
§1 HYPERBOLIC INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This program computes numerical coordinates so that I can experiment with some
of the fascinating patterns that arise when the hyperbolic plane is tiled with 36◦-45◦-90◦ triangles. Such a
tiling is unique, but it can be viewed in many different ways.
Maurice Margenstern discovered a beautiful way to assign numbers to the vertices, based on Fibonacci

representations; his method is discussed in §6 of the paper “A universal cellular automaton in the hyperbolic
plane,” by Francine Herrmann and Maurice Margenstern, Theoretical Computer Science 296 (2003), 327–
364. I want to play with those ideas further, and for this purpose I need to make special kinds of graph
paper.
I’m writing this program for fun and experience. So I’m using basic brute force, together with data

structures that ought to help me gain both a local and global understanding of the tiling.

#define maxn 300 /∗ this many triangles will be computed ∗/
/∗ in this implementation I assume that 3 ∗maxn < 1024 ∗/

#define hprime 1009 /∗ a prime number, should be at least 2 ∗maxn ∗/
#include <stdio.h>

#include <math.h>

⟨Type definitions 2 ⟩
⟨Global variables 6 ⟩
⟨ Subroutines 3 ⟩
main ( )
{
register int a, b, c, j, k, t;
register double phi ;

⟨ Set up triangle 0 11 ⟩;
for (k = 0; tptr < maxn ; k++) ⟨Compute the neighbors of triangle k 13 ⟩;

}

https://cs.stanford.edu/~knuth/programs.html
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2. Hyperbolic data structures. I think the most convenient way to deal with the hyperbolic plane is
to consider its points to be those of the Euclidean upper half plane, namely the points (x, y) with y > 0. Its
“lines” are half-circles centered on the x-axis, namely the sets of points (c+ r cos θ, r sin θ) for some center c
and some radius r > 0, as θ runs from 0 to π. Given a point (x, y) and an angle θ between 0 and π, we can
therefore can construct a corresponding hyperbolic line with center and radius

c = x− y cot θ, r = y csc θ.

⟨Type definitions 2 ⟩ ≡
typedef struct { double x, y; } point;
typedef struct { double c, r; } circle;

See also section 7.

This code is used in section 1.

3. The unique hyperbolic line that passes through two given points (x, y) and (x′, y′) is centered at

c =
x2 + y2 − x′2 − y′
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.

(If x = x′, we have c = ∞ and the “circle” is actually a straight vertical line. But I don’t have to worry
about that case, because it won’t arise in this program.)

⟨ Subroutines 3 ⟩ ≡
circle common (point z,point zp)
{
circle t;

t.c = (z.x+ zp .x)/2.0 + ((z.y + zp .y)/2.0) ∗ ((z.y − zp .y)/(z.x− zp .x));
if (fabs (t.c) < 0.00001) t.c = 0.0;
t.r = sqrt ((z.x− t.c) ∗ (z.x− t.c) + z.y ∗ z.y);
return t;

}
See also sections 4, 5, and 8.

This code is used in section 1.
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4. The main technical operation in this program is to “reflect” a point with respect to a given hyperbolic
line. If the line has center c and radius r, the reflection of (c+s cos θ, s sin θ) is defined to be (c+t cos θ, t sin θ),
where st = r2. One can show that this mapping is an automorphism of the hyperbolic plane.
We’re interested in reflection because every triangle in the tiling being computed has three neighbors, each

of which is obtained by reflecting one of the vertices about the opposite edge. Consider, for example, the
triangle ABC shown here:
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Its neighbors A′BC, AB′C, and ABC ′ are found by reflecting A about BC, B about CA, and C about AB.
Repleated reflections will generate the whole tiling. Notice that, in this example, four triangles of the

complete tiling will surround point A, eight triangles will surround point B, and ten triangles will surround
point C. (The angles around any vertex of a tiling must sum to 360◦, even though the angles of a hyperbolic
triangle always sum to less than 180◦.)

Incidentally, I could have stored r2 instead of r in the circle nodes, because this program computes
reflections from r2. But what the heck, I prefer to work with r instead of r2 when I’m looking at this stuff.

⟨ Subroutines 3 ⟩ +≡
point reflect (point z, circle l)
{
point t;
register double alpha ;

alpha = l.r ∗ l.r/((z.x− l.c) ∗ (z.x− l.c) + z.y ∗ z.y);
t.x = l.c+ alpha ∗ (z.x− l.c);
t.y = alpha ∗ z.y;
return t;

}
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5. As our algorithm proceeds, it will repeatedly compute points and/or circles that have already been seen.
Therefore we maintain a dictionary of what we know.
At first I tried using a hash table. But that was unsatisfactory, because near-but-unequal values should

be considered equivalent. Therefore binary search trees are used in the present code.
In practice, I found that most of the equivalent values agreed to within 10−16 or so, although exact

agreement was rather rare. Only two cases had an absolute error greater than 10−11, and in those cases the
error was ≈ 1.1× 10−10.
The following routines return an index to the saved copy of a given point or circle.

#define eps 0.000001 /∗ fuzziness for comparisons ∗/
⟨ Subroutines 3 ⟩ +≡
int savepoint (point z)
{
register int p, ∗q = &pleft [0];

for (p = ∗q; p; p = ∗q) {
if (fabs (hpoint [p].x− z.x) < eps ) {

if (fabs (hpoint [p].y − z.y) < eps ) goto found ;
if (hpoint [p].y < z.y) q = &pleft [p];
else q = &pright [p];

} else if (hpoint [p].x < z.x) q = &pleft [p];
else q = &pright [p];

}
p = ++pptr ;
∗q = p;
printf ("z%d=(%.15g,%.15g)\n", p, z.x, z.y);
hpoint [p] = z;

found : return p;
}
int savecircle (circle l)
{
register int p, ∗q = &cleft [0];

for (p = ∗q; p; p = ∗q) {
if (fabs (hcircle [p].c− l.c) < eps ) {

if (fabs (hcircle [p].r − l.r) < eps ) goto found ;
if (hcircle [p].r < l.r) q = &cleft [p];
else q = &cright [p];

} else if (hcircle [p].c < l.c) q = &cleft [p];
else q = &cright [p];

}
p = ++cptr ;
∗q = p;
printf ("l%d=(%.15g,%.15g)\n", p, l.c, l.r);
hcircle [p] = l;

found : return p;
}
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6. ⟨Global variables 6 ⟩ ≡
point hpoint [3 ∗maxn ]; /∗ dictionary of known points ∗/
int pptr ; /∗ the number of known points ∗/
int pleft [3 ∗maxn ], pright [3 ∗maxn ]; /∗ links for binary tree search ∗/
circle hcircle [3 ∗maxn ]; /∗ dictionary of known hyperbolic lines ∗/
int cptr ; /∗ the number of known lines ∗/
int cleft [3 ∗maxn ], cright [3 ∗maxn ]; /∗ links for binary tree search ∗/

See also sections 9 and 10.

This code is used in section 1.

7. The main component of our data structure is the table of all triangles that we have identified so far.
Each triangle is represented by indices that point to its three vertices, its three edges, and its three neighbors.
The vertex indices are called v36 , v45 , and v90 , because each triangle has a vertex with each of the angles

(36◦, 45◦, 90◦). Edges e36 , e45 , and e90 are opposite those vertices; triangles t36 , t45 , and t90 are the
neighbors on the other side of those edges.

⟨Type definitions 2 ⟩ +≡
typedef struct {
int v36 , v45 , v90 ; /∗ where the vertices occur in hpoint ∗/
int e36 , e45 , e90 ; /∗ where the edges occur in hcircle ∗/
int t36 , t45 , t90 ; /∗ where the neighbors occur in triang ∗/

} triangle;

8. An auxiliary hash table keeps track of the triangles we’ve seen.
(I’ve imposed the restriction 3 ∗ maxn < 1024 simply because I want to pack the values (v36 , v45 , v90 )

into a single word on my old 32-bit computer.)

⟨ Subroutines 3 ⟩ +≡
int savetriangle (int v36 , int v45 , int v90 )
{
register unsigned int w = (((v36 ≪ 10) + v45 ) ≪ 10) + v90 ;
register int h = w % hprime ;

while (triple [h]) {
if (triple [h] ≡ w) goto found ;
h = (h ? h : hprime )− 1;

}
triple [h] = w, tripnum [h] = tptr ;
triang [tptr ].v36 = v36 , triang [tptr ].v45 = v45 , triang [tptr ].v90 = v90 ;
tptr ++;

found : return tripnum [h];
}

9. ⟨Global variables 6 ⟩ +≡
int triple [hprime ]; /∗ the vertex triples that we’ve seen ∗/
int tripnum [hprime ]; /∗ their serial numbers ∗/
int tptr ; /∗ the number of triangles we’ve seen ∗/
triangle triang [maxn + 3]; /∗ their details ∗/
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10. Getting started. To prime the pump, I need one 36◦-45◦-90◦ triangle to begin the process. The
simplest one that I could think of has vertices eiθ, i/r, and i in the complex plane, where

r =

√
ϕ+

√
ϕ, cos θ = 1/

√
2ϕ,

and ϕ = (1 +
√
5 )/2 is the golden ratio.

#define makepoint (v, xx , yy ) z.x = xx , z.y = yy , v = savepoint (z)
#define makecircle (v, cc , rr ) l.c = cc , l.r = rr , v = savecircle (l)

⟨Global variables 6 ⟩ +≡
point z; /∗ staging area for makepoint ∗/
circle l; /∗ staging area for makecircle ∗/

11. ⟨ Set up triangle 0 11 ⟩ ≡
phi = (1.0 + sqrt (5.0))/2.0;
makepoint (a, sqrt (0.5/phi ), sqrt (1.0− 0.5/phi ));
makepoint (b, 0.0, 1.0/sqrt (phi + sqrt (phi )));
makepoint (c, 0.0, 1.0);
⟨Compute the edges of triangle 0 12 ⟩;
savetriangle (a, b, c); /∗ now tptr will equal 1 ∗/
printf ("triangle␣0␣=␣(%d,%d,%d),", a, b, c);
printf ("␣edges␣(*,%d,%d)\n", triang [0].e45 , triang [0].e90 );

This code is used in section 1.

12. Edge e36 of the starting triangle is a vertical line from i/r to i. This is the only vertical line that we
will need in the present program. (In fact, I’ll explain shortly that the computations will be limited to the
subtiling that appears in an annulus. Then one can prove a strict upper bound on the size of the c values
that occur, even if the computation proceeds indefinitely.)
It turns out easiest to handle the exceptional vertical case by setting e36 = e45 . I do admit however that

this is a sneaky trick, hard to justify on moral grounds.

⟨Compute the edges of triangle 0 12 ⟩ ≡
makecircle (triang [0].e45 , 0.0, 1.0);
triang [0].e36 = triang [0].e45 ;
makecircle (triang [0].e90 , hpoint [b].y, sqrt (2.0) ∗ hpoint [b].y);

This code is used in section 11.
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13. The algorithm. One more important thing needs to be mentioned, before we put all the pieces
together: I don’t actually want to compute the entire tiling. I only want to compute it in the quarter-
annulus that consists of the points between circles |z| = 1 and |z| = 1/r, in the upper right quadrant of the
complex plane.
The reason is that the tiling between this annulus and the next-smaller one, |z| = 1/r2, is just the reflection

of the first tiling about the line |z| = 1/r. Then in the next annulus, we shrink the outer-annulus tiling by
a factor of 1/r2, and so on.
Indeed, this restriction of the tiling accounts for my claims that triangle 0 is the only triangle with a

vertical edge.
To implement the restriction, we simply refrain from computing the neighbor at any edge whose center c

is zero. (And that is why the sneaky trick mentioned on the previous page actually works.)

⟨Compute the neighbors of triangle k 13 ⟩ ≡
{
if (hcircle [triang [k].e36 ].c) ⟨Compute t36 14 ⟩;
if (hcircle [triang [k].e45 ].c) ⟨Compute t45 15 ⟩;
if (hcircle [triang [k].e90 ].c) ⟨Compute t90 16 ⟩;
printf ("Triangle␣%d␣neighbors:", k);
if (hcircle [triang [k].e36 ].c) printf ("␣t36=%d", triang [k].t36 );
if (hcircle [triang [k].e45 ].c) printf ("␣t45=%d", triang [k].t45 );
if (hcircle [triang [k].e90 ].c) printf ("␣t90=%d", triang [k].t90 );
printf ("\n");

}
This code is used in section 1.

14. ⟨Compute t36 14 ⟩ ≡
{
j = savepoint (reflect (hpoint [triang [k].v36 ], hcircle [triang [k].e36 ]));
t = tptr ;
triang [k].t36 = savetriangle (j, triang [k].v45 , triang [k].v90 );
if (tptr > t) { /∗ that triangle is new ∗/

triang [t].e36 = triang [k].e36 ;
triang [t].e45 = savecircle (common (hpoint [triang [t].v36 ], hpoint [triang [t].v90 ]));
triang [t].e90 = savecircle (common (hpoint [triang [t].v36 ], hpoint [triang [t].v45 ]));
printf ("triangle␣%d␣=␣(z%d,z%d,z%d),", t, triang [t].v36 , triang [t].v45 , triang [t].v90 );
printf ("␣edges␣(%d,%d,%d)\n", triang [t].e36 , triang [t].e45 , triang [t].e90 );

}
}

This code is used in section 13.
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15. ⟨Compute t45 15 ⟩ ≡
{
j = savepoint (reflect (hpoint [triang [k].v45 ], hcircle [triang [k].e45 ]));
t = tptr ;
triang [k].t45 = savetriangle (triang [k].v36 , j, triang [k].v90 );
if (tptr > t) { /∗ that triangle is new ∗/

triang [t].e45 = triang [k].e45 ;
triang [t].e36 = savecircle (common (hpoint [triang [t].v45 ], hpoint [triang [t].v90 ]));
triang [t].e90 = savecircle (common (hpoint [triang [t].v36 ], hpoint [triang [t].v45 ]));
printf ("triangle␣%d␣=␣(z%d,z%d,z%d),", t, triang [t].v36 , triang [t].v45 , triang [t].v90 );
printf ("␣edges␣(%d,%d,%d)\n", triang [t].e36 , triang [t].e45 , triang [t].e90 );

}
}

This code is used in section 13.

16. ⟨Compute t90 16 ⟩ ≡
{
j = savepoint (reflect (hpoint [triang [k].v90 ], hcircle [triang [k].e90 ]));
t = tptr ;
triang [k].t90 = savetriangle (triang [k].v36 , triang [k].v45 , j);
if (tptr > t) { /∗ that triangle is new ∗/
triang [t].e90 = triang [k].e90 ;
triang [t].e36 = savecircle (common (hpoint [triang [t].v45 ], hpoint [triang [t].v90 ]));
triang [t].e45 = savecircle (common (hpoint [triang [t].v36 ], hpoint [triang [t].v90 ]));
printf ("triangle␣%d␣=␣(z%d,z%d,z%d),", t, triang [t].v36 , triang [t].v45 , triang [t].v90 );
printf ("␣edges␣(%d,%d,%d)\n", triang [t].e36 , triang [t].e45 , triang [t].e90 );

}
}

This code is used in section 13.
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17. Output. Here’s what we get when the circles l1, l2, . . . are plotted:
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18. Dual output. And here’s what happens when those circles are reflected with respect to |z| = 1/r:
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19. The overall tiling. Finally, the right half of the whole thing, omitting circles of radius < 0.007:
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20. Index.

a: 1.
alpha : 4.
b: 1.
Bond, James: 19.
c: 1, 2.
cc : 10.
circle: 2, 3, 4, 5, 6, 10.
cleft : 5, 6.
common : 3, 14, 15, 16.
cptr : 5, 6.
cright : 5, 6.
eps : 5.
e36 : 7, 12, 13, 14, 15, 16.
e45 : 7, 11, 12, 13, 14, 15, 16.
e90 : 7, 11, 12, 13, 14, 15, 16.
fabs : 3, 5.
found : 5, 8.
h: 8.
hcircle : 5, 6, 7, 13, 14, 15, 16.
hpoint : 5, 6, 7, 12, 14, 15, 16.
hprime : 1, 8, 9.
j: 1.
k: 1.
l: 4, 5, 10.
main : 1.
makecircle : 10, 12.
makepoint : 10, 11.
maxn : 1, 6, 8, 9.
p: 5.
phi : 1, 11.
pleft : 5, 6.
point: 2, 3, 4, 5, 6, 10.
pptr : 5, 6.
pright : 5, 6.
printf : 5, 11, 13, 14, 15, 16.
q: 5.
r: 2.
reflect : 4, 14, 15, 16.
rr : 10.
savecircle : 5, 10, 14, 15, 16.
savepoint : 5, 10, 14, 15, 16.
savetriangle : 8, 11, 14, 15, 16.
sqrt : 3, 11, 12.
t: 1, 3, 4.
tptr : 1, 8, 9, 11, 14, 15, 16.
triang : 7, 8, 9, 11, 12, 13, 14, 15, 16.
triangle: 7, 9.
triple : 8, 9.
tripnum : 8, 9.
t36 : 7, 13, 14.
t45 : 7, 13, 15.

t90 : 7, 13, 16.
v36 : 7, 8, 14, 15, 16.
v45 : 7, 8, 14, 15, 16.
v90 : 7, 8, 14, 15, 16.
w: 8.
x: 2.
xx : 10.
y: 2.
yy : 10.
z: 3, 4, 5, 10.
zp : 3.
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⟨Compute the edges of triangle 0 12 ⟩ Used in section 11.

⟨Compute the neighbors of triangle k 13 ⟩ Used in section 1.

⟨Compute t36 14 ⟩ Used in section 13.

⟨Compute t45 15 ⟩ Used in section 13.

⟨Compute t90 16 ⟩ Used in section 13.

⟨Global variables 6, 9, 10 ⟩ Used in section 1.

⟨ Set up triangle 0 11 ⟩ Used in section 1.

⟨ Subroutines 3, 4, 5, 8 ⟩ Used in section 1.

⟨Type definitions 2, 7 ⟩ Used in section 1.
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