81 HULL INTRODUCTION 1

1. Introduction. This is a hastily written implementation of the daghull algorithm.
format Graph int /* gb_graph defines the Graph type and a few others */
format Verter int
format Arc int
format Area int

#include "gb_graph.h"

#include "gb_miles.h"
int n = 128;

(Global variables 2)
(Procedures 13)

main ()

(Local variables 7)

Graph *xg = miles(128,0,0,0,0,0,0);

mems = ccs = 0;

(Find convex hull of g 8);

printf ("Total of %d mems_and, %d, calls on ccw.\n", mems, ccs);

2. TI'm instrumenting this in a simple way.

#define 0 mems++

#define oo mems +=2

(Global variables 2) =
int mems; /* memory accesses */
int ccs; /* calls on ccw */

See also section 5.

This code is used in section 1.

2 DATA STRUCTURES HULL 83

3. Data structures. For now, each vertex is represented by two coordinates stored in the utility fields
.l and y.I. T'm also putting a serial number into z.I, so that I can check whether different algorithms
generate identical hulls.

A vertex v in the convex hull also has a successor v-succ and and predecessor v-pred, stored in utility
fields v and v. There’s also a pointer to an “instruction,” v~inst, for which I'm using an arc record although
I need only two fields; that one goes in utility field w.

An instruction has two parts. Its ¢ip is a vertex to be used in counterclockwise testing. Its next is another
instruction to be followed; or, if A, there’s no next instruction; or, if a pointer to the smallest possible
instruction, we will do something special to update the current convex hull.

#define succ u.V

#define pred v.V
#define inst w.A

4. (Initialize the array of instructions 4) =
first_inst = (Arc *) gb_alloc((4 * g-n — 2) * sizeof (Arc), working_storage);
if (first_inst = A) return (1); /* fixthis */
next_inst = first_inst;

This code is used in section 6.

5. (Global variables 2) +=

Arc xfirst_inst; /* beginning of the array of instructions =/

Arc xnext_inst; /= first unused slot in that array =/

Vertex xrover; /* one of the vertices in the convex hull %/

Area working_storage;

int serial_no = 1; /* used to disambiguate entries with equal coordinates */

6. We assume that the vertices have been given to us in a GraphBase-type graph. The algorithm begins
with a trivial hull that contains only the first two vertices.

(Initialize the data structures 6) =
init_area (working_storage);
(Initialize the array of instructions 4);
0,u = g-vertices;

v=u+1;
u~z.I = 0;
vzl =1,

00, u~succ = u~pred = v;

00, v~succ = v-pred = u;

00, first_inst-tip = u; first_inst-next = first_inst;

00, (++next_inst)-tip = v; next_inst-next = first_inst;

0, u~inst = first_inst;

0, v~1nst = next_inst ++;

rover = u;

if (n < 150) printf ("Beginning withy (%s; %s)\n", u~name, v-name);

This code is used in section 8.

7. We'll probably need a bunch of local variables to do elementary operations on data structures.
(Local variables 7) =

Vertex xu, xv, *vv, *w;

Arc xp, *q, *1, %S;

This code is used in section 1.

88 HULL HULL UPDATING 3

8. Hull updating. The main loop of the algorithm updates the data structure incrementally by adding
one new vertex at a time. If the new vertex lies outside the current convex hull, we put it into the cycle and
possibly delete some vertices that were previously part of the hull.

(Find convex hull of g 8) =
(Initialize the data structures 6);
for (oo, vv = g~vertices + 2; vv < g~vertices + g-n; vvo++) {
vu-z.1 = ++serial_no;
(Follow the instructions; continue if vv is inside the current hull 10);
(Update the convex hull, knowing that vv lies outside the consecutive hull vertices u and v 11);
}
(Print the convex hull 9);

This code is used in section 1.

9. Let me do the easy part first, since it’s bedtime and I can worry about the rest tomorrow.

(Print the convex hull 9) =
u = rover;
printf ("Theconvex hull is:\n");
do {
printf ("Luhs\n", u=name);
U = U~Succe;
} while (u # rover);

This code is used in section 8.

10. (Follow the instructions; continue if vv is inside the current hull 10) =
p = first_inst;
do {
if (oo, ccw (p-tip, vv, (p + 1)~tip)) p++;
q=D;
0,p = p~next;
} while (p > first_inst);
if (p =A) continue;
0,v = q~tip;
0,u = v-pred;

This code is used in section 8.

4 HULL UPDATING HULL §11

11. (Update the convex hull, knowing that vv lies outside the consecutive hull vertices u and v 11) =
0, g-next = next_inst;
while (1) {
0, w = u~pred;
if (w =v) break;
if (ccw(vv,w,u)) break;
o0, u~inst-next = next_inst;
if (rover = u) rover = w;
U = w;

}
while (1) {
0, W = v-suce;
if (w=u) break;
if (ccw(w,vv,v)) break;
if (rover =wv) rover = w;
v = w;
o, v~inst-next = next_inst;
}
00, u~succ = v-pred = vv;
00, vu=pred = u; VU~SUCC = U;
(Compile two new instructions, for (u, vv) and (vv,v) 12);

This code is used in section 8.

12. (Compile two new instructions, for (u,vv) and (vv,v) 12) =
0, next_inst-tip = vv;
o0, next_inst-next = first_inst;
0, vv~inst = next_inst;
next_inst ++;
0, next_inst-tip = u;
o, next_inst-nert = next_inst + 1;
next_inst ++;
0, next_inst-tip = v;
o, next_inst-next = first_inst;
0, v~inst = next_inst;
next_inst ++;
0, next_inst-tip = vv;
o, next_inst-next = A;
next_inst ++;
if (n < 150) printf ("New hull sequence, (%s; %s;%s) \n", u~name, vv-name, v-name);

This code is used in section 11.

§13 HULL

13. Determinants.
my purposes.

We want to evaluate the determinant

cew(u,v,w) = | v(

(Procedures 13) =
int ccw(u,v,w)
Vertex xu, v, *w;

u

w

(

x)
)

x)

{ register double wxz = (double)w~z.I, wy = (double) w~y.I;
register double det = ((double) u~z.I — wz) * ((double) v-y.I — wy) — ((double) u~y.I — wy) *

((double) v-z.I — wx);

Vertex xuu = u, *vv = v, xww = w, *t;

if (det =0) {
det = 1;

DETERMINANTS

if (u~x.d >v-x IV (uezd = vz d A (ueyd > vy IV (uyd = vy d Auezd > v-z1)))) {

t=wu; u=wv; v==t; det = —det;

}

if (v-z.d > wa. IV (v-x.d = wa.I A (v-yI > w-y IV (voyI =w-yI ANv-zI >w-z1)))) {

t=wv; v=w; w=t; det = —det;

}

if (u~x.d >v-x IV (uezd = vz d A (uyd > vy IV (u-yd = vy d Auezd < wv-z)))) {

det = —det;

}

}
if (n < 150)

printf ("cc(%hs;uhs;uhs)uisu%hs\n", vu~name, vu~name, ww-name, det > 0?7 "true" :

ces ++;
return (det > 0);

}

This code is used in section 1.

Arc: 4, 5, 7.

Area: 5.

1, 2, 13.

ccw: 2, 10, 11, 13.

det: 13.

first_inst: 4, 5, 6, 10, 12.
g 1.

gb_alloc: 4.

gb_graph: 1.

Graph: 1.

init_area: 6.

inst: 3, 6, 11, 12.

main: 1.
mems: 1, 2.

CCS:

miles: 1.
n: 1.
name:

6, 9, 12, 13.
3, 6, 10, 11, 12.

next:

next_inst:

o: 2.

4, 5, 6, 11, 12.

oo: 2,6, 8, 10, 11.

p: T

pred: 3, 6, 10, 11.

printf
q: 1.
r. 7.
Tover:
st 7.

serial_no:

succ:

1, 6, 9, 12, 13.

5, 6, 9, 11.

9, 8.

3, 6,9, 11.

t: 13.

tip: 3

w7,

) 67
13.

10, 12.

uu: 13.

v 7,
Verte

&

X

5, 7, 13.

"false");

5

I need code for the primitive function ccw. Floating-point arithmetic suffices for

6 DETERMINANTS

vertices: 6, 8.

vo: 7,8, 10, 11, 12, 13.

w: 7, 13.

working_storage: 4, 5, 6.

ww: 13.
wx: 13.
wy: 13.

HULL

§13

HULL NAMES OF THE SECTIONS 7

Compile two new instructions, for (u, vv) and (vv,v) 12) Used in section 11.

Find convex hull of g 8) Used in section 1.

Follow the instructions; continue if vv is inside the current hull 10) Used in section 8.

Global variables 2, 5> Used in section 1.

Initialize the array of instructions 4) Used in section 6.

Initialize the data structures 6) Used in section 8.

Local variables 7) Used in section 1.

Print the convex hull 9) Used in section 8.

Procedures 13> Used in section 1.

Update the convex hull, knowing that vv lies outside the consecutive hull vertices w and v 11) Used in

section 8.

(
(
(
(
(
(
(
(
(
(

	Introduction
	Data structures
	Hull updating
	Determinants
	Names of the sections
	Compile two new instructions, for (u,vv) and (vv,v)
	Find convex hull of g
	Follow the instructions; continue if vv is inside the current hull
	Global variables
	Initialize the array of instructions
	Initialize the data structures
	Local variables
	Print the convex hull
	Procedures
	Update the convex hull, knowing that vv lies outside the consecutive hull vertices u and v

