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(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program contains two implementations of the Koda–Ruskey algorithm for generating
all ideals of a given forest poset [Journal of Algorithms 15 (1993), 324–340]. The common goal of both
implementations is, in essence, to generate all binary strings b0 . . . bn−1 in which certain bits are required
to be less than or equal to specified bits that lie to their right. (For some values of j there is a value of
k > j such that we don’t allow bk to be 0 when bj = 1.) Moreover, each binary string should differ from its
predecessor in exactly one bit position; the algorithm therefore defines a generalized reflected Gray code.

The given forest is represented by n pairs of nested parentheses. For example, ()()()()() represents five
independent bits, while ((((())))) represents five bits with b0 ≤ b1 ≤ b2 ≤ b3 ≤ b4. A more interesting
example, ((())(()())), represents six bits subject to the conditions b0 ≤ b1, b1 ≤ b5, b2 ≤ b4, b3 ≤ b4,
b4 ≤ b5. Each pair of parentheses corresponds to a bit that must not exceed the bit of its enclosing pair, if
any, and the pairs are ordered by the appearances of their right parentheses.

The first implementation uses n coroutines, which call each other in a hierarchical fashion. The second uses
multilinked data structures in a loopless way, so that each generation step performs a bounded number of
operations to obtain the next element. I couldn’t resist writing this program, because both implementations
turn out to be quite interesting and instructive.

Indeed, I think it’s a worthwhile challenge for people who study the science of computer programming to
verify that these two implementations both define the same sequence of bitstrings. Even more challenging
would be to derive the second implementation “automatically” from the first.

#include <stdio.h>

〈Type definitions 4 〉
〈Global variables 3 〉
int main (int argc , char ∗argv [ ])
{

register int j, k, l;

〈Process the command line, parsing the given forest 2 〉;
printf ("Bitstrings generated from \"%s\":\n", argv [1]);
〈Generate the strings with a coroutine implementation 9 〉;
printf ("\nTrying again, looplessly:\n");
〈Generate the strings with a loopless implementation 15 〉;
return 0;
}
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2. In this step we parse the forest into an array of “scopes”: scope [j] is the index of the smallest descendant
of node j, including node j itself.

#define abort (m, i)
{ fprintf (stderr ,m, argv [i]); return −1; }

#define stacksize 100 /∗ max levels in the forest ∗/
#define forestsize 100 /∗ max nodes in the forest ∗/
〈Process the command line, parsing the given forest 2 〉 ≡

if (argc 6= 2 ∨ argv [1][0] 6= ’(’) abort ("Usage: %s \"nestedparens\"\n", 0);
for (j = k = l = 0; argv [1][k]; k++)

if (argv [1][k] ≡ ’(’) {
stack [l++] = j;
if (l ≡ stacksize ) abort ("Stack overflow −−− \"%s\" is too deep for me!\n", 1);

} else if (argv [1][k] ≡ ’)’) {
if (−−l < 0) abort ("Extra right parenthesis in \"%s\"!\n", 1);
scope [j++] = stack [l];
if (j ≡ forestsize ) abort ("Memory overflow −−− \"%s\" is too big!\n", 1);

} else abort ("The forest spec \"%s\" should contain only parentheses!\n", 1);
if (l) abort ("Missing right parenthesis in \"%s\"!\n", 1);
nn = j;

This code is used in section 1.

3. 〈Global variables 3 〉 ≡
int stack [stacksize ]; /∗ nodes preceding each open leftparen, while parsing ∗/
int scope [forestsize ]; /∗ table that exhibits each rightparen’s influence ∗/
int nn ; /∗ the actual number of nodes in the forest ∗/

See also sections 11 and 17.

This code is used in section 1.
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4. The coroutine implementation. Our first implementation uses a system of n cooperating programs,
each of which represents a node in the forest. For convenience we will call the associated record a “cnode.”
If p points to a cnode, p~child points to the cnode representing its rightmost child, and p~sib points to the
cnode representing its nearest sibling on the left, in the given forest.

Each cnode corresponds to a coroutine whose job is to generate all the ideals of the subforest it represents.
Whenever the coroutine is invoked, it either changes one of the bits in its scope and returns true , or it changes
nothing and returns false . Initially all the bits are 0; when it first returns false , it will have generated all
legitimate bit patterns, ending with some nonzero pattern. Subsequently it will generate the patterns again
in reverse order, ending with all 0s, after which it will return false a second time. Invoking it again and
again will repeat the same process, going forwards and backwards, ad infinitum.

Each coroutine has the same basic structure, which can be described as follows in an ad hoc extension of
C language:

coroutine p( )
{

while (1) {
p~bit = 1; return true ;
while (p~child ( )) return true ;

return p~sib( );
while (p~child ( )) return true ;
p~bit = 0; return true ;
return p~sib( );
}

}

If either p~child or p~sib is Λ, the corresponding coroutine Λ( ) is assumed to simply return false .
Suppose p~child ( ) first returns false after it has been called r times; thus p~child ( ) generates r different

patterns, including the initial pattern of all 0s. Similarly, suppose that p~sib( ) generates l different patterns
before first returning false . Then the coroutine p( ) itself will generate l(r+ 1) patterns in between the times
when it returns false . The final bit pattern for p will be the final bit pattern for p~sib , together with either
p~bit = 1 and the final bit pattern of p~child (if l is odd) or with p~bit = 0 and all 0s in p~child (if l is even).

〈Type definitions 4 〉 ≡
typedef enum {
false , true
} boolean;

typedef struct cnode struct {
char bit ; /∗ either 0 or 1; always 1 when a child’s bit is set ∗/
char state ; /∗ the current place in this cnode’s coroutine ∗/
struct cnode struct ∗child ; /∗ rightmost child in the given forest ∗/
struct cnode struct ∗sib ; /∗ nearest left sibling in the given forest ∗/
struct cnode struct ∗caller ; /∗ which coroutine invoked this one ∗/
} cnode;

See also section 14.

This code is used in section 1.
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5. When coroutine p calls coroutine q, it sets p~state to an appropriate number and also sets q~caller = p.
Then control passes to q at the place determined by q~state .

When coroutine q wants to return a boolean value, it sets coresult to this value; then it passes control to
p = q~caller at the place determined by p~state .

This program simulates coroutine linkage with a big switch statement. Actually the notion of “passing
control” really means that we simply assign a value to the variable cur cnode .

The value of q~caller for every cnode q is completely determined by the structure of the given forest, so
we could set it once and for all during the initialization instead of setting it dynamically as done here. But
what the heck.

#define cocall (q, s)
{ cur cnode~state = s;

if (q) q~caller = cur cnode , cur cnode = q;
else coresult = false ;
goto cogo ; }

#define bitchange (b, s)
{ cur cnode~bit = b, coresult = true ; coreturn (s); }

#define coreturn (s)
{ cur cnode~state = s, cur cnode = cur cnode~caller ;

goto cogo ; }
〈Repeatedly switch to the proper part of the current coroutine 5 〉 ≡
cogo : switch (cur cnode~state ) {
〈Cases for coroutine states 6 〉;

default: abort ("%s: Unknown state code (this can’t happen)!\n", 0);
}

This code is used in section 9.

6. In its initial state 0, a coroutine turns its bit on, returns true , and enters state 1.

〈Cases for coroutine states 6 〉 ≡
case 0: bitchange (1, 1);

See also sections 7, 8, and 12.

This code is used in section 5.

7. The purpose of state 1 is to run through all bit patterns of the current node’s children, starting with all
0s and ending when they reach their final pattern. At that point we invoke the current node’s nearest left
sibling and enter state 3. An intermediate state 2 is defined for the purpose of examining the result after
calling the child coroutine.

The purpose of state 3 is simply to return to whoever called us, passing along the information in coresult ,
which tells whether any of our left siblings has changed one of its bits. Then we will continue in state 4.

〈Cases for coroutine states 6 〉 +≡
case 1: cocall (cur cnode~child , 2);
case 2: if (coresult ) coreturn (1);
cocall (cur cnode~sib , 3);

case 3: coreturn (4);
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8. State 4 is rather like state 1, except that the child coroutine is now running through its bit patterns in
reverse order. Finally it reduces them all to 0s, and returns false the next time we attempt to invoke it. At
that point we reset the current bit, return true , and enter state 6.

State 6 invokes the sibling coroutine, leading to state 7. And state 7 is like state 3, but it takes us back
to state 0 instead of state 4.

〈Cases for coroutine states 6 〉 +≡
case 4: cocall (cur cnode~child , 5);
case 5: if (coresult ) coreturn (4);
bitchange (0, 6);

case 6: cocall (cur cnode~sib , 7);
case 7: coreturn (0);

9. Hey, the implementation is done already, except that we have to get it started and write the code that
controls it at the outermost level.

〈Generate the strings with a coroutine implementation 9 〉 ≡
{

register cnode ∗cur cnode ;

〈 Initialize the cnode structure 10 〉;
〈Repeatedly switch to the proper part of the current coroutine 5 〉;
}

This code is used in section 1.

10. We allocate a special cnode to represent the external world outside of the given forest.

#define root cnode cnode table [nn ].child

〈 Initialize the cnode structure 10 〉 ≡
scope [nn ] = 0;
for (k = 0; k ≤ nn ; k++)

if (scope [k] < k) {
cnode table [k].child = cnode table + k − 1;
for (j = k− 1; scope [j] > scope [k]; j = scope [j]− 1) cnode table [j].sib = cnode table + scope [j]− 1;

}
cur cnode = cnode table + nn ;
goto upward step ;

This code is used in section 9.

11. 〈Global variables 3 〉 +≡
cnode cnode table [forestsize + 1]; /∗ the cnodes ∗/
boolean coresult ; /∗ value returned by a coroutine ∗/
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12. States 8 and greater are reserved for the external (outermost) level, which simply invokes the coroutine
for the entire forest and prints out the results, until the bit patterns have been generated in both the forward
and reverse directions.

〈Cases for coroutine states 6 〉 +≡
case 8: if (coresult ) {

upward step : 〈Print out all the current cnode bits 13 〉;
cocall (root cnode , 8);
}
printf ("... and now we generate them in reverse:\n");
goto downward step ;

case 9: if (coresult ) {
downward step : 〈Print out all the current cnode bits 13 〉;
cocall (root cnode , 9);
}
break;

13. 〈Print out all the current cnode bits 13 〉 ≡
for (k = 0; k < nn ; k++) putchar (’0’ + cnode table [k].bit );
putchar (’\n’);

This code is used in section 12.
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14. The loopless implementation. Our coroutine implementation solves the generation problem in
a nice and natural fashion, but it can be inefficient if the given forest has numerous nodes of degree one.
For example, a one-tree forest like ((...()...)) with n pairs of parentheses will need approximately

(
n
2

)
coroutine invocations to generate n + 1 bitstrings.

Our second implementation reduces the work in such cases to O(n); in fact, it needs only a bounded number
of operations to generate each bitstring after the first. It does, however, need a slightly more complex data
structure with four link fields.

The basic idea is to work with a dynamically varying list of nodes called the current fringe of the forest.
The fringe consists of all node whose bit is 1, together with their children. We maintain it as a doubly linked
list, so that p~ left and p~right are the neighbors of p on the left and right. A special node head is provided
to make the list circular; thus head~right and head~ left are the leftmost and rightmost fringe nodes.

A fringe node is said to be said to be either active or passive. Every node is active when it joins the
fringe, but it becomes passive for at least a short time when its bit changes value; at such times the node
is essentially shifting direction between going forward or backward, as in the coroutine implementation. (A
passive node corresponds roughly to a coroutine that is asking its siblings to make the next move.) We save
time jumping across such call-chains by using a special link field called the focus : If p is a passive fringe
node whose righthand neighbor p~right is active, p~ focus is the rightmost active node to the left of p in the
fringe; otherwise p~ focus = p. (The special head node is always considered to be active, for purposes of this
definition, but it is not strictly speaking a member of the fringe.)

The loopless implementation works with records called lnodes, just as the coroutine implementation worked
with cnodes. Besides the dynamic bit and left and right and focus fields already mentioned, each lnode also
has a static field called lchild , representing its leftmost child. (There is no need for an rchild field, since
p~rchild = p− 1 when p~ lchild 6= Λ.)

If p is not in the fringe, p~ focus should equal p. Also, p~ left and p~right are assumed to equal the nearest
siblings of p to the left and right, respectively, if such siblings exist; otherwise p~ left and/or p~right are
undefined.

〈Type definitions 4 〉 +≡
typedef struct lnode struct {

char bit ; /∗ either 0 or 1; always 1 when a child’s bit is set ∗/
struct lnode struct ∗left , ∗right ; /∗ neighbors in the forest and/or fringe ∗/
struct lnode struct ∗lchild ; /∗ leftmost child ∗/
struct lnode struct ∗focus ; /∗ red-tape cutter for efficiency ∗/
} lnode;



8 THE LOOPLESS IMPLEMENTATION KODA-RUSKEY §15

15. Here now is the basic outline of the loopless implementation:

〈Generate the strings with a loopless implementation 15 〉 ≡
{

register lnode ∗p, ∗q, ∗r;

〈 Initialize the lnode structure, putting all roots into the fringe 16 〉;
while (1) {
〈Print out all the current lnode bits 22 〉;
〈Set p to the rightmost active node of the fringe, and activate everything to its right 18 〉;
if (p 6= head ) {

if (p~bit ≡ 0) {
p~bit = 1; /∗ moving forward ∗/
〈 Insert the children of p after p in the fringe 19 〉;
} else {
p~bit = 0; /∗ moving backward ∗/
〈Delete the children of p from the fringe 20 〉;
}

} else if (been there and done that ) break;
else {
printf ("... and now we generate them in reverse:\n");
been there and done that = true ; continue;

}
〈Make node p passive 21 〉;

}
}

This code is used in section 1.

16. Initialization of the lnodes is similar to initialization of the cnodes, but more links need to be set up.

#define head (lnode table + nn )

〈 Initialize the lnode structure, putting all roots into the fringe 16 〉 ≡
for (k = 0; k ≤ nn ; k++) {
lnode table [k].focus = lnode table + k;
if (scope [k] < k) {

for (j = k − 1; scope [j] > scope [k]; j = scope [j]− 1) {
lnode table [j].left = lnode table + scope [j]− 1;
lnode table [scope [j]− 1].right = lnode table + j;

}
lnode table [k].lchild = lnode table + j;

}
}
head~ left = head − 1, (head − 1)~right = head ;
head~right = head~ lchild , head~ lchild~ left = head ;

This code is used in section 15.

17. 〈Global variables 3 〉 +≡
lnode lnode table [forestsize + 1]; /∗ the lnodes ∗/
boolean been there and done that ;
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18. 〈Set p to the rightmost active node of the fringe, and activate everything to its right 18 〉 ≡
q = head~ left ;
p = q~ focus ;
q~ focus = q;

This code is used in section 15.

19. 〈 Insert the children of p after p in the fringe 19 〉 ≡
if (p~ lchild ) {
q = p~right ;
q~ left = p− 1, (p− 1)~right = q;
p~right = p~ lchild , p~ lchild~ left = p;
}

This code is used in section 15.

20. 〈Delete the children of p from the fringe 20 〉 ≡
if (p~ lchild ) {
q = (p− 1)~right ;
p~right = q, q~ left = p;
}

This code is used in section 15.

21. At this point we know that p~right is active.

〈Make node p passive 21 〉 ≡
p~ focus = p~ left~ focus ;
p~ left~ focus = p~ left ;

This code is used in section 15.

22. 〈Print out all the current lnode bits 22 〉 ≡
for (k = 0; k < nn ; k++) putchar (’0’ + lnode table [k].bit );
putchar (’\n’);

This code is used in section 15.

23. I used the following code when debugging.

#define rel (f) (lnode table [k].f ? lnode table [k].f − lnode table : −1)

〈Print out the whole lnode structure 23 〉 ≡
for (k = 0; k ≤ nn ; k++) {
printf ("lnode %d: bit=%d, ", k, lnode table [k].bit );
printf ("focus=%d, left=%d, right=%d, lchild=%d\n", rel (focus ), rel (left ), rel (right ), rel (lchild ));
}
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24. Index.

abort : 2, 5.
argc : 1, 2.
argv : 1, 2.
been there and done that : 15, 17.
bit : 4, 5, 13, 14, 15, 22, 23.
bitchange : 5, 6, 8.
boolean: 4, 11, 17.
caller : 4, 5.
child : 4, 7, 8, 10.
cnode: 4, 9, 11.
cnode struct: 4.
cnode table : 10, 11, 13.
cocall : 5, 7, 8, 12.
cogo : 5.
coresult : 5, 7, 8, 11, 12.
coreturn : 5, 7, 8.
cur cnode : 5, 7, 8, 9, 10.
downward step : 12.
false : 4, 5, 8.
focus : 14, 16, 18, 21, 23.
forestsize : 2, 3, 11, 17.
fprintf : 2.
head : 14, 15, 16, 18.
j: 1.
k: 1.
l: 1.
lchild : 14, 16, 19, 20, 23.
left : 14, 16, 18, 19, 20, 21, 23.
lnode: 14, 15, 17.
lnode struct: 14.
lnode table : 16, 17, 22, 23.
main : 1.
nn : 2, 3, 10, 13, 16, 22, 23.
p: 15.
printf : 1, 12, 15, 23.
putchar : 13, 22.
q: 15.
r: 15.
rchild : 14.
rel : 23.
right : 14, 16, 19, 20, 21, 23.
root cnode : 10, 12.
scope : 2, 3, 10, 16.
sib : 4, 7, 8, 10.
stack : 2, 3.
stacksize : 2, 3.
state : 4, 5.
stderr : 2.
true : 4, 5, 6, 8, 15.
upward step : 10, 12.
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〈Cases for coroutine states 6, 7, 8, 12 〉 Used in section 5.

〈Delete the children of p from the fringe 20 〉 Used in section 15.

〈Generate the strings with a coroutine implementation 9 〉 Used in section 1.

〈Generate the strings with a loopless implementation 15 〉 Used in section 1.

〈Global variables 3, 11, 17 〉 Used in section 1.

〈 Initialize the cnode structure 10 〉 Used in section 9.

〈 Initialize the lnode structure, putting all roots into the fringe 16 〉 Used in section 15.

〈 Insert the children of p after p in the fringe 19 〉 Used in section 15.

〈Make node p passive 21 〉 Used in section 15.

〈Print out all the current cnode bits 13 〉 Used in section 12.

〈Print out all the current lnode bits 22 〉 Used in section 15.

〈Print out the whole lnode structure 23 〉
〈Process the command line, parsing the given forest 2 〉 Used in section 1.

〈Repeatedly switch to the proper part of the current coroutine 5 〉 Used in section 9.

〈Set p to the rightmost active node of the fringe, and activate everything to its right 18 〉 Used in section 15.

〈Type definitions 4, 14 〉 Used in section 1.
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