
§1 KROM-COUNT INTRO 1

(Downloaded from https://cs.stanford.edu/˜knuth/programs.html and typeset on September 17, 2017)

1*. Intro. Counting Krom functions on six elements that are nonisomorphic under permutations. (My
program for n = 5 used a too-slow method; here I speed up by a factor of n!, I hope.)

I wrote this in a terrific hurry—sorry. The strategy is outlined in the next section below.

#define n 5
#define nn (1� n)
#define nfactorial 120
#define final level nn /∗ the first element that is never in a solution ∗/
#define verbose (n < 5)
#define log LOG /∗ get around bug in clang ∗/
#define logl LOGL /∗ ditto ∗/
#include <stdio.h>

〈Preprocessor definitions 〉
char f [nn];
unsigned char perm [nfactorial][nn], iperm [nfactorial][nn]; /∗ perms and inverses ∗/
int link [nfactorial]; /∗ links in the lists of permutations ∗/
int wait [nn]; /∗ heads of those lists ∗/
int disc [nn]; /∗ permutations discarded at each level ∗/
int log0 [nn], logl [nn]; /∗ where we began shuffling perms at each level ∗/
int log [nfactorial ∗ nn ∗ 2];
int logptr ; /∗ current position in log table ∗/
int forced [nn]; /∗ is this entry forced to be zero? ∗/
int forcings [nfactorial]; /∗ how many cases has this perm forced? ∗/
unsigned int sols , tsols ;

〈Subroutines 16 〉
main ()
{

register int d, j, k, l, m, p, q, t, auts ;

〈Make the permutation tables 3 〉;
〈Put all permutations into wait [0] 4 〉;
〈Find all the solutions 2* 〉;
printf ("Altogether %d solutions (reduced from %d).\n", sols + 1, tsols + 1);
}

https://cs.stanford.edu/~knuth/programs.html

2 INTRO KROM-COUNT §2

2*. 〈Find all the solutions 2* 〉 ≡
l = logptr = 0;
auts = nfactorial ;

newlevel : if (l ≡ final level) goto backtrack ;
logl [l] = logptr ;
if (verbose) {

printf ("Entering level %x (%d auts so far)\n", l, auts);
}
if (forced [l]) {

if (verbose) printf (" forced rejection of %x\n", l);
goto reject ;
}
〈Reject l if it violates closure 5* 〉;
〈Go through wait [l], trying to move it to wait [0]; but reject l if there’s a conflict 9 〉;
f [l] = 1;
if (verbose) printf (" accepting %x\n", l);
〈Update wait [0] and count the automorphisms 10 〉〈Record a solution 6* 〉;

nogood : l++;
goto newlevel ;

undo : 〈Downdate wait [0] 13 〉;
〈Reconstruct wait [l] 11 〉;

reject : f [l] = 0;
〈Check for new forced moves 14 〉;
l++;
goto newlevel ;

backtrack : while (l > 0) {
l−−;
if (f [l] ≡ 1) {

if (verbose) printf (" now rejecting %x\n", l);
goto undo ;

}
else 〈Uncheck for new forced moves 15 〉;
}
for (p = 1; p < nfactorial ; p++)

if (forcings [p]) printf ("error: forcings[%d] not restored to zero!\n", p);
for (k = 1; k < nn ; k++)

if (forced [k]) printf ("error: forced[%x] not restored to zero!\n", k);

This code is used in section 1*.

§3 KROM-COUNT INTRO 3

3. Algorithm 7.2.1.2T.

〈Make the permutation tables 3 〉 ≡
d = nfactorial � 1, perm [d][0] = 1;
for (m = 2; m < n;) {
m++, d = d/m;
for (k = 0; k < nfactorial ;) {

for (k += d, j = m− 1; j > 0; k += d, j−−) perm [k][0] = j;
perm [k][0]++, k += d;
for (j++; j < m; k += d, j++) perm [k][0] = j;

}
}
for (j = 0; j < nn ; j++) perm [0][j] = j;
for (k = 1; k < nfactorial ; k++) {
m = 1� (perm [k][0]− 1);
for (j = 0; j < nn ; j++) {
d = perm [k − 1][j];
d ⊕= d� 1;
d &= m;
d |= d� 1;
perm [k][j] = perm [k − 1][j]⊕ d;

}
}
for (p = 0; p < nfactorial ; p++)

for (k = 0; k < nn ; k++) iperm [p][perm [p][k]] = k;

This code is used in section 1*.

4. 〈Put all permutations into wait [0] 4 〉 ≡
for (p = 1; p < nfactorial ; p++) link [p] = wait [0],wait [0] = p;

This code is used in section 1*.

5*. 〈Reject l if it violates closure 5* 〉 ≡
for (j = 1; j < l; j++)

if (f [j])
for (d = 0; d < j; d++)

if (f [d]) {
t = (d & j) | (d & l) | (j & l);
if (t < l ∧ ¬f [t]) {

if (verbose) printf (" rejecting %x for median\n", l);
goto reject ;

}
} /∗ maybe the median was bigger than l; then I can’t reject yet ∗/

This code is used in section 2*.

4 INTRO KROM-COUNT §6

6*. 〈Record a solution 6* 〉 ≡
{

for (k = 2; k ≤ l; k++)
if (f [k])

for (j = 1; j < k; j++)
if (f [j])

for (d = 0; d < j; d++)
if (f [d] ∧ ¬f [(d & j) | (d & k) | (j & k)]) goto nogood ;

sols ++;
tsols += nfactorial /auts ;
if (n < 6) {

printf ("%d:", sols);
for (j = 0; j < nn ; j++)

if (f [j]) printf (" %x", j);
printf (" (%d aut%s)\n", auts , auts > 1 ? "s" : "");

}
}

This code is used in section 2*.

§7 KROM-COUNT THE INTERESTING PART 5

7. The interesting part. When writing this program, I didn’t have to work nearly as hard as I did
in GROPESX (a program for algebraic structures that I wrote a few months ago). But still there are a few
nontrivial points of interest as the permutations get shuffled from list to list.

In fact, I tried to get away with a more substantial simplification. It failed miserably.
In actual fact, I was tearing my hair out for awhile, because I couldn’t believe that this would be so

complicated. Maybe some day I’ll learn the right way to tackle this problem.

8. The basic idea is simple: Each closure operation corresponds to a sequence (f [0], . . . , f [nn − 2]) with
the property that f [j] = f [k] = 1 implies f [j & k] = 1. This program produces only canonical solutions,
namely solutions with the property that (f [0], . . . , f [nn − 1]) is lexicographically greater than or equal to
(f [p0], . . . , f [pnn−1]) for all perms p. (These perms are permutations of the bits; for example, if p1 = 2 and
p2 = 4 then p3 = 6.)

At level l, I’ve set the values of (f [0], . . . , f [l − 1]). All perms live in various lists: If (f [0], . . . , f [l − 1])
is known to be lexicographically greater than (f [p0], . . . , f [pl−1]), the perm p is in a discard list; otherwise
p is in a waiting list. List wait [0] has all the current automorphisms: These perms permute the current 1s
{j | 0 ≤ j < l and f [j] = 1}. Furthermore, for all subscripts k < l such that f [k] = 0 and pk > l, the
future values pk are marked so as to force f [pk] = 0. Finally, the waiting lists wait [k] for l ≤ k < nn contain
elements j < l such that f [j] = 1 and pj = k and f [i] = f [pi] for 0 ≤ i < j. When level k comes along, such
perms will effectively be discarded if f [k] is set to 0; but if f [k] is set to 1, they will move to other lists.

The forcings were what caused me grief. I didn’t want to have an elaborate data structure that showed
exactly who was forcing whom, because that was very difficult to maintain under backtracking. The solution
I found, shown below, is not terrifically easy, but it certainly is better than anything else I could think of.
Basically forcings [p] counts the number of places where p has forced a future value k; and forced [k] counts
the number of perms that have forced that value. These counts can, fortunately, be maintained by doing
local operations, as we see for how many levels each perm remains relevant.

6 THE INTERESTING PART KROM-COUNT §9

9. Okay, now let me write the most critical part of the program. At this point in the computation we are
planning to set f [l] = 1. But we may have to abandon that plan, if “immediate rejection” would result.
(Immediate rejection occurs when setting f [l] = 1 unhides a lexicographically superior solution.)

The log table records what we do here, so that it can be undone later. Entries on the log are of two
kinds: A negative entry stands for a permutation that was “discarded” because it is no longer active. A
nonnegative entry k stands for a permutation that moved to wait [k]. In either case, entry log [t] identifies
the destination of a permutation that came from wait [0] if t ≥ log0 [l], otherwise from wait [l].

〈Go through wait [l], trying to move it to wait [0]; but reject l if there’s a conflict 9 〉 ≡
for (p = wait [l],wait [l] = 0; p; p = q) {
q = link [p];
for (k = iperm [p][l] + 1; k < l; k++) {

if (f [k] ≡ 0 ∧ iperm [p][k] < iperm [p][l]) forcings [p]−−;
j = perm [p][k];
if (j < l) {

if (f [j] ≡ f [k]) continue;
if (f [k] ≡ 0) 〈Reject l immediately 12 〉;
log [logptr ++] = −j, link [p] = disc [l], disc [l] = p; /∗ discard p ∗/
goto nextp ;

} else if (f [k] ≡ 1) {
log [logptr ++] = j, link [p] = wait [j],wait [j] = p;
for (j = k − 1; j > iperm [p][l]; j−−)

if (f [j] ≡ 0 ∧ perm [p][j] > k ∧ perm [p][j] < l) forcings [p]++;
goto nextp ;

} else {
if (verbose) printf (" f[%x]=1 will force f[%x]=0\n", j);
forcings [p]++, forced [j]++;

}
}
log [logptr ++] = 0, link [p] = wait [0],wait [0] = p;

nextp : continue;
}

This code is used in section 2*.

10. After we’ve made it through wait [l], we are able to set f [l] = 1. The items of wait [0] might now be
automorphisms, or they might need to be moved to other waiting lists.

〈Update wait [0] and count the automorphisms 10 〉 ≡
log0 [l] = logptr ;
for (auts = 1, p = wait [0],wait [0] = 0; p; p = q) {
q = link [p];
j = perm [p][l];
if (j ≡ l) goto retain it ;
else if (j > l) log [logptr ++] = j, link [p] = wait [j],wait [j] = p;
else if (f [j] ≡ 0) log [logptr ++] = −1, link [p] = disc [l], disc [l] = p;
else goto retain it ;
continue;

retain it : log [logptr ++] = 0, link [p] = wait [0],wait [0] = p;
auts ++;
}

This code is used in section 2*.

§11 KROM-COUNT THE INTERESTING PART 7

11. Here I’ve made a point to “undo” in precisely the reverse order of what I “did,” so that lists are
perfectly restored to their former condition.

The label kludge is one of my trademarks, I guess: It’s a place in the middle of nested loops, which just
happens to be the place we want to jump when doing an immediate rejection.

〈Reconstruct wait [l] 11 〉 ≡
t = 0;
while (logptr > logl [l]) {
j = log [−−logptr];
if (j < 0) {

p = disc [l], disc [l] = link [p], k = iperm [p][−j];
if (f [k] ≡ 0 ∧ iperm [p][k] < iperm [p][l]) forcings [p]++;

} else if (j > 0) {
p = wait [j],wait [j] = link [p], k = iperm [p][j];
for (j = k − 1; j > iperm [p][l]; j−−)

if (f [j] ≡ 0 ∧ perm [p][j] > k ∧ perm [p][j] < l) forcings [p]−−;
} else p = wait [0],wait [0] = link [p], k = l;
link [p] = t, t = p, k−−;
while (k > iperm [p][l]) {
j = perm [p][k];
if (j > l ∧ f [k] ≡ 0) forcings [p]−−, forced [j]−−;

kludge : if (f [k] ≡ 0 ∧ iperm [p][k] < iperm [p][l]) forcings [p]++;
k−−;

}
}
wait [l] = t; /∗ I think it’s “all together now” ∗/

This code is used in section 2*.

12. 〈Reject l immediately 12 〉 ≡
{
t = p;
goto kludge ;
}

This code is used in section 9.

13. 〈Downdate wait [0] 13 〉 ≡
t = 0;
while (logptr > log0 [l]) {
j = log [−−logptr];
if (j < 0) p = disc [l], disc [l] = link [p];
else p = wait [j],wait [j] = link [p];
link [p] = t, t = p;
}
wait [0] = t;

This code is used in section 2*.

8 THE INTERESTING PART KROM-COUNT §14

14. 〈Check for new forced moves 14 〉 ≡
for (auts = 1, p = wait [0]; p; p = link [p]) {
j = perm [p][l];
if (j > l) {

if (verbose) printf (" forcing f[%x]=0\n", j);
forcings [p]++, forced [j]++;

}
if (iperm [p][l] < l) forcings [p]−−;
if (verbose) auts ++;
}

This code is used in section 2*.

15. 〈Uncheck for new forced moves 15 〉 ≡
for (p = wait [0]; p; p = link [p]) {
j = perm [p][l];
if (j > l) {

forcings [p]−−, forced [j]−−;
}
if (iperm [p][l] < l) forcings [p]++;
}

This code is used in section 2*.

16. Finally, here’s a routine that documents the main invariant relations that I expect to be true when this
program enters level l. (The sanity routine sure did prove to be useful when I was debugging the twisted
logic above.)

〈Subroutines 16 〉 ≡
int timestamp ;
int stamp [nfactorial];

void sanity (int l)
{

register c, j, jj , k, p;

if (l ≡ 0) return;
timestamp ++;
〈Sanity check the wait lists 17 〉;
〈Sanity check the discard lists 18 〉;
〈Sanity check wait [0] 19 〉;
for (p = 1; p < nfactorial ; p++)

if (stamp [p] 6= timestamp) {
printf ("error: perm %d has disappeared!\n", p);
goto error exit ;

}
return;

error exit : printf ("(Detected at level %x)\n", l); return;
}

This code is used in section 1*.

§17 KROM-COUNT THE INTERESTING PART 9

17. 〈Sanity check the wait lists 17 〉 ≡
for (k = l; k < nn ; k++)

for (p = wait [k]; p; p = link [p]) {
stamp [p] = timestamp ;
jj = iperm [p][k];
if (f [jj] 6= 1) {

printf ("error: wait[%x] contains noncritical perm %d!\n", k, p);
goto error exit ;

}
for (j = c = 0; ; j++) {

if (perm [p][j] > jj) {
if (f [j] ≡ 0) c++;
else if (perm [p][j] ≡ k) break;
} else if (f [j] 6= f [perm [p][j]]) {

printf ("error: perm %d on wait[%x] contains early mismatch f[%x]!=f[%x]!\n", p, k, j,
perm [p][j]);

goto error exit ;
}

}
if (c 6= forcings [p]) {

printf ("error: forcings[%d] is %d, not %d, in wait[%x]!\n", p, forcings [p], c, k);
goto error exit ;

}
}

This code is used in section 16.

10 THE INTERESTING PART KROM-COUNT §18

18. The wait lists wait [k] for 1 ≤ k < l are essentially discards too, because we’ve set f [k] = 0.
I don’t check the forcings count in disc [k], because the perms in such lists don’t satisfy the same invariants

as other perms.

〈Sanity check the discard lists 18 〉 ≡
for (k = 1; k < l; k++) {

for (p = disc [k]; p; p = link [p]) {
stamp [p] = timestamp ;
for (jj = 0; jj < l; jj ++)

if (f [jj] 6= f [perm [p][jj]]) break;
if (jj ≡ l) {

printf ("error: disc[%x] contains the nondiscardable perm %d!\n", k, p);
goto error exit ;

}
if (f [jj] ≡ 0) {

printf ("error: disc[%x] contains the counterexample perm %d!\n", k, p);
goto error exit ;

}
}
for (p = wait [k]; p; p = link [p]) {

stamp [p] = timestamp ;
for (jj = 0; jj < l; jj ++)

if (f [jj] 6= f [perm [p][jj]]) break;
if (jj ≡ l) {

printf ("error: wait[%x] contains the nondiscardable perm %d!\n", k, p);
goto error exit ;

}
if (f [jj] ≡ 0) {

printf ("error: wait[%x] contains the counterexample perm %d!\n", k, p);
goto error exit ;

}
for (j = c = 0; j < jj ; j++)

if (perm [p][j] > jj ∧ f [j] ≡ 0) c++;
if (c 6= forcings [p]) {

printf ("error: forcings[%d] is %d, not %d, in wait[%x]!\n", p, forcings [p], c, k);
goto error exit ;

}
}
}

This code is used in section 16.

§19 KROM-COUNT THE INTERESTING PART 11

19. 〈Sanity check wait [0] 19 〉 ≡
for (p = wait [0]; p; p = link [p]) {

stamp [p] = timestamp ;
for (c = j = 0; j < l; j++) {

if (f [j] 6= f [perm [p][j]]) {
if (f [j] ≡ 0) {

printf ("error: wait[0] contains the counterexample perm %d!\n", k, p);
goto error exit ;
}
printf ("error: wait[0] contains the discardable perm %d!\n", k, p);

}
if (perm [p][j] ≥ l) c++;

}
if (c 6= forcings [p]) {

printf ("error: forcings[%d] is %d, not %d, in wait[0]!\n", p, forcings [p], c);
goto error exit ;

}
}

This code is used in section 16.

12 INDEX KROM-COUNT §20

20*. Index.

The following sections were changed by the change file: 1, 2, 5, 6, 20.

auts : 1*, 2*, 6*, 10, 14.
backtrack : 2*.
c: 16.
d: 1*.
disc : 1*, 9, 10, 11, 13, 18.
error exit : 16, 17, 18, 19.
f : 1*.
final level : 1*, 2*.
forced : 1*, 2*, 8, 9, 11, 14, 15.
forcings : 1*, 2*, 8, 9, 11, 14, 15, 17, 18, 19.
iperm : 1*, 3, 9, 11, 14, 15, 17.
j: 1*, 16.
jj : 16, 17, 18.
k: 1*, 16.
kludge : 11, 12.
l: 1*, 16.
link : 1*, 4, 9, 10, 11, 13, 14, 15, 17, 18, 19.
LOG: 1*.
log : 1*, 9, 10, 11, 13.
logl : 1*, 2*, 11.
LOGL: 1*.
logptr : 1*, 2*, 9, 10, 11, 13.
log0 : 1*, 9, 10, 13.
m: 1*.
main : 1*.
n: 1*.
newlevel : 2*.
nextp : 9.
nfactorial : 1*, 2*, 3, 4, 6*, 16.
nn : 1*, 2*, 3, 6*, 8, 17.
nogood : 2*, 6*.
p: 1*, 16.
perm : 1*, 3, 9, 10, 11, 14, 15, 17, 18, 19.
printf : 1*, 2*, 5*, 6*, 9, 14, 16, 17, 18, 19.
q: 1*.
reject : 2*, 5*.
retain it : 10.
sanity : 16.
sols : 1*, 6*.
stamp : 16, 17, 18, 19.
t: 1*.
timestamp : 16, 17, 18, 19.
tsols : 1*, 6*.
undo : 2*.
verbose : 1*, 2*, 5*, 9, 14.
wait : 1*, 4, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19.

KROM-COUNT NAMES OF THE SECTIONS 13

〈Check for new forced moves 14 〉 Used in section 2*.

〈Downdate wait [0] 13 〉 Used in section 2*.

〈Find all the solutions 2* 〉 Used in section 1*.

〈Go through wait [l], trying to move it to wait [0]; but reject l if there’s a conflict 9 〉 Used in section 2*.

〈Make the permutation tables 3 〉 Used in section 1*.

〈Put all permutations into wait [0] 4 〉 Used in section 1*.

〈Reconstruct wait [l] 11 〉 Used in section 2*.

〈Record a solution 6* 〉 Used in section 2*.

〈Reject l if it violates closure 5* 〉 Used in section 2*.

〈Reject l immediately 12 〉 Used in section 9.

〈Sanity check the discard lists 18 〉 Used in section 16.

〈Sanity check the wait lists 17 〉 Used in section 16.

〈Sanity check wait [0] 19 〉 Used in section 16.

〈Subroutines 16 〉 Used in section 1*.

〈Uncheck for new forced moves 15 〉 Used in section 2*.

〈Update wait [0] and count the automorphisms 10 〉 Used in section 2*.

KROM-COUNT

Section Page
Intro . 1 1
The interesting part . 7 5
Index . 20 12

	Intro
	The interesting part
	Index
	Names of the sections
	Check for new forced moves
	Downdate wait[0]
	Find all the solutions
	Go through wait[l], trying to move it to wait[0]; but reject l if there's a conflict
	Make the permutation tables
	Put all permutations into wait[0]
	Reconstruct wait[l]
	Record a solution
	Reject l if it violates closure
	Reject l immediately
	Sanity check the discard lists
	Sanity check the wait lists
	Sanity check wait[0]
	Subroutines
	Uncheck for new forced moves
	Update wait[0] and count the automorphisms

