
§1 HAMDANCE INTRODUCTION 1

(See https://cs.stanford.edu/˜knuth/programs.html for date.)

1. Introduction. This little program finds all the Hamiltonian circuits of a given graph, using an
interesting algorithm that illustrates the technique of “dancing links” [see my paper in Millennial Perspectives
in Computer Science, edited by Jim Davies, Bill Roscoe, and Jim Woodcock (Houndmills, Basingstoke,
Hampshire: Palgrave, 2000), 187–214]. The idea is to allow long paths to grow in segments that gradually
merge together, instead of to build such paths strictly in order from beginning to end. At each stage in the
decision process, certain edges have been chosen to be in the final circuit, with no three touching any vertex;
we repeatedly choose further edges, preserving this condition while not completing any cycles that are too
short.

#include "gb_graph.h" /∗ use the Stanford GraphBase conventions ∗/
#include "gb_save.h" /∗ and its routine for inputting graphs ∗/
〈Preprocessor definitions 〉
〈Global variables 3 〉
Graph ∗g; /∗ the given graph ∗/
〈Subroutines 5 〉
int main (int argc , char ∗argv [])
{

register Vertex ∗u, ∗v, ∗w;
register Arc ∗a;
int k, d;

〈Process the command line, inputting the graph 2 〉;
〈Prepare the graph for backtracking 9 〉;
〈Backtrack through all solutions 14 〉;
〈Print the results 13 〉;
exit (0);
}

2. The given graph should be in Stanford GraphBase format, in a file like "foo.gb" named on the command
line. This file name can optionally be followed by a modulus m, which causes every |m|th solution to be
printed. If a third command line argument appears, the output will be extremely verbose.

The modulus m might be negative; this indicates that solutions should be printed showing edges in the
order they were discovered, rather than in the natural circuit order.

#define max n 100 /∗ our arrays will accommodate this many vertices at most ∗/
#define infty 1000000000 /∗ infinity (approximately) ∗/
〈Process the command line, inputting the graph 2 〉 ≡

if (argc > 1) g = restore graph (argv [1]); else g = Λ;
if (argc < 3 ∨ sscanf (argv [2], "%d",&modulus) 6= 1) modulus = infty ;
if (¬g ∨modulus ≡ 0) {

fprintf (stderr , "Usage: %s foo.gb [[−]modulus] [verbose]\n", argv [0]);
exit (−1);
}
if (g~n > max n) {

fprintf (stderr , "Sorry, I’m set up to handle at most %d vertices!\n",max n);
exit (−2);
}
if (argc > 3) verbose = 1;

This code is used in section 1.

https://cs.stanford.edu/~knuth/programs.html

2 INTRODUCTION HAMDANCE §3

3. The verbose variable is declared in gb_graph.h.

〈Global variables 3 〉 ≡
int modulus ; /∗ how often we should show solutions ∗/

See also sections 4, 8, 10, 11, and 35.

This code is used in section 1.

§4 HAMDANCE DATA STRUCTURES 3

4. Data structures. Each vertex is either bare (touching none of the chosen edges) or outer (touching
just one) or inner (touching two). An outer vertex has a mate , which is the vertex at the other end of the
path of chosen vertices that it belongs to. All nonchosen edges that touch inner vertices have effectively been
removed from the graph. Any edge that runs from a vertex to its mate has also effectively been removed.

The degree deg of a bare or outer vertex is the number of edges that currently touch it. All vertices begin
bare and end up inner . A bare vertex of degree 2 is converted to an inner vertex, since its two edges must
be in the final circuit; this mechanism causes outer vertices to spring up more or less spontaneously, and it
helps in the decision-making. At moments when all bare vertices have degree 3 or more, we choose an end
vertex of minimum degree, and make it inner in all possible ways.

The main data structure is a doubly linked list of all the outer vertices. Links in this list are called llink
and rlink . When a vertex is removed from the list, its llink and rlink retain important information about
how to undo this operation when backtracking; this idea makes the links “dance.” Similarly, when an outer
vertex becomes inner , its mate field retains the name of its former mate, so that we needn’t recompute
mates when undoing previous changes to the data structures.

The mate field of a vertex that was promoted directly from bare to inner is one of its two neighbors. The
other neighbor is stored in another field called comate .

Utility fields u, v, w, x, y, and z of a Vertex are used to hold the type , deg , llink , rlink , mate , and
comate .

#define bare 2
#define outer 1
#define inner 0
#define type u.I /∗ either bare , outer , or inner ∗/
#define deg v.I /∗ current degree, for non-inner vertices ∗/
#define llink w.V /∗ link to the left in the basic list ∗/
#define rlink x.V /∗ link to the right in the basic list ∗/
#define mate y.V /∗ the mate of an outer vertex ∗/
#define comate z.V /∗ neighbor of fast-promoted inner vertex ∗/
#define head (&list head)

〈Global variables 3 〉 +≡
Vertex list head ; /∗ the doubly linked list starts here ∗/
char ∗decode [3] = {"inner", "outer", "bare"};

5. Here’s a routine that should be useful for debugging: It displays the fields of a given vertex symbolically.

〈Subroutines 5 〉 ≡
void print vert (Vertex ∗v)
{

printf ("%s: %s, deg=%d", v~name , decode [v~ type], v~deg);
if (v~ llink) printf (", llink=%s", v~ llink~name);
if (v~rlink) printf (", rlink=%s", v~rlink~name);
if (v~mate) printf (", mate=%s", v~mate~name);
if (v~comate) printf (", comate=%s", v~comate~name);
printf ("\n");
}

See also sections 6, 7, and 12.

This code is used in section 1.

4 DATA STRUCTURES HAMDANCE §6

6. And if we want to see them all:

〈Subroutines 5 〉 +≡
void print verts ()
{

register Vertex ∗v;

for (v = g~vertices ; v < g~vertices + g~n; v++) print vert (v);
}

7. Even more important for debugging is the sanity check routine, which painstakingly makes sure that I
haven’t let the data structure get out of sync with itself. (Vertex vv is either Λ or an inner vertex whose
mate is currently outer . In the latter case, some of the sanity checks are not made.)

〈Subroutines 5 〉 +≡
void sanity check (Vertex ∗vv)
{

register Vertex ∗u, ∗v, ∗w;
register Arc ∗a;
register int c, d;

for (v = g~vertices , c = 0; v < g~vertices + g~n; v++) {
w = v~mate ;
if (v~ type ≡ bare ∧ w 6= Λ)

printf ("Bare vertex %s shouldn’t have mate %s!\n", v~name , w~name);
if (v~ type ≡ outer) c++;
if (v~ type ≡ outer ∧ (w~mate 6= v ∨ w~ type 6= outer))

if (w 6= vv ∨ w~ type 6= inner)
printf ("Outer vertex %s has mate problem vis−a−vis %s!\n", v~name , w~name);

for (a = v~arcs , d = 0; a; a = a~next) {
u = a~ tip ;
if (u~ type 6= inner ∧ u 6= w) d++;

}
if (v~ type 6= inner ∧ v~deg 6= d ∧ ocount 6= g~n− 1)

printf ("Vertex %s should have degree %d, not %d!\n", v~name , d, v~deg);
if (v~ type ≡ bare ∧ d < 3 ∧ vv ≡ Λ)

printf ("Vertex %s (degree %d) should not be bare!\n", v~name , d);
}
for (v = head~rlink ; c > 0; c−−, v = v~rlink) {

if (v~ type 6= outer)
printf ("Vertex %s (%s) shouldn’t be in the list!\n", v~name , decode [v~ type]);

if (v~ llink~rlink 6= v ∨ v~rlink~ llink 6= v)
printf ("Double−link failure at vertex %s!\n", v~name);

}
if (v 6= head) printf ("The list doesn’t contain all the outer vertices!\n");
}

§8 HAMDANCE DATA STRUCTURES 5

8. The next most interesting data structure is the barelist , which receives the names of bare vertices at
the moment their degree drops to 2. Such vertices must be clothed before we advance to a new level of
backtracking.

〈Global variables 3 〉 +≡
Vertex ∗barelist [max n];
int bcount ; /∗ the current number of entries in barelist ∗/
int curb [max n]; /∗ value of bcount at the beginning of each level ∗/
int curbb [max n]; /∗ value of bcount in mid-level ∗/
Vertex ∗bareback [max n]; /∗ used for undoing barelist manipulations ∗/

9. 〈Prepare the graph for backtracking 9 〉 ≡
d = infty ;
bcount = ocount = 0;
for (v = g~vertices ; v < g~vertices + g~n; v++) {
v~ type = bare ;
for (a = v~arcs , k = 0; a; a = a~next) k++;
v~deg = k;
if (k ≡ 2) barelist [bcount ++] = v;
if (k < d) d = k, curv [0] = v;
v~ llink = v~rlink = v~mate = v~comate = Λ;
}
head~rlink = head~ llink = head ;
head~name = "head";
if (d < 2) {

printf ("There are no Hamiltonian circuits, because %s has degree %d!\n", curv [0]~name , d);
exit (0);
}

This code is used in section 1.

10. The arcs currently chosen appear in lists called source and dest . Some arcs are chosen when a bare
vertex is being clothed; others are chosen at a level of backtracking when an outer vertex becomes inner.

〈Global variables 3 〉 +≡
Vertex ∗source [max n], ∗dest [max n]; /∗ the answers ∗/
int ocount ; /∗ the current number of entries in source and dest ∗/
int curo [max n]; /∗ value of ocount at the beginning of each level ∗/

11. Finally, a few other minor structures help us with backtracking or when we want to assess the progress
of a potentially long calculation.

〈Global variables 3 〉 +≡
Vertex ∗curv [max n]; /∗ outer vertex chosen for branching ∗/
Arc ∗cura [max n]; /∗ edge chosen for branching ∗/
int curi [max n]; /∗ index of the choice ∗/
int maxi [max n]; /∗ total number of choices ∗/
int profile [max n]; /∗ number of times we reached this level ∗/
int l; /∗ the current level of backtracking ∗/
int maxl ; /∗ the largest l seen so far ∗/
unsigned int total ; /∗ this many solutions so far ∗/

6 DATA STRUCTURES HAMDANCE §12

12. Hamiltonian path problems often take a long time. The following subroutine can be called with an
online debugger, to assess how far the work has progressed.

〈Subroutines 5 〉 +≡
void print state ()
{

register int i, j, k;

for (j = k = 0; k ≤ l; j++, k++) {
while (j < curo [k]) {

printf (" %s−−%s\n", source [j]~name , dest [j]~name);
j++;

}
if (k) {

if (j < g~n)
printf (" %3d: %s−−%s (%d of %d)\n", k, source [j]~name , dest [j]~name , curi [k],maxi [k]);

} else 〈Print the state line for the bottom level 39 〉;
}
}

13. 〈Print the results 13 〉 ≡
printf ("Altogether %u solutions.\n", total);
if (verbose) {

for (k = 1; k ≤ maxl ; k++) printf ("%3d: %d\n", k, profile [k]);
}

This code is used in section 1.

§14 HAMDANCE MARCHING FORWARD 7

14. Marching forward. Here we follow the usual pattern of a backtrack process (and I follow my usual
practice of goto-ing). In this particular case it’s a bit tricky to get the whole process started, so I’m deferring
that bootstrap calculation until the program for levels l ≥ 1 is in place and understood.

〈Backtrack through all solutions 14 〉 ≡
〈Bootstrap the backtrack process 36 〉;

advance : 〈Clothe everything on the bare list 18 〉; /∗ here I said sanity check (Λ) when debugging ∗/
l++;
if (verbose) {

if (l > maxl) maxl = l;
printf ("Entering level %d:", l);
profile [l]++;
}
if (ocount ≥ g~n− 1) 〈Check for solution and goto backup 32 〉;
〈Choose an outer vertex v of minimum degree d 15 〉;
if (verbose) printf (" choosing %s(%d)\n", v~name , d);
if (d ≡ 0) goto backup ;
curv [l] = v, curi [l] = 1,maxi [l] = d, curb [l] = bcount , curo [l] = ocount ;
source [ocount] = v;
w = v~mate ;
〈Promote v from outer to inner 16 〉;
a = v~arcs ;

try move : for (; ; a = a~next) {
u = a~ tip ;
if (u~ type 6= inner ∧ u 6= w) break;
}
cura [l] = a;
〈Update data structures to account for choosing edge cura [l] 17 〉;
goto advance ;

backup : l−−;
if (verbose) printf (" back to level %d:\n", l);
〈Unclothe everything clothed on level l 25 〉;
if (l) {
〈Downdate data structures to deaccount for choosing edge cura [l] 30 〉;
/∗ here I said sanity check (v) when debugging ∗/

if (curi [l] < maxi [l]) {
curi [l]++;
w = v~mate ; a = cura [l]~next ;
goto try move ;

}
〈Demote v from inner to outer 31 〉;
if (l > 1) goto backup ;
}
〈Advance at bottom level 38 〉;

This code is used in section 1.

8 MARCHING FORWARD HAMDANCE §15

15. All the outer vertices are in the doubly linked list, and it is not empty.

〈Choose an outer vertex v of minimum degree d 15 〉 ≡
for (u = head~rlink , d = infty ; u 6= head ; u = u~rlink) {

if (verbose) printf (" %s(%d)", u~name , u~deg);
if (u~deg < d) d = u~deg , v = u;
}

This code is used in section 14.

16. At the beginning of a level, when we’re about to choose a neighbor for the outer vertex v, we convert
v to inner type because this conversion will be valid regardless of which edge we choose.

#define dancing delete (u) u~ llink~rlink = u~rlink , u~rlink~ llink = u~ llink
#define decrease deg (u,w)

if (u~ type ≡ bare) {
u~deg −−;
if (u~deg ≡ 2) barelist [bcount ++] = u;
} else if (u 6= w) u~deg −− /∗ u is an outer neighbor of v with v~mate = w ∗/

〈Promote v from outer to inner 16 〉 ≡
for (a = v~arcs ; a; a = a~next) {
u = a~ tip ;
if (u~ type > inner) decrease deg (u,w);
}
v~ type = inner ;
dancing delete (v);
curbb [l] = bcount ;

This code is used in section 14.

§17 HAMDANCE MARCHING FORWARD 9

17. At this point, v is a formerly outer vertex that we’re joining to vertex u. Also, w = v~mate .
If u is type outer , we’re joining two segments into one, making u of type inner . But if u is bare, we’re

lengthening a segment, and u becomes outer .

#define make outer (u)
{
u~rlink = head~rlink , head~rlink~ llink = u;
u~ llink = head , head~rlink = u;
u~ type = outer ;
}

#define vprint () if (verbose) printf (" %s−−%s\n", source [ocount − 1]~name , dest [ocount − 1]~name)

〈Update data structures to account for choosing edge cura [l] 17 〉 ≡
dest [ocount ++] = u; vprint ();
if (u~ type ≡ outer) {

for (a = w~arcs ; a; a = a~next)
if (a~ tip ≡ u~mate) {

u~mate~deg −−, w~deg −−;
break;

}
w~mate = u~mate , u~mate~mate = w;
dancing delete (u);
u~ type = inner ;
for (a = u~arcs ; a; a = a~next) {

w = a~ tip ;
if (w~ type > inner) decrease deg (w, u~mate);

}
} else { /∗ u~ type ≡ bare ∗/

for (a = w~arcs ; a; a = a~next)
if (a~ tip ≡ u) {

u~deg −−, w~deg −−;
break;

}
w~mate = u, u~mate = w;
make outer (u);
}

This code is used in section 14.

10 MARCHING FORWARD HAMDANCE §18

18. The situation might have changed since a vertex entered the bare list, because its type and/or degree
may have been altered.

Also, giving clothes to one bare vertex might have a ripple effect, causing other vertices to enter the bare
list. The value of bcount in the following loop might therefore be a moving target.

One case needs to handled with special care: If the two neighbors of v are mates of each other, we are
forced to complete a cycle. This is legitimate only if the cycle includes all vertices.

〈Clothe everything on the bare list 18 〉 ≡
for (k = curb [l]; k < bcount ; k++) {
v = barelist [k];
if (v~ type 6= bare) bareback [k] = v, barelist [k] = Λ;
else {

if (v~deg 6= 2) {
if (verbose) printf ("(oops, low degree; backing up)\n");
goto emergency backup ; /∗ see below ∗/

}
〈Find the two neighbors, u and w, of vertex v 19 〉;
if (u~mate ≡ w ∧ ocount 6= g~n− 2) {

if (verbose) printf ("(oops, short cycle; backing up)\n");
goto emergency backup ;

}
v~mate = u, v~comate = w;
v~ type = inner ;
source [ocount] = u, dest [ocount ++] = v; vprint ();
source [ocount] = v, dest [ocount ++] = w; vprint ();
if (u~ type ≡ bare)

if (w~ type ≡ bare) 〈Promote BBB to OIO 20 〉
else 〈Promote BBO to OII 21 〉

else if (w~ type ≡ bare) 〈Promote OBB to IIO 22 〉
else 〈Promote OBO to III 23 〉;

}
}

This code is used in section 14.

19. 〈Find the two neighbors, u and w, of vertex v 19 〉 ≡
for (a = v~arcs ; ; a = a~next) {
u = a~ tip ;
if (u~ type 6= inner) break;
}
for (a = a~next ; ; a = a~next) {
w = a~ tip ;
if (w~ type 6= inner) break;
}

This code is used in section 18.

§20 HAMDANCE MARCHING FORWARD 11

20. The clothing process involves four similar subcases (which, I admit, are slightly boring). We will see,
however, that all of these manipulations are easily undone; and that fact, to me, is interesting indeed, almost
climactic.

〈Promote BBB to OIO 20 〉 ≡
{
u~deg −−, w~deg −−;
make outer (u);
make outer (w);
u~mate = w,w~mate = u;
for (a = u~arcs ; a; a = a~next)

if (a~ tip ≡ w) {
u~deg −−, w~deg −−;
break;

}
}

This code is used in section 18.

21. 〈Promote BBO to OII 21 〉 ≡
{
u~deg −−;
make outer (u);
u~mate = w~mate , w~mate~mate = u;
for (a = u~arcs ; a; a = a~next)

if (a~ tip ≡ w~mate) {
u~deg −−, w~mate~deg −−;
break;

}
for (a = w~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner) decrease deg (v, w~mate);

}
w~ type = inner ;
dancing delete (w);
}

This code is used in section 18.

12 MARCHING FORWARD HAMDANCE §22

22. 〈Promote OBB to IIO 22 〉 ≡
{
w~deg −−;
make outer (w);
w~mate = u~mate , u~mate~mate = w;
for (a = w~arcs ; a; a = a~next)

if (a~ tip ≡ u~mate) {
w~deg −−, u~mate~deg −−;
break;

}
for (a = u~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner) decrease deg (v, u~mate);

}
u~ type = inner ;
dancing delete (u);
}

This code is used in section 18.

23. 〈Promote OBO to III 23 〉 ≡
{

for (a = u~arcs ; a; a = a~next) {
v = a~ tip ;
if (v~ type 6= inner) decrease deg (v, u~mate);

}
u~ type = inner ;
dancing delete (u);
for (a = w~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner) decrease deg (v, w~mate);

}
w~ type = inner ;
dancing delete (w);
if (u~mate 6= w) {
u~mate~mate = w~mate , w~mate~mate = u~mate ;
for (a = u~mate~arcs ; a; a = a~next)

if (a~ tip ≡ w~mate) {
u~mate~deg −−, w~mate~deg −−;
break;
}

}
}

This code is used in section 18.

§24 HAMDANCE BACKTRACKING 13

24. Backtracking. The fascinating thing about dancing links is the almost magical way in which the
linked data structures snap back into place when we run the updating algorithm backwards. We do need
constant vigilance, though, because the validity of the algorithms hangs by a slender thread.

#define dancing undelete (v) v~ llink~rlink = v~rlink~ llink = v
#define make bare (v) dancing delete (v), v~ type = bare , v~mate = Λ

25. The emergency backup label in this section provides an interesting example of a case where it is right
and proper to goto a statement in the middle of one loop from the middle of another. [See the discussion in
Examples 6c and 7a of my paper “Structured programming with go to statements, Computing Surveys 6
(December 1974), 261–301.] The program jumps to emergency backup when it is running through the bare
list and finds a situation that cannot be completed to a Hamiltonian circuit; it will then undo whatever
actions it had completed so far in the clothing loop, because the unclothing loop operates in reverse order.

〈Unclothe everything clothed on level l 25 〉 ≡
for (k = bcount − 1; k ≥ curb [l]; k−−) {
v = barelist [k];
if (¬v) barelist [k] = bareback [k];
else {
u = v~mate , w = v~comate ;
v~ type = bare , v~mate = Λ;
v~comate = Λ; /∗ this isn’t necessary, but I’m feeling tidy today ∗/
if (u~ type ≡ outer)

if (w~ type ≡ outer) 〈Demote OIO to BBB 26 〉
else 〈Demote OII to BBO 27 〉

else if (w~ type ≡ outer) 〈Demote IIO to OBB 28 〉
else 〈Demote III to OBO 29 〉;

}
emergency backup : ;
}

This code is used in section 14.

26. 〈Demote OIO to BBB 26 〉 ≡
{
u~deg ++, w~deg ++;
make bare (u);
make bare (w);
for (a = u~arcs ; a; a = a~next)

if (a~ tip ≡ w) {
u~deg ++, w~deg ++;
break;

}
}

This code is used in section 25.

14 BACKTRACKING HAMDANCE §27

27. The first statement here, ‘v~deg −−’, compensates for the spurious increases that will occur because v
is a neighbor of w and v~ type is no longer inner .

〈Demote OII to BBO 27 〉 ≡
{
v~deg −−;
w~mate~mate = w;
dancing undelete (w);
w~ type = outer ;
for (a = u~arcs ; a; a = a~next)

if (a~ tip ≡ w~mate) {
u~deg ++, w~mate~deg ++;
break;

}
for (a = w~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner ∧ v 6= w~mate) v~deg ++;

}
u~deg ++;
make bare (u);
}

This code is used in section 25.

28. 〈Demote IIO to OBB 28 〉 ≡
{
v~deg −−;
u~mate~mate = u;
dancing undelete (u);
u~ type = outer ;
for (a = w~arcs ; a; a = a~next)

if (a~ tip ≡ u~mate) {
w~deg ++, u~mate~deg ++;
break;

}
for (a = u~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner ∧ v 6= u~mate) v~deg ++;

}
w~deg ++;
make bare (w);
}

This code is used in section 25.

§29 HAMDANCE BACKTRACKING 15

29. 〈Demote III to OBO 29 〉 ≡
{
v~deg −= 2; /∗ compensate for two spurious increases below ∗/
if (u~mate 6= w) {
u~mate~mate = u,w~mate~mate = w;
for (a = u~mate~arcs ; a; a = a~next)

if (a~ tip ≡ w~mate) {
u~mate~deg ++, w~mate~deg ++;
break;
}

}
dancing undelete (w);
w~ type = outer ;
for (a = w~arcs ; a; a = a~next) {
v = a~ tip ;
if (v~ type 6= inner ∧ v 6= w~mate) v~deg ++;

}
dancing undelete (u);
u~ type = outer ;
for (a = u~arcs ; a; a = a~next) {

v = a~ tip ;
if (v~ type 6= inner ∧ v 6= u~mate) v~deg ++;

}
}

This code is used in section 25.

16 BACKTRACKING HAMDANCE §30

30. A somewhat subtle point deserve special mention here: We want to reset bcount to curbb [l], not to
curb [l], because entries that were put onto the barelist while v was becoming inner should remain there.

〈Downdate data structures to deaccount for choosing edge cura [l] 30 〉 ≡
v = curv [l];
ocount = curo [l];
u = dest [ocount]; /∗ cura [l]~ tip ∗/
if (u~ type ≡ inner) {

for (a = u~arcs ; a; a = a~next) {
w = a~ tip ;
if (w~ type 6= inner ∧ w 6= u~mate) w~deg ++;

}
u~ type = outer ;
dancing undelete (u);
w = v~mate ;
u~mate~mate = u,w~mate = v;
for (a = w~arcs ; a; a = a~next)

if (a~ tip ≡ u~mate) {
u~mate~deg ++, w~deg ++;
break;

}
} else { /∗ u~ type ≡ outer ∗/

make bare (u);
w = v~mate ;
w~mate = v;
for (a = w~arcs ; a; a = a~next)

if (a~ tip ≡ u) {
u~deg ++, w~deg ++;
break;

}
}
bcount = curbb [l];

This code is used in section 14.

31. 〈Demote v from inner to outer 31 〉 ≡
bcount = curb [l];
dancing undelete (v);
v~ type = outer ;
for (a = v~arcs ; a; a = a~next) {
u = a~ tip ;
if (u~ type 6= inner ∧ u 6= w) u~deg ++;
}

This code is used in section 14.

§32 HAMDANCE REAPING THE REWARDS 17

32. Reaping the rewards. Once all vertices have been connected up, no more decisions need to be
made. In most such cases, we’ll have found a valid Hamiltonian circuit, although its last link usually still
needs to be filled in.

〈Check for solution and goto backup 32 〉 ≡
{

if (ocount < g~n) 〈 If the two outer vertices aren’t adjacent, goto backup 33 〉;
total ++;
if (total % abs (modulus) ≡ 0 ∨ verbose) {

curo [l] = ocount ;
source [ocount] = head~rlink , dest [ocount] = head~ llink ;
curi [l] = maxi [l] = 1;
if (modulus < 0) {

printf ("\n%d:\n", total); print state ();
} else 〈Unscramble and print the current solution 34 〉;

}
goto backup ;
}

This code is used in section 14.

33. At this point we’ve formed a Hamiltonian path, which will be a Hamiltonian circuit if and only if its
two outer vertices are neighbors.

〈 If the two outer vertices aren’t adjacent, goto backup 33 〉 ≡
{
u = head~ llink , v = head~rlink ;
for (a = u~arcs ; a; a = a~next)

if (a~ tip ≡ v) goto yes ;
goto backup ;

yes : ;
}

This code is used in section 32.

18 REAPING THE REWARDS HAMDANCE §34

34. #define index (v) ((v)− g~vertices)

〈Unscramble and print the current solution 34 〉 ≡
{

register int i, j, k;

for (k = 0; k < g~n; k++) v1 [k] = −1;
for (k = 0; k < g~n; k++) {
i = index (source [k]);
j = index (dest [k]);
if (v1 [i] < 0) v1 [i] = j;
else v2 [i] = j;
if (v1 [j] < 0) v1 [j] = i;
else v2 [j] = i;

}
path [0] = 0, path [1] = v1 [0];
for (k = 2; ; k++) {

if (v1 [path [k − 1]] ≡ path [k − 2]) path [k] = v2 [path [k − 1]];
else path [k] = v1 [path [k − 1]];
if (path [k] ≡ 0) break;

}
if (verbose) printf ("\n");
printf ("%d:", total);
for (k = 0; k ≤ g~n; k++) printf (" %s", (g~vertices + path [k])~name);
printf ("\n");

}
This code is used in section 32.

35. 〈Global variables 3 〉 +≡
int v1 [max n], v2 [max n]; /∗ the neighbors of a given vertex ∗/
int path [max n + 1]; /∗ the Hamiltonian circuit, in order ∗/

§36 HAMDANCE GETTING STARTED 19

36. Getting started. Our program is almost complete, but we still need to figure out how to get the
ball rolling by setting things up properly at backtrack level 0.

There’s no problem if the graph has at least one vertex of degree 2, because the barelist will provide us
with at least two outer vertices in such a case. But if all vertices have degree 3 or more, we’ve got to have
some outer vertices as seeds for the rest of the computation.

In the former (easy) case, we set maxi [0] = 0. In the latter case, we take a vertex v of minimum degree d;
we set maxi [0] = d−1, and try each neighbor of v in turn. (More precisely, after we’ve found all Hamiltonian
cycles that contain an edge from v to some other vertex, u, we’ll remove that edge physically from the graph,
and repeat the process until v or some other vertex has only two neighbors left.)

〈Bootstrap the backtrack process 36 〉 ≡
l = 0;
if (d > 2) {

maxi [0] = d− 1;
source [0] = v = curv [0];
make outer (v);

force : cura [0] = a = v~arcs ;
v~arcs = a~next ;
curi [0]++;
dest [0] = u = a~ tip ;
ocount = 1; vprint ();
make outer (u);
v~deg −−;
u~deg −−;
〈Remove the arc from u to v 37 〉;
v~mate = u, u~mate = v;
}

This code is used in section 14.

37. 〈Remove the arc from u to v 37 〉 ≡
if (u~arcs~ tip ≡ v) u~arcs = u~arcs~next ;
else {

for (a = u~arcs ; a~next~ tip 6= v; a = a~next) ;
a~next = a~next~next ;
}

This code is used in section 36.

20 GETTING STARTED HAMDANCE §38

38. When the edge between u and v is removed, and u reverts to a bare vertex, it might now have degree 2.
In such cases we don’t need v as a seed vertex, so we revert to the simpler algorithm.

〈Advance at bottom level 38 〉 ≡
if (curi [0] < maxi [0]) {

if (verbose) printf (" back to level 0:\n");
l = 0;
ocount = 0;
u = dest [0];
dancing delete (u);
u~ type = bare ;
if (u~deg ≡ 2) barelist [0] = u, bcount = 1;
else bcount = 0; /∗ we never undo barelist conversions at level zero ∗/
v = source [0];
if (v~deg ≡ 2) {

v~ type = bare ;
dancing delete (v);
barelist [bcount ++] = v;

}
if (bcount ≡ 0) goto force ;
maxi [0] = curi [0] = curi [0] + 1; /∗ cut to the chase ∗/
cura [0] = Λ;
goto advance ;
}

This code is used in section 14.

39. 〈Print the state line for the bottom level 39 〉 ≡
if (cura [0]) printf (" %3d: %s−−%s (%d of %d)\n", 0, source [0]~name , dest [0]~name , curi [0],maxi [0]);
else {
j = −1; /∗ this trick will make source [0] and dest [0] appear ∗/
if (maxi [0]) printf (" %3d: (%d of %d)\n", 0, curi [0],maxi [0]);
}

This code is used in section 12.

§40 HAMDANCE INDEX 21

40. Index.

a: 1, 7.
abs : 32.
advance : 14, 38.
Arc: 1, 7, 11.
arcs : 7, 9, 14, 16, 17, 19, 20, 21, 22, 23, 26, 27,

28, 29, 30, 31, 33, 36, 37.
argc : 1, 2.
argv : 1, 2.
backup : 14, 32, 33.
bare : 4, 7, 8, 9, 16, 17, 18, 24, 25, 38.
bareback : 8, 18, 25.
barelist : 8, 9, 16, 18, 25, 30, 36, 38.
bcount : 8, 9, 14, 16, 18, 25, 30, 31, 38.
c: 7.
comate : 4, 5, 9, 18, 25.
cura : 11, 14, 30, 36, 38, 39.
curb : 8, 14, 18, 25, 30, 31.
curbb : 8, 16, 30.
curi : 11, 12, 14, 32, 36, 38, 39.
curo : 10, 12, 14, 30, 32.
curv : 9, 11, 14, 30, 36.
d: 1, 7.
dancing delete : 16, 17, 21, 22, 23, 24, 38.
dancing undelete : 24, 27, 28, 29, 30, 31.
decode : 4, 5, 7.
decrease deg : 16, 17, 21, 22, 23.
deg : 4, 5, 7, 9, 15, 16, 17, 18, 20, 21, 22, 23, 26,

27, 28, 29, 30, 31, 36, 38.
dest : 10, 12, 17, 18, 30, 32, 34, 36, 38, 39.
emergency backup : 18, 25.
exit : 1, 2, 9.
force : 36, 38.
fprintf : 2.
g: 1.
Graph: 1.
head : 4, 7, 9, 15, 17, 32, 33.
i: 12, 34.
index : 34.
infty : 2, 9, 15.
inner : 4, 7, 14, 16, 17, 18, 19, 21, 22, 23, 27,

28, 29, 30, 31.
j: 12, 34.
k: 1, 12, 34.
l: 11.
list head : 4.
llink : 4, 5, 7, 9, 16, 17, 24, 32, 33.
main : 1.
make bare : 24, 26, 27, 28, 30.
make outer : 17, 20, 21, 22, 36.
mate : 4, 5, 7, 9, 14, 16, 17, 18, 20, 21, 22, 23,

24, 25, 27, 28, 29, 30, 36.

max n : 2, 8, 10, 11, 35.
maxi : 11, 12, 14, 32, 36, 38, 39.
maxl : 11, 13, 14.
modulus : 2, 3, 32.
name : 5, 7, 9, 12, 14, 15, 17, 34, 39.
next : 7, 9, 14, 16, 17, 19, 20, 21, 22, 23, 26, 27,

28, 29, 30, 31, 33, 36, 37.
ocount : 7, 9, 10, 14, 17, 18, 30, 32, 36, 38.
outer : 4, 7, 16, 17, 25, 27, 28, 29, 30, 31, 33, 36.
path : 34, 35.
print state : 12, 32.
print vert : 5, 6.
print verts : 6.
printf : 5, 7, 9, 12, 13, 14, 15, 17, 18, 32, 34, 38, 39.
profile : 11, 13, 14.
restore graph : 2.
rlink : 4, 5, 7, 9, 15, 16, 17, 24, 32, 33.
sanity check : 7, 14.
source : 10, 12, 14, 17, 18, 32, 34, 36, 38, 39.
sscanf : 2.
stderr : 2.
tip : 7, 14, 16, 17, 19, 20, 21, 22, 23, 26, 27, 28,

29, 30, 31, 33, 36, 37.
total : 11, 13, 32, 34.
try move : 14.
type : 4, 5, 7, 9, 14, 16, 17, 18, 19, 21, 22, 23, 24,

25, 27, 28, 29, 30, 31, 38.
u: 1, 7.
v: 1, 5, 6, 7.
verbose : 2, 3, 13, 14, 15, 17, 18, 32, 34, 38.
Vertex: 1, 4, 5, 6, 7, 8, 10, 11.
vertices : 6, 7, 9, 34.
vprint : 17, 18, 36.
vv : 7.
v1 : 34, 35.
v2 : 34, 35.
w: 1, 7.
yes : 33.

22 NAMES OF THE SECTIONS HAMDANCE

〈Advance at bottom level 38 〉 Used in section 14.

〈Backtrack through all solutions 14 〉 Used in section 1.

〈Bootstrap the backtrack process 36 〉 Used in section 14.

〈Check for solution and goto backup 32 〉 Used in section 14.

〈Choose an outer vertex v of minimum degree d 15 〉 Used in section 14.

〈Clothe everything on the bare list 18 〉 Used in section 14.

〈Demote III to OBO 29 〉 Used in section 25.

〈Demote IIO to OBB 28 〉 Used in section 25.

〈Demote OII to BBO 27 〉 Used in section 25.

〈Demote OIO to BBB 26 〉 Used in section 25.

〈Demote v from inner to outer 31 〉 Used in section 14.

〈Downdate data structures to deaccount for choosing edge cura [l] 30 〉 Used in section 14.

〈Find the two neighbors, u and w, of vertex v 19 〉 Used in section 18.

〈Global variables 3, 4, 8, 10, 11, 35 〉 Used in section 1.

〈 If the two outer vertices aren’t adjacent, goto backup 33 〉 Used in section 32.

〈Prepare the graph for backtracking 9 〉 Used in section 1.

〈Print the results 13 〉 Used in section 1.

〈Print the state line for the bottom level 39 〉 Used in section 12.

〈Process the command line, inputting the graph 2 〉 Used in section 1.

〈Promote BBB to OIO 20 〉 Used in section 18.

〈Promote BBO to OII 21 〉 Used in section 18.

〈Promote OBB to IIO 22 〉 Used in section 18.

〈Promote OBO to III 23 〉 Used in section 18.

〈Promote v from outer to inner 16 〉 Used in section 14.

〈Remove the arc from u to v 37 〉 Used in section 36.

〈Subroutines 5, 6, 7, 12 〉 Used in section 1.

〈Unclothe everything clothed on level l 25 〉 Used in section 14.

〈Unscramble and print the current solution 34 〉 Used in section 32.

〈Update data structures to account for choosing edge cura [l] 17 〉 Used in section 14.

HAMDANCE

Section Page
Introduction . 1 1
Data structures . 4 3
Marching forward . 14 7
Backtracking . 24 13
Reaping the rewards . 32 17
Getting started . 36 19
Index . 40 21

	Introduction
	Data structures
	Marching forward
	Backtracking
	Reaping the rewards
	Getting started
	Index
	Names of the sections
	Advance at bottom level
	Backtrack through all solutions
	Bootstrap the backtrack process
	Check for solution and goto backup
	Choose an outer vertex v of minimum degree d
	Clothe everything on the bare list
	Demote III to OBO
	Demote IIO to OBB
	Demote OII to BBO
	Demote OIO to BBB
	Demote v from inner to outer
	Downdate data structures to deaccount for choosing edge cura[l]
	Find the two neighbors, u and w, of vertex v
	Global variables
	If the two outer vertices aren't adjacent, goto backup
	Prepare the graph for backtracking
	Print the results
	Print the state line for the bottom level
	Process the command line, inputting the graph
	Promote BBB to OIO
	Promote BBO to OII
	Promote OBB to IIO
	Promote OBO to III
	Promote v from outer to inner
	Remove the arc from u to v
	Subroutines
	Unclothe everything clothed on level l
	Unscramble and print the current solution
	Update data structures to account for choosing edge cura[l]

