43 ⟩ ≡
{
if (principal (l))

for (l++; ab [l] ∧ ¬ct [l] ∧ principal (l); l++) ;
else for (l++; ¬principal (l); l++) ;
∗tau ptr ++ = vertex + ab [l − 1]⃗ id ;
if (ab [l] ∧ ct [l] ∧ principal (l))
for (l++; ab [l] ∧ ct [l] ∧ principal (l); l++) ;

if (¬ab [l]) {
if (verbose ) printf ("␣%d:%d\n", k, ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + k;

} else if (principal (l)) {
if (verbose ) printf ("␣%d:%d", ab [l]⃗ id , ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + ab [l]⃗ id ;

} else {
if (verbose ) printf ("␣%dr:%d", ab [l]⃗ id , ∗(tau ptr − 1)− vertex );
∗tau ptr ++ = vertex + fj [ab [l]⃗ id ][ab [l]⃗ alfprime ];

}
}

This code is used in section 40.

44. We need to link the siblings of a family together if they are adjacent and of the same type, because of
one of the optimization we’re doing. So we might as well link all siblings together.

⟨Link siblings together 44 ⟩ ≡
for (l = 0, p = Λ; ab [l]; l++)
if (principal (l)) {

q = vertex + ab [l]⃗ id ;
if (p) q⃗ right = p, p⃗ left = q;
p = q;

}
This code is used in section 34.

45. ⟨Local variables 5 ⟩ +≡
fnode ∗p, ∗q, ∗r;
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46. Doing it. The time has come to construct the loopless implementation in practice, as we have been
doing so far in theory.

⟨Generate the answers 46 ⟩ ≡
while (1) {
⟨Print out all the current bits 53 ⟩;
⟨ Set p to the rightmost active node of the fringe, and activate everything to its right 48 ⟩;
if (p ̸= head ) {
if (p⃗ fixup) ⟨Repair the stale pointer p⃗ left 50 ⟩;
if (p⃗ bit ≡ 0) ⟨Move forward, setting p⃗ bit = 1 51 ⟩
else ⟨Move backward, setting p⃗ bit = 0 52 ⟩

} else if (been there and done that ) break;
else {
printf ("...␣and␣now␣we␣generate␣in␣reverse:\n");
been there and done that = 1; continue;

}
⟨Make node p passive 49 ⟩;
}

This code is used in section 1.

47. ⟨Global variables 4 ⟩ +≡
char been there and done that ; /∗ have we completed a cycle already? ∗/

48. The nice thing is that the algorithm not only is loopless, its operations are simple.

⟨ Set p to the rightmost active node of the fringe, and activate everything to its right 48 ⟩ ≡
q = head⃗ left ;
p = q⃗ focus ;
q⃗ focus = q;

This code is used in section 46.

49. At this point we know that p⃗ right (more precisely, the node that would be p⃗ right if links weren’t
stale) is active. And we also know that p⃗ left is not stale.

⟨Make node p passive 49 ⟩ ≡
q = p⃗ left ;
p⃗ focus = q⃗ focus ;
q⃗ focus = q;

This code is used in section 46.

50. ⟨Repair the stale pointer p⃗ left 50 ⟩ ≡
{
q = ∗(p⃗ fixup), r = ∗(p⃗ fixup + 1);
p⃗ left = q, q⃗ right = p;
if (r) r⃗ fixup = p⃗ fixup + 2;
p⃗ fixup = Λ;
}

This code is used in section 46.
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51. ⟨Move forward, setting p⃗ bit = 1 51 ⟩ ≡
{
p⃗ bit = 1;
if (p⃗ tau [1]) {
q = (∗(p⃗ tau [1]))⃗ right ;
r = ∗(p⃗ tau [1] + 1);
q⃗ left = r, r⃗ right = q;
r = ∗(p⃗ tau [1] + 2);
if (r) r⃗ fixup = p⃗ tau [1] + 3;

}
}

This code is used in section 46.

52. ⟨Move backward, setting p⃗ bit = 0 52 ⟩ ≡
{
p⃗ bit = 0;
if (p⃗ tau [0]) {
q = (∗(p⃗ tau [0]))⃗ right ;
r = ∗(p⃗ tau [0] + 1);
q⃗ left = r, r⃗ right = q;
r = ∗(p⃗ tau [0] + 2);
if (r) r⃗ fixup = p⃗ tau [0] + 3;

}
}

This code is used in section 46.

53. ⟨Print out all the current bits 53 ⟩ ≡
for (k = 0; k ≤ n; k++) putchar (’0’ + vertex [k].bit );
if (verbose ) ⟨Print the fringe in symbolic form 54 ⟩;
putchar (’\n’);

This code is used in section 46.

54. Once again, I’m writing optional code that should help me gain confidence (and pinpoint errors) while
debugging. Such code also ought to help an observer understand what the program thinks it is doing, or at
least what I thought it should be doing when I wrote it.
The fringe is printed right-to-left, because that’s the way the implicit parts of the data need to be

interpreted (namely, the active/passive bits and the stale-pointer corrections). I could, of course, take
the trouble to reverse the order and make the printout more intuitive; but hey, this is for educated eyes only.
Passive vertices are shown in parentheses.

⟨Print the fringe in symbolic form 54 ⟩ ≡
for (l = 0, q = head⃗ left , p = q⃗ focus ; q ̸= head ; q = r) {
printf ("␣%s%d_%d%s", q ̸= p ? "(" : "", q − vertex , q⃗ bit , q ̸= p ? ")" : "");
⟨ Set r to the non-stale form of q⃗ left 56 ⟩;
if (q ≡ p) p = r⃗ focus ;
}

This code is used in section 53.
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55. Here we need to maintain a stack of currently active fixups.

⟨Type definitions 6 ⟩ +≡
typedef struct {
fnode ∗vert ; /∗ vertex with a stale left pointer ∗/
fnode ∗∗ref ; /∗ tau string with info about future vertices ∗/
} fstack node;

56. ⟨ Set r to the non-stale form of q⃗ left 56 ⟩ ≡
if (q⃗ fixup) fstack [++l].vert = q, fstack [l].ref = q⃗ fixup ;
if (q ≡ fstack [l].vert ) {
putchar (’!’); /∗ indicate that a stale link is being fixed ∗/
r = ∗(fstack [l].ref );
if (∗(fstack [l].ref + 1)) fstack [l].vert = ∗(fstack [l].ref + 1), fstack [l].ref += 2;
else l−−;
} else r = q⃗ left ;

This code is used in section 54.

57. ⟨Global variables 4 ⟩ +≡
fstack node fstack [maxn ]; /∗ stack used in verbose printout ∗/
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58. Priming the pump. The program is complete except for one niggling detail: We need to set up
the initial contents of the fringe. Everything will maintain itself, once the whole structure is up and running,
but how do we get chickens before we have eggs?
Here are two recursive subroutines that come to the rescue. The first one sets vertex [j].bit = 1 in all

vertices j such that k ⪯ j. The second one contributes the entourage of given vertex in a given state to the
current fringe.

⟨ Subroutines 15 ⟩ +≡
void setbits (char k)
{
register info ∗i;
vertex [k].bit = 1;
for (i = list [k][0]; i; i = i⃗ sib)
if (jj [i⃗ id ] ≡ k) setbits (i⃗ id );

}

59. A global variable called cur vert points to the left end of the fringe-so-far. We construct the entourages
from right to left, because that’s the way the list info is set up.
All bits are assumed to be zero initially; therefore we don’t need a routine to set them zero, only the

setbits routine to make some of them nonzero.

⟨ Subroutines 15 ⟩ +≡
void entourage (char k, char t)
{
register fnode ∗p = vertex + k;
register info ∗i;
if (t) setbits (k);
for (i = list [k][t]; i; i = i⃗ sib) entourage (i⃗ id , i⃗ alfprime ⊕ i⃗ del );
cur vert⃗ left = p, p⃗ right = cur vert , cur vert = p;
}

60. ⟨Global variables 4 ⟩ +≡
fnode ∗cur vert ; /∗ front of a doubly linked list under construction ∗/

61. And now we’re done!

⟨ Initialize the data structures 7 ⟩ +≡
for (k = 0; k ≤ n+ 1; k++) vertex [k].focus = &vertex [k];
cur vert = head ;
entourage (0, 0);
cur vert⃗ left = head , head⃗right = cur vert ;
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62. Comment about looplessness. In practice, the algorithm would run a bit faster if the fixup links
were dispensed with and all splicing were done directly at transition time. Constant amortized time—or,
rather, total execution time in general—is the main criterion in most applications; there usually is no reason
to care whether some generation steps are slow and others are fast, as long as the entire job is done quickly.
However, the construction of loopless algorithms carries an academic cachet: “Look at how clever I am,

I can even do it looplessly!” That’s why this program has gone the extra mile to assure constant time per
generation step, even though the added complications may well have been a step backwards from a practical
standpoint. [Excuse me, I’m thinking only of sequential computation here; loopless algorithms can have
definite advantages with respect to parallel processing.]
On the other hand, many academic purists may reasonably claim that I have not actually reached my stated

goal. When Gideon Ehrlich introduced the notion of loopless implementations in JACM 20 (1973), 500–513,
he insisted that the initialization time be O(n); the program above can only guarantee an initialization time
that is O

(∑
k(∥Ak∥ + ∥Bk∥)

)
, and that sum can be ∼ n2/4. Clearly the initialization time ought to be

substantially smaller than the number of outputs, or a loopless algorithm would be trivial. But I think it’s
fair to allow initialization to take as long as, say, O

(
min(m,n2)

)
when there are m outputs, especially when

m is usually (but not always) exponential in n.
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63. Index.
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abort : 2, 3.
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cur vert : 59, 60, 61.
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fnode: 29, 30, 32, 45, 55, 59, 60.
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printf : 15, 16, 33, 38, 39, 42, 43, 46, 54.
putchar : 53, 56.

q: 45.
r: 45.
rbuf : 36, 37, 38, 41, 42.
ref : 6, 7, 13, 55, 56.
right : 29, 30, 31, 44, 49, 50, 51, 52, 59, 61.
s: 13.
setbits : 58, 59.
sib : 6, 7, 13, 15, 17, 33, 58, 59.
sprintf : 36, 41.
stack : 3, 4.
stderr : 2, 3.
t: 13, 59.
tau : 29, 31, 32, 34, 35, 40, 51, 52, 55.
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tau table : 31, 32.
true : 17.
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vert : 55, 56.
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53, 54, 58, 59, 61.
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