
§1 HOPCROFT-KARP INTRO 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Intro. This program implements and explains the classical HK algorithm for bipartite matching, due
to John E. Hopcroft and Richard M. Karp [“An n5/2 algorithm for maximum matchings in bipartite graphs,”
SIAM Journal on Computing 2 (1973), 225–231].

Input on stdin is an m × n matrix (aij) of 0s and 1s, one row per line. In this exposition the rows
correspond to “boys” and the columns correspond to “girls.” (Of course I do this in order to take advantage
of expressive words in the English language, not to imply any distinction between male and female.) Boy i
can be matched to girl j only if aij = 1. The object is to match as many pairs as possible. We assume that
m ≤ n, because that makes the algorithm slightly faster.

Given a partial matching (possibly empty), an augmenting path is a simple path of the form

g0−−−b0 ===g1−−−b1 === · · · −−−bk−1 ===gk−−−bk,

where g0 is a free (unmatched) girl, each gi is matchable to bi, each bi for i < k is currently matched to gi+1,
and bk is a free boy. It’s called augmenting because it tells us how to improve the current matching, by
breaking up k existing couples and forming k + 1 new ones, namely by pairing up each gi and bi.

The HK algorithm begins with the empty matching and proceeds in rounds, where each round finds a
maximal set of vertex-disjoint augmenting paths, each of which has the smallest possible length. If round r
finds k such paths, we’ve successly reduced the number of free boys (and free girls) by k.

Each round is performed in O(t+n) steps, where t =
∑

aij is the total number of 1s in the matrix. If s is
the size of a maximum matching, we shall prove that our partial matching after r rounds always has made
at least r

r+1s pairings. A clever argument (see below) shows that at most 2
√
s rounds are therefore needed.

Consequently the worst-case running time is quite modest, only O((t+n)
√
s ) = O((t+n)

√
m ). (Moreover,

we usually don’t experience a worst-case scenario. With luck we might even guess an optimum matching on
the very first round.)

#define maxn 1000 /∗ n should be less than this ∗/
#define maxt 10000 /∗ t should be less than this ∗/
#define show rounds #1 /∗ vbose bit for showing current round ∗/
#define show partials #2 /∗ vbose bit for showing partial matchings ∗/
#define show updates #4 /∗ vbose bit for showing each augmentation ∗/
#define show dags #8 /∗ vbose bit for showing the dag of SAPs ∗/
#define show answer #10 /∗ vbose bit for showing a maximum matching ∗/
#include <stdio.h>

#include <stdlib.h>

unsigned int vbose = show rounds ; /∗ nonzero bits trigger optional output ∗/
〈Global variables 5 〉; /∗ the main data structures are introduced in context ∗/
main ( )
{

register int b, f , g, i, j, k, l,m, n, p, q, qq , r, t, tt ,marks ,final level ;

〈 Input the matrix and convert it to a sparse data structure 2 〉;
for (r = 1, f = n; f > n−m; r++) {

if (vbose & show rounds ) fprintf (stderr , "Beginning round %d...\n", r);
〈Build the dag of shortest augmenting paths (SAPs) 8 〉;
〈 If there are no SAPs, break 11 〉;
〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 13 〉;
if (vbose & show rounds )

fprintf (stderr , " ... %d pairs now matched (rank %d).\n", n− f,final level );
if (vbose & show partials ) 〈Print the current matching 7 〉;

}

https://cs.stanford.edu/~knuth/programs.html


2 INTRO HOPCROFT-KARP §1

fprintf (stderr , "Maximum matching of size %d found after %d round%s.\n", n− f,
f ≡ n−m ? r − 1 : r, (f ≡ n−m ? r − 1 : r) ≡ 1 ? "" : "s");

if (vbose & show answer ) 〈Print the current matching 7 〉;
}



§2 HOPCROFT-KARP THE EASY STUFF (INPUT) 3

2. The easy stuff (input).
This part of the program is trivial, but it usually takes longer than the HK algorithm itself. (Because a

0–1 matrix is not an efficient representation of a sparse matrix.)
Malformed input is rudely rejected.

〈 Input the matrix and convert it to a sparse data structure 2 〉 ≡
〈Read the first line, and set the value of n 3 〉;
if (n ≡ 0) {

fprintf (stderr , "There must be at least one girl!\n");
exit (−1);
}
else if (n ≡ maxn ) {

fprintf (stderr , "Recompile me: I can’t deal with %d or more girls!\n",maxn );
exit (−2);
}
for (t = 0,m = 1; ; m++) {

if (m > n) {
fprintf (stderr , "There are %d girls, so there can’t be more than %d boys!\n", n, n);
exit (−3);

}
〈Record the potential matches for boy m 4 〉;
if (¬fgets (buf ,maxn + 1, stdin )) break;
if (buf [n] 6= ’\n’) {

fprintf (stderr , "The input for boy %d doesn’t specify %d girls!\n",m + 1, n);
exit (−4);

}
}
fprintf (stderr , "OK, I’ve read the matrix for %d boys, %d girls, %d potential matchups.\n",

m, n, t);
〈 Initialize the other data structures 16 〉;

This code is used in section 1.

3. 〈Read the first line, and set the value of n 3 〉 ≡
n = 0;
if (fgets (buf ,maxn + 1, stdin ))

for ( ; buf [n] 6= ’\n’ ∧ n < maxn ; n++) ;

This code is used in section 2.



4 THE EASY STUFF (INPUT) HOPCROFT-KARP §4

4. We use a simple data structure to record the input: The potential partners for girl j are in a linked list
beginning at glink [j], linked in next , and terminated by a zero link. The partner at link l is stored in tip [l].

〈Record the potential matches for boy m 4 〉 ≡
for (j = n; j; j−−) {
p = buf [j − 1]− ’0’;
if (p < 0 ∨ p > 1) {

fprintf (stderr , "Improper character ‘%c’ in the input for boy %d!\n", buf [j − 1],m);
exit (−5);

}
if (p) {

if (++t ≥ maxt ) {
fprintf (stderr , "Recompile me: I can’t handle %d or more potential matchups!\n",maxt );
exit (−6);

}
tip [t] = m,next [t] = glink [j], glink [j] = t;

}
}

This code is used in section 2.

5. Later there will be a similar data structure for some of the boys’ partners.
The next and tip arrays must be able to accommodate 2t + m entries: t for the original graph, t for the

edges at round 0, and m for the edges from >.

〈Global variables 5 〉 ≡
char buf [maxn + 1]; /∗ buffer for input from stdin ∗/
int blink [maxn ], glink [maxn ]; /∗ list heads for potential partners ∗/
int next [maxt + maxt + maxn ], tip [maxt + maxt + maxn ]; /∗ links and suitable partners ∗/

See also sections 6, 9, and 15.

This code is used in section 1.



§6 HOPCROFT-KARP EVEN EASIER STUFF (THE OUTPUT) 5

6. Even easier stuff (the output). There’s a mate table, showing the current partner (if any) of every
boy. Also an imate table, showing the current partner (if any) of every girl.

〈Global variables 5 〉 +≡
int mate [maxn ], imate [maxn ];

7. To report the matches-so-far, we simply show every boy’s mate.

〈Print the current matching 7 〉 ≡
{

for (p = 1; p ≤ m; p++) fprintf (stderr , " %d",mate [p]);
fprintf (stderr , "\n");
}

This code is used in section 1.



6 THE COOL STUFF (A DAG OF SAPS) HOPCROFT-KARP §8

8. The cool stuff (a dag of SAPs). With a breadth-first search, we can create a directed acyclic graph
in which the paths from a dummy node called > to a dummy node called ⊥ correspond one-to-one with the
augmenting paths of minimum length. Each of those paths will contain final level existing matches.

This dag has a representation something like our representation of the girls’ choices, but even sparser:
The first arc from boy i to a suitable girl is in blink [i], with tip and next as before. Each girl, however, has
exactly one outgoing arc in the dag, namely her imate . An imate of 0 is a link to ⊥. The other dummy
node, >, has a list of free boys, beginning at dlink .

An array called mark keeps track of the level (plus 1) at which a boy has entered the dag. All marks must
be zero when we begin.

〈Build the dag of shortest augmenting paths (SAPs) 8 〉 ≡
final level = −1, tt = t;
for (marks = l = i = 0, q = f ; ; l++) {

for (qq = q; i < qq ; i++) {
g = queue [i];
for (k = glink [g]; k; k = next [k]) {

b = tip [k], p = mark [b];
if (p ≡ 0) 〈Enter b into the dag 10 〉
else if (p ≤ l) continue;
if (vbose & show dags ) fprintf (stderr , " %d−>%d=>%d\n", b, g, imate [g]);

/∗ arc from b to g, then to her mate ∗/
tip [++tt ] = g,next [tt ] = blink [b], blink [b] = tt ;

}
}
if (q ≡ qq ) break; /∗ nothing new on the queue for the next level ∗/
}

This code is used in section 1.

9. 〈Global variables 5 〉 +≡
int queue [maxn ]; /∗ girls seen during the breadth-first search ∗/
int iqueue [maxn ]; /∗ inverse permutation, for the first f entries ∗/
int mark [maxn ]; /∗ where boys appear in the dag ∗/
int marked [maxn ]; /∗ which boys have been marked ∗/
int dlink ; /∗ head of the list of free boys in the dag ∗/

10. Once we know we’ve reached the final level, we don’t allow any more boys at that level unless they’re
free. We also reset q to qq , so that the dag will not reach a greater level.

〈Enter b into the dag 10 〉 ≡
{

if (final level ≥ 0 ∧mate [b]) continue;
else if (final level < 0 ∧mate [b] ≡ 0) final level = l, dlink = 0, q = qq ;
mark [b] = l + 1,marked [marks ++] = b, blink [b] = 0;
if (mate [b]) queue [q++] = mate [b];
else {

if (vbose & show dags ) fprintf (stderr , " top−>%d\n", b); /∗ arc from > to the free boy b ∗/
tip [++tt ] = b,next [tt ] = dlink , dlink = tt ;

}
}

This code is used in section 8.



§11 HOPCROFT-KARP THE COOL STUFF (A DAG OF SAPS) 7

11. We have no SAPs if and only no free boys were found.

〈 If there are no SAPs, break 11 〉 ≡
if (final level < 0) break;

This code is used in section 1.

12. 〈Reset all marks to zero 12 〉 ≡
while (marks ) mark [marked [−−marks ]] = 0;

This code is used in section 13.



8 MAKIN’ PROGRESS HOPCROFT-KARP §13

13. Makin’ progress. We’ve just built the dag of shortest augmenting paths, by starting from dummy
node ⊥ at the bottom and proceeding breadth-first until discovering final level and essentially reaching the
dummy node >. Now we more or less reverse the process: We start at > and proceed depth-first, harvesting
a maximal set of vertex-disjoint augmenting paths as we go. (Any maximal set will be fine; we needn’t
bother to look for an especially large one.)

The dag is gradually dismantled as SAPs are removed, so that their boys and girls won’t be reused. A
subtle point arises here when we look at a girl g who was part of a previous SAP: In that case her mate will
have been changed to a boy whose mark is negative. This is true even if l = 0 and g was previously free.

〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 13 〉 ≡
while (dlink ) {
b = tip [dlink ], dlink = next [dlink ];
l = final level ;

enter level : boy [l] = b;
advance : if (blink [b]) {

g = tip [blink [b]], blink [b] = next [blink [b]];
if (imate [g] ≡ 0) 〈Augment the current matching and continue 14 〉;
if (mark [imate [g]] < 0) goto advance ;
b = imate [g], l−−;
goto enter level ;

}
if (++l > final level ) continue;
b = boy [l];
goto advance ;
}
〈Reset all marks to zero 12 〉;

This code is used in section 1.

14. At this point g = g0 and b = boy [0] = b0 in an augmenting path. The other boys are boy [1], boy [2],
etc.

〈Augment the current matching and continue 14 〉 ≡
{

if (l) fprintf (stderr , "I’m confused!\n"); /∗ a free girl should occur only at level 0 ∗/
〈Remove g from the list of free girls 17 〉;
while (1) {

if (vbose & show updates ) fprintf (stderr , "%s %d−%d", l ? "," : " match", b, g);
mark [b] = −1;
j = mate [b],mate [b] = g, imate [g] = b;
if (j ≡ 0) break; /∗ b was free ∗/
g = j, b = boy [++l];

}
if (vbose & show updates ) fprintf (stderr , "\n");
continue;
}

This code is used in section 13.

15. 〈Global variables 5 〉 +≡
int boy [maxn ]; /∗ the boys being explored during the depth-first search ∗/



§16 HOPCROFT-KARP MAKIN’ PROGRESS 9

16. When the matrix was input, we tacitly assumed that glink [g] was initially 0 for all g. When each dag
was built, we explicitly initialized each blink [b] to 0. The queue and iqueue structures need to be initialized
to nonzero values, so we do that here.

〈 Initialize the other data structures 16 〉 ≡
for (g = 1; g ≤ n; g++) queue [g − 1] = g, iqueue [g] = g − 1;

This code is used in section 2.

17. 〈Remove g from the list of free girls 17 〉 ≡
f−−; /∗ f is the number of free girls ∗/
j = iqueue [g]; /∗ where is g in queue? ∗/
i = queue [f ], queue [j] = i, iqueue [i] = j; /∗ OK to clobber queue [f ] ∗/

This code is used in section 14.



10 WHY IT WORKS HOPCROFT-KARP §18

18. Why it works. The HK algorithm relies on three simple lemmas about matchings in graphs. Recall
that a matching in G is a subgraph of G in which every vertex has degree ≤ 1.

Suppose A and B are matchings in the same graph G, and let A⊕ B be the set of edges that are in one
but not both. This is a subgraph in which every vertex has degree 2 or less. Consequently every connected
component of A⊕B is either a cycle or a path.

A cycle in A⊕B must have even length, because its A edges alternate with its B edges. For example, the
shortest possible cycle is a 4-cycle such as

v0−−−v1 ===v2−−−v3 ===v4,

where ‘−−−’ denotes an edge of A and ‘===’ denotes an edge of B.
A path in A ⊕ B can have either odd or even length. If it involves 2k + 1 vertices, so that its length is

2k, it must be “balanced,” with k edges from A and k edges from B. But if it involves 2k vertices, and has
length 2k − 1, it must be either an A-path (with k edges from A and k − 1 from B) or a B-path (with k
edges from B and k − 1 from A). A path in A ⊕ B of length 2k − 1 is said to have rank k. Therefore the
A-paths of ranks 1, 2, 3, . . . , look like this:

v0−−−v1, v0−−−v1 ===v2−−−v3, v0−−−v1 ===v2−−−v3 ===v4−−−v5, . . . ;

and the B-paths are similar but with ‘−−−’ and ‘===’ reversed.
Suppose cA components are A-paths, cB components are B-paths, and c0 components are either cycles or

balanced paths. Then cA − cB = |A| − |B|, where |A| stands for the number of edges in A. For example, if
|A| = 15 and |B| = 12, we might have five A-paths and two B-paths in A ⊕ B; or we might have four and
one, etc. But in any case A⊕B must contain at least three A-paths.

Notice that every A-path is an augmenting path for B, and every B-path is an augmenting path. Therefore
we have

Lemma 1. If A and B are matchings in G with |A| > |B|, then B has at least |A| − |B| augmenting paths
that are vertex-disjoint.

Proof. The A-paths of A⊕B are vertex-disjoint.

Thus, if s is the size of a maximum matching, and if B is any matching with |B| = r, there must be
s − r disjoint augmenting paths. We don’t know what they are; but we do know that they exist. That’s
why the HK algorithm knows that it has found a maximum matching when it is discovered that there are
no augmenting paths.

19. Now let’s consider the effect of an augmentation. Suppose a new matching C is created by changing,
say,

v0−−−v1 ===v2−−−v3 ===v4−−−v5 to v0≡≡≡v1 ===v2≡≡≡v3 ===v4≡≡≡v5

and retaining the other edges of B. What are the components of A ⊕ C? Answer: Every vertex of
{v0, v1, . . . , v5} is isolated (has degree 0) in A ⊕ C; so one former A-component of A ⊕ B has essentially
vanished. But every other component of A⊕B remains unchanged in A⊕C, except that each ‘===’ becomes
‘≡≡≡’, because it involves none of {v0, v1, . . . , v5}. (In particular, balanced components remain balanced,
A-paths remain A-paths, and B-paths become C-paths.)

Algorithm HK actually works only with the shortest augmenting paths for B, namely the A-paths of
minimum rank k. It finds q such paths, all disjoint, and uses them to find a larger matching C with
|C| = q + r. Furthermore, the algorithm knows that every other augmenting path of rank k has at least one
vertex v whose mate in C is different from its mate (if any) in B. (Those other SAPs appeared in the dag,
when the dag was created, but they were eventually removed.)

Lemma 2. In that scenario, every augmenting path of the matching C has rank greater than k.

Proof. We know that an augmentation obliterates components but makes no shorter ones. The only question
is whether any A-paths of rank k still exist with respect to C. But every such path was wiped out when one
of its vertices was first assigned a new mate.



§20 HOPCROFT-KARP WHY IT WORKS 11

20. An example will be helpful at this point. Consider the bipartite graph consisting of n girls {x1, . . . , xn}
and n boys {y1, . . . , yn}, with xi matchable to yj if and only if i ≤ j. This graph has a unique matching,
because xn can only be matched to yn, and then xn−1 can only be matched to yn−1, etc.

If A is that perfect matching and B is the empty matching, every edge xi−−−yj with i ≤ j is an A-path
of rank 0. One of the sets of disjoint A-paths is

x1−−−y2, x2−−−y3, · · · , xn−1−−−yn;

and this set is maximal, because it leaves out only xn and y1 (an unmatchable pair).
If we augment B with all those A-paths, we get the matching C whose n− 1 edges are

x1≡≡≡y2, x2≡≡≡y3, · · · , xn−1≡≡≡yn.

And Lemma 2 proves that C has no augmenting path of rank 0. In fact, C has only one augmenting path,
namely

y1−−−x1≡≡≡y2−−−x2≡≡≡y3−−−x3 · · · −−−xn−1≡≡≡yn ===xn;

and its rank is n− 1.
(Suppose we permute the girls of this example in any of n! ways, then independently permute the boys

in any of n! ways, and feed the result to this program as a matrix of 0s and 1s. Surprise: The dag that is
constructed in round 1 will always have its lists ordered in such a way that the optimum maximum matching
is found immediately, with no need for round 2! Thus it’s not as easy to find good test data as we might
think, if we want to exercise the more subtle parts of this algorithm.)

21. That was an extreme example. The SAPs found in round 1 always have rank 0, and the SAPs found
in round 2 usually have rank 1 (not n − 1). And we do know, in general, that the only augmenting paths
that remain after round r will have rank r or more.

Suppose a maximum matching A has s edges, and we’ve found a matching B of size q in round r. If
q < r

r+1s, Lemmas 1 and 2 tell us that there exist s− q disjoint augmenting paths, each of rank r or more.
So each of them contains at least r + 1 different edges of A, a total of at least (r + 1)(s − q). But that’s
greater than (r + 1)(s− r

r+1s) = s; a contradiction! We’ve proved

Lemma 3. The current matching after round r has at least r
r+1s as many edges as the final matching.

Hopcroft and Karp therefore said, “Aha! Look at round r = d
√
s − 1e. It gives us a partial match of at

least r
r+1s ≥ s−

√
s edges. Therefore we’ll finish in at most

√
s more rounds.”

22. By the way, our proofs of Lemmas 1 and 2 show that they are true in any graph, bipartite or not. We
used bipartiteness only because it gave us a way to construct a dag of all SAPs.

Hopcroft and Karp said they were hoping to extend their method from the bipartite case to the general
case, presumably by taking advantage of the structure found by Jack Edmonds in his pioneering work on
blossoms [“Paths, trees and flowers,” Canadian Journal on Mathematics 17 (1965), 449–467]. That dream
eventually came true when Harold N. Gabow and Robert E. Tarjan published “Faster scaling algorithms for
general graph-matching problems,” [Journal of the ACM 38 (1991), 815–853], a paper that emphasized the
solution to considerably more general problems. See Harold N. Gabow, “The weighted matching approach to
maximum cardinality matching,” Fundamenta Informaticae 154 (2017), 109–130, for a simplified exposition.

23. An idea for further investigation: We’ve seen that at least half of the matches are initiated already in
the first round. The first round is a lot simpler than subsequent rounds, because it begins with everybody
free. Therefore it might be a good idea to do that round faster, with a custom-tuned implementation just
to get off to a quicker start.



12 INDEX HOPCROFT-KARP §24

24. Index.

advance : 13.
b: 1.
blink : 5, 8, 10, 13, 16.
boy : 13, 14, 15.
buf : 2, 3, 4, 5.
dlink : 8, 9, 10, 13.
enter level : 13.
exit : 2, 4.
f : 1.
fgets : 2, 3.
final level : 1, 8, 10, 11, 13.
fprintf : 1, 2, 4, 7, 8, 10, 14.
g: 1.
glink : 4, 5, 8, 16.
i: 1.
imate : 6, 8, 13, 14.
iqueue : 9, 16, 17.
j: 1.
k: 1.
l: 1.
m: 1.
main : 1.
mark : 8, 9, 10, 12, 13, 14.
marked : 9, 10, 12.
marks : 1, 8, 10, 12.
mate : 6, 7, 10, 14.
maxn : 1, 2, 3, 5, 6, 9, 15.
maxt : 1, 4, 5.
n: 1.
next : 4, 5, 8, 10, 13.
p: 1.
q: 1.
qq : 1, 8, 10.
queue : 8, 9, 10, 16, 17.
r: 1.
show answer : 1.
show dags : 1, 8, 10.
show partials : 1.
show rounds : 1.
show updates : 1, 14.
stderr : 1, 2, 4, 7, 8, 10, 14.
stdin : 1, 2, 3, 5.
t: 1.
tip : 4, 5, 8, 10, 13.
tt : 1, 8, 10.
vbose : 1, 8, 10, 14.



HOPCROFT-KARP NAMES OF THE SECTIONS 13

〈Augment the current matching and continue 14 〉 Used in section 13.

〈Build the dag of shortest augmenting paths (SAPs) 8 〉 Used in section 1.

〈Enter b into the dag 10 〉 Used in section 8.

〈Find a maximal set of disjoint SAPs, and incorporate them into the current matching 13 〉 Used in section 1.

〈Global variables 5, 6, 9, 15 〉 Used in section 1.

〈 If there are no SAPs, break 11 〉 Used in section 1.

〈 Initialize the other data structures 16 〉 Used in section 2.

〈 Input the matrix and convert it to a sparse data structure 2 〉 Used in section 1.

〈Print the current matching 7 〉 Used in section 1.

〈Read the first line, and set the value of n 3 〉 Used in section 2.

〈Record the potential matches for boy m 4 〉 Used in section 2.

〈Remove g from the list of free girls 17 〉 Used in section 14.

〈Reset all marks to zero 12 〉 Used in section 13.



HOPCROFT-KARP

Section Page
Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
The easy stuff (input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Even easier stuff (the output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5
The cool stuff (a dag of SAPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6
Makin’ progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8
Why it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 10
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 12


	Intro
	The easy stuff (input)
	Even easier stuff (the output)
	The cool stuff (a dag of SAPs)
	Makin' progress
	Why it works
	Index
	Names of the sections
	Augment the current matching and continue
	Build the dag of shortest augmenting paths (SAPs)
	Enter b into the dag
	Find a maximal set of disjoint SAPs, and incorporate them into the current matching
	Global variables
	If there are no SAPs, break
	Initialize the other data structures
	Input the matrix and convert it to a sparse data structure
	Print the current matching
	Read the first line, and set the value of n
	Record the potential matches for boy m
	Remove g from the list of free girls
	Reset all marks to zero


